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Abstract

A graph is called vertex diameter critical if its diameter increases when
any vertex is removed. Regular vertex diameter critical graphs of every
valency k ≥ 2 and diameter d ≥ 2 exist, raising the question of identifying
the smallest such graphs. We describe an infinite family of k-regular
vertex diameter critical graphs of diameter d with at most kd + (2k − 3)
vertices. This improves the previously known upper bound for all odd
valencies k.

1 Introduction

Let X be a graph with no loops or multiple edges (for general graph-theoretic defini-
tions and background see Godsil and Royle [3] or Diestel [2]). If u and v are vertices
of X , then the distance d(u, v) from u to v is the length of the shortest path from
u to v. The diameter diam(X) of a graph X is the maximum distance between any
pair of vertices of X .

If a vertex v is deleted from a graph X , then the diameter of the resulting graph
X − v can be less than, equal to, or greater than the diameter of X . We will call a
graph vertex diameter critical if for all vertices v ∈ V (X), we have

diam(X − v) > diam(X).

Caccetta and El-Batanouny [1] recently proved that regular vertex diameter crit-
ical graphs exist for all valencies k ≥ 2 and diameters d ≥ 2, thereby proving an
old conjecture of Plesnik [4]. They also addressed the question of determining the
function f(k, d) — the least number of vertices for which there is a k-regular vertex
diameter critical graph of diameter d. It is straightforward to see that f(2, 2) = 5,
and f(2, d) = 2d for d ≥ 3, and Caccetta and El-Batanouny [1] proved that

f(k, 2) =
{

2k + 1, if k is even;
2k + 2, if k is odd.
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For k ≥ 3 and d ≥ 3, they conjectured that

f(k, d) =




4d − 2, if k = 3;
kd + 1, if k is even;
(k + 1)d, otherwise.

Except when the valency k satisfies k ≡ 1 mod 4, they presented graphs of these
sizes, providing constructive upper bounds on f(k, d).

In this paper, for all k ≥ 3 and d ≥ 4, we construct at least one k-regular vertex
diameter critical graph of diameter d with kd + (k − 1) vertices when d is even, and
kd + (2k − 3) vertices when d is odd. This fills the gap for odd valencies congruent
to 1 mod 4, and for all sufficiently large d represents an improved bound for the
remaining odd valencies.

This paper concentrates first on the cubic (that is, 3-regular) case, as this presents
all the essential features of the construction in an accessible manner. Later sections
present the straightforward generalization from the cubic case to higher valencies,
and the final section summarizes the consequences of these constructions for the
bounds on f(k, d).

2 A family of cubic graphs

For n ≥ 3, let L(n) denote a graph on 2n − 2 vertices that is constructed in the
following manner: Take two vertex-disjoint paths

x1 ∼ x2 ∼ · · · ∼ xn−2 y1 ∼ y2 ∼ · · · ∼ yn−2,

and join each vertex xi to yi. Then add a vertex t which is adjacent to x1 and y1,
and a vertex h which is adjacent to xn−2 and yn−2. (Figures 1 and 2 will immediately
make this definition clear.) All vertices have degree three except for h and t, which
we will call the head and tail of L(n), respectively.
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Figure 1: The graphs L(4) and L(5)

We can form a cubic graph from these configurations by joining an arbitrary
sequence of them in a chain, using an edge from the head of one configuration to
the tail of the next in the sequence, and joining the head of the final configuration
to the tail of the first one. Figure 3 shows the cubic graph that results when we
use L(4), L(4) and L(5) in this construction. We denote this graph by L(4, 4, 5),
and in general use L(n1, n2, . . . , ns) for the graph obtained by joining L(n1), L(n2),
. . ., L(ns) in a cycle in an analogous fashion. We will call the induced subgraphs
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Figure 2: The graph L(8)
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Figure 3: The cubic graph L(4, 4, 5)

L(n1), L(n2), · · ·, L(ns) the constituents of L(n1, n2, . . . , ns). We need to distinguish
the edges connecting the vertices xi to yi in the constituents, and so we call these
vertical. All the remaining edges are called horizontal, even the ones incident with
the head or tail vertices (which are not actually drawn horizontally in the figures).

