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Abstract

A (p, q) graph G is called edge-magic if there exists a bijective function
f : V (G) ∪ E(G) → {1, 2, . . . , p + q} such that f(u) + f(v) + f(uv) is
constant for any edge uv of G. Moreover, G is said to be super edge-
magic if f(V (G)) = {1, 2, . . . , p}. Every super edge-magic (p, q) graph
is harmonious, sequential and felicitous whenever it is a tree or satisfies
q ≥ p. In this paper, we prove that the n-crown, a cycle with n pendant
edges attached at each vertex, is super edge-magic for any positive integer
n, and thus extend what was known about the harmoniousness, sequen-
tialness and felicitousness of such graphs. We also present three results
on attaching pendant edges to the vertices of certain super edge-magic
graphs to obtain more super edge-magic graphs.
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1 Introduction

In this paper, the authors extend what is known in the literature about vertex label-
ings of unicyclic graphs. Specifically, in our main result, we show that a cycle with
n pendant edges attached at each vertex, known as an n-crown, is super edge-magic,
harmonious, sequential and felicitous. We also present three results that illustrate
how attaching pendant edges to the vertices of certain super edge-magic graphs will
result in more super edge-magic graphs.

For most of the graph theory terminology and notation used, we follow Chartrand
and Lesniak [1] throughout this paper. In particular, we mean a graph to be finite
and simple, that is, without allowing loops or multiple edges. Furthermore, the
vertex and edge sets of a graph G are denoted by V (G) and E(G), respectively.

For a (p, q) graph G, a bijective function f : V (G) ∪ E(G) → {1, 2, . . . , p + q}
is an edge-magic labeling of G if f(u) + f(v) + f(uv) = k is a constant, which is
independent on the choice of any edge uv of G. If such a labeling exists, then the
constant k is called the valence of f , and G is said to be an edge-magic graph.
Moreover, f is called a super edge-magic labeling if f(V (G)) = {1, 2, . . . , p}. Thus,
a super edge-magic graph is a graph that admits a super edge-magic labeling.

The concepts presented above were first introduced and studied by Kotzig and
Rosa [8, 9], and Enomoto, Lladó, Nakamigawa and Ringel [2]. The edge-magic
labelings were previously named magic valuations by Kotzig and Rosa [8]. For other
results on this subject, the reader is referred to [3, 4].

The following result found in [3] provides a necessary and sufficient condition for
a graph to be super edge-magic.

Lemma 1.1 A (p, q) graph G is super edge-magic if and only if there exists a bijec-
tive function f : V (G) → {1, 2, . . . , p} such that the set S = {f(u) + f(v) |uv ∈ E(G)}
consists of q consecutive integers. In such a case, f extends to a super edge-magic
labeling of G with valence k = p + q + s, where s = min(S) and

S = {f(u) + f(v) |uv ∈ E(G)}
= {k − (p + 1), k − (p + 2), . . . , k − (p + q)} .

In 1980, Graham and Sloane [7] initiated the study of harmonious labelings.
A (p, q) graph G with q ≥ p is harmonious if there exists an injective function
f : V (G) → Zq such that each edge uv of G is labeled f(u)+ f(v) (mod q) and the
resulting edge labels are distinct. Such a function is called a harmonious labeling. If
G is a tree (so that q = p − 1) exactly two vertices are labeled the same; otherwise,
the definition is the same.

The notion of sequential labelings was introduced by Grace [6] who was inspired
by the definition of harmonious labelings. For a (p, q) graph G, an injective function
f : V (G) → {0, 1, . . . , q − 1} is a sequential labeling of G if each edge uv of G is
labeled f(u) + f(v) and the resulting edge labels are {m, m + 1, . . . , m + q − 1} for
some positive integer m. If such a labeling exists, then G is said to be sequential.
In the case of a tree, Grace permits the vertex labels to range from 0 to q with no
vertex label used twice.
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We now consider a graph labeling introduced by Shee [10] that is similar in
nature to a harmonious labeling. A graph G of size q is felicitous if there exists
an injective function f : V (G) → Zq+1 such that each edge uv of G is labeled
f(u) + f(v) (mod q) and the resulting edge labels are distinct. Such a function is
called a felicitous labeling.

In [3], the authors proved the following result.

Lemma 1.2 Every super edge-magic (p, q) graph G is harmonious and sequential
whenever G is a tree or satisfies q ≥ p.

Thus, we obtain the following relationship between super edge-magic labelings
and felicitous labelings since every harmonious labeling is certainly a felicitous label-
ing.

Lemma 1.3 If a (p, q) graph G is super edge-magic, then G is felicitous whenever
it is a tree or satisfies q ≥ p.

Throughout this paper, we will utilize the corona product G1 �G2 of two graphs
G1 and G2 defined as the graph obtained by taking one copy of G1 (which has order
p1) and p1 copies of G2, and then joining the i-th vertex of G1 to every vertex in the
i-th copy of G2. The graph Cm �Kn is called the n-crown with cycle length m. We
will refer to the 1-crown as the crown with cycle length m. For the sake of brevity,
we will refer to the n-crown with cycle length m simply as the n-crown if its cycle
length is clear from the context.

2 Coronations of Some Super Edge-Magic Graphs

In this section, we first provide a construction that shows that G � Kn is super
edge-magic whenever G is a graph of odd order at least 3