First we will prove that L(4, 4, 5) is a vertex diameter critical graph. Although
this is a consequence of our main theorem, it is useful to have a concrete demonstra-
tion of the principles underlying the general proof.

2.1 Theorem. The graph X = L(4, 4, 5) is a vertex diameter critical cubic graph
with diameter six and 20 vertices.

Proof. First we define a labelling

ϕ : V (X) �→ {0, 1, . . . , 12}

as follows: label the left-most vertex (in Figure 3) with 0, and label every other
vertex with i if the shortest left-to-right path from 0 to that vertex has length i.
(Glancing at Figure 4 is probably easier than unpacking this description.)

If two vertices, say u and v, are in the same constituent, then their distance is at
most three. However if they are in different constituents, then the distance between
them is given by

d(u, v) = min{ϕ(v) − ϕ(u), ϕ(u) − ϕ(v)},
where all arithmetic on labels is performed modulo 13. Moreover, a shortest path
between vertices in different constituents uses only horizontal edges. Therefore there
are pairs of vertices at distance six (for example, 0 and either of the two vertices
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Figure 4: The special labelling of L(4, 4, 5)

labelled 6), but none at distance seven. We conclude that the diameter of X is
exactly six.

Now we must show that X is vertex diameter critical. It is easy to see that if we
remove a “head” or “tail” vertex u, then the vertices with labels ϕ(u)± 1 are now at
distance 11. It remains to show that removing any other vertex causes the diameter
to increase. So suppose that we remove a vertex u that is neither a head or a tail
vertex. Because each constituent L(n) has n ≥ 4, there is a neighbour v of u that is
neither a head or a tail vertex, and such that

ϕ(v) = ϕ(u) ± 1.

Without loss of generality, we will assume that ϕ(v) = ϕ(u)+1 (otherwise we simply
relabel from right to left). Now choose a vertex w such that

ϕ(w) = ϕ(v) − 6.

It is necessarily the case that v and w are in different constituents of X , and so every
shortest path in X from v to w uses only horizontal edges, starting with the edge
vu. Therefore in X − u, these paths are no longer present, and the distance from v
to w is at least seven. (In fact, it is exactly seven, as we can find a path from v using
vertices labelled ϕ(v) + 1, ϕ(v) + 2, . . ., ϕ(v) + 7.)

We conclude that X is vertex diameter critical with diameter six.

This proof can easily be extended to the general case, under some fairly modest
restrictions on the parameters n1, n2, . . ., ns.

2.2 Theorem. Let n1, n2, . . ., ns be a sequence of s > 1 integers such that

(1) each ni ≥ 4,
(2) n = n1 + n2 + · · · + ns is odd, and
(3) ni ≤ (n + 3)/2, for all i.

Then the graph X = L(n1, n2, . . . , ns) is vertex diameter critical with diameter
d = (n − 1)/2.
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Proof. It is immediate that we can define a labelling

ϕ : V (X) �→ {0, 1, . . . , n − 1}
analogously to that defined in the previous proof. This labelling has the analogous
property that the distance between two vertices in different constituents is equal to
the difference between their labels modulo n.

Therefore we can find two vertices in different constituents at distance d = (n −
1)/2, but at no greater distance. Two vertices in the same constituent L(ni) have
distance at most ni − 2, and because ni ≤ (n + 3)/2, it follows that ni − 2 ≤ d.
Therefore the graph X has diameter d.

It is immediate that removing a head or tail vertex leaves a graph with diameter
n − 2, and so once more it suffices to consider the remaining vertices. Suppose that
we remove a vertex u that is neither a head or tail vertex, and consider the diameter
of X − u. Because each ni ≥ 4, there is a vertex v, adjacent to u, not a head or tail
vertex, for which we may assume that ϕ(v) = ϕ(u) + 1.

If we now pick any vertex w with label

ϕ(w) = ϕ(v) − d

then w is in a different constituent to v (this follows from the third condition).
Because n is odd, every shortest path from v to w in X uses the edge vu, and so the
distance between these two vertices in X − v is d + 1.

Hence X is vertex diameter critical with diameter (n − 1)/2.

3 Improving the bound

This shows that we can construct cubic vertex diameter critical graphs of any desired
diameter d ≥ 4 simply by selecting a sequence of numbers, each at least 4, that sum
to n = 2d + 1. For example, each of the graphs

L(4, 4, 7), L(4, 5, 6), L(7, 8) and L(6, 9)

is a vertex diameter critical graph with diameter 7.
Each of the constituents L(ni) has 2ni − 2 vertices, and therefore the graph

L(n1, n2, . . . , ns) has

2(n1 + n2 + . . . + ns) − 2s = 2n − 2s = 4d + 2 − 2s

vertices.
Therefore, for each fixed diameter d, the graphs in this family with the fewest

vertices are those with the greatest number of constituents.

3.3 Theorem. If d ≥ 4 is even, then the graph

L(4, 4, . . . , 4, 5)
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with d/2−1 constituents equal to L(4), and one constituent equal to L(5), is a cubic
vertex diameter critical graph with diameter d and 3d + 2 vertices.

If d ≥ 5 is odd, then the graph

L(4, 4, . . . , 4, 7)

with (d − 1)/2 − 1 constituents equal to L(4), and one constituent equal to L(7), is
a cubic vertex diameter critical graph with diameter d and 3d + 3 vertices.

Proof. Follows directly from the main theorem, and simple arithmetic.

When d is even, there is a unique graph in this family with 3d+2 vertices. When
d is odd, this is not the case, because the graphs L(4, 4, . . . , 4, 5, 6), L(4, 4, . . . , 5, 4, 6)
(and so on), also have 3d + 3 vertices.

A computer search has been performed for all vertex diameter critical cubic
graphs on up to 24 vertices. The results are summarized in Table 1.

n\d 2 3 4 5 6 7 Total
10 1 1 2
12 10 10
14 26 3 29
16 14 18 32
18 1 398 6 405
20 1 7101 26 1 7129
22 81459 509 16 81984
24 285396 12918 84 5 298403

Table 1: Numbers of cubic vertex diameter critical graphs

This table shows that f(3, 5), f(3, 6) and f(3, 7) are all realized by the graphs
found in this paper. This leads naturally to the following conjecture:

3.4 Conjecture. The smallest number of vertices f(3, d), for which there exists a
cubic vertex diameter critical graph of diameter d ≥ 3 is given by

f(3, d) =




10, d = 3;
3d + 2, d even;
3d + 3, d odd.

We further conjecture that this bound is realized uniquely by L(4, 4, . . . , 4, 5) for
even diameter d ≥ 6; this has been confirmed for d = 6 and d = 8.
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4 Higher Valencies

The construction of the preceding sections can easily be generalized to produce vertex
diameter critical graphs of any valency k. Let Lk(n) be the graph obtained from L(n)
by replacing each vertical edge — viewed as a complete graph on 2 vertices — with
a (k− 1)-clique. Two such (k− 1)-cliques are joined by a matching if and only if the
corresponding vertical edges in L(n) were also joined by a matching. Once again,
this definition is considerably clarified by a diagram, given as Figure 5.
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Figure 5: The graph L4(8)

Now define the graph Lk(n1, n2, . . . , ns) to be the k-regular graph obtained by
joining the constituents Lk(n1), Lk(n2), . . ., Lk(ns) “head-to-tail” in a circular chain.
(So L3(n1, n2, . . . , ns) is just the original cubic graph L(n1, n2, . . . , ns).)

We quickly obtain a result analogous to the theorem for cubic graphs.

4.5 Theorem. Let n1, n2, . . ., ns be a sequence of s > 1 integers such that

(1) each ni ≥ 4,
(2) n = n1 + n2 + · · · + ns is odd, and
(3) ni ≤ (n + 3)/2, for all i.

Then Lk(n1, n2, . . . , ns) is a k-regular vertex diameter critical graph with diameter
d = (n − 1)/2.

Proof. The proof is identical to the proof of the theorem for cubic graphs.

For every even diameter d ≥ 4, the graph

Lk(4, 4, . . . , 4, 5)

with d/2 − 1 constituents equal to Lk(4) and one constituent equal to Lk(5) is the
unique smallest k-regular member of this family with diameter d. Each component
Lk(4) has 2(k − 1) + 2 vertices, while Lk(5) has 3(k − 1) + 2 vertices. Hence this
graph has

(d/2 − 1)(2(k − 1) + 2) + 3(k − 1) + 2 = kd + (k − 1)

vertices.
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For odd diameter d ≥ 5, the graph

Lk(4, 4, . . . , 4, 7)

with (d−1)/2−1 constituents equal to Lk(4) and one constituent equal to Lk(7) is one
of the smallest k-regular members of this family with diameter d. Each component
Lk(4) has 2(k − 1) + 2 vertices, while Lk(7) has 5(k − 1) + 2 vertices. Hence this
graph has

((d − 1)/2 − 1)(2(k − 1) + 2) + 5(k − 1) + 2 = kd + (2k − 3)

vertices.

5 Conclusion

For even valencies, the graphs constructed in this paper are always larger than the
previously known smallest graphs, but for odd valencies the situation is quite differ-
ent.

When k ≡ 1 mod 4, they are the smallest currently known family of k-regular
vertex diameter critical graphs, and so provide the entire upper bound for f(k, d).
For k ≡ 3 mod 4, the graphs found by Cacetta and El-Batanouny [1] are smaller for
low diameters, but for each fixed k, there is a threshold for the diameter above which
the graphs in the Lk family are smaller. More precisely,

(k + 1)d ≤ kd + (k − 1) if and only if d ≤ k − 1,

(k + 1)d ≤ kd + (2k − 3) if and only if d ≤ 2k − 3.

Combining all of this information, we end up with the following somewhat un-
wieldy bound on the function f(k, d).

5.6 Theorem. For valency k ≥ 3 and diameter d ≥ 4, we have the following bound:

f(k, d) ≤




14, if k = 3 and d = 4;
kd + 1, if k is even;
kd + (k − 1), if k ≡ 1 mod 4 and d is even;
kd + (k − 1), if k ≡ 3 mod 4 and d > k − 1 is even;
kd + (2k − 3), if k ≡ 1 mod 4 and d is odd;
kd + (2k − 3), if k ≡ 3 mod 4 and d > 2k − 3 is odd;
(k + 1)d, otherwise.

The exact values of f(k, d) are known only when k = 2, d = 2 or according to
the following list:
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f(3,3) = 10, f(3,4) = 14, f(3,5) = 18,
f(3,6) = 20, f(3,7) = 24, f(3,8) = 26,
f(4,3) = 13, f(4,4) = 17.

We finish with two open questions regarding this problem that may be relatively
amenable to attack.

Firstly, for each fixed valency k, the bound has asymptotic form kd+ c(k), where
c(k) is a constant depending only on k, and there are some small-diameter exceptions.
For cubic graphs, we can perform exhaustive computations for much higher diameters
(up to d = 8) than for other valencies, and so have greater confidence that we have
found the correct values of c(k). This leads to the natural question:

5.7 Question. Prove that f(3, d) = 3d+2 for even d ≥ 4 and that f(3, d) = 3d+3
for odd d ≥ 5.

Secondly, note that the graphs in this paper all diameter at least four, and that
Caccetta and El-Batanouny [1] do not cover valencies k ≡ 1 mod 4. Therefore, there
is a significant gap in our knowledge when the diameter d = 3. The diameter two
case has been completely solved, producing an exact result, and so one might hope
that the techniques used there could somehow be extended. In any case, there is
ample motivation to study the following question:

5.8 Question. Study the situation when the diameter is 3, and either find exact
values for f(k, 3) or at least provide a good upper bound for all valencies.
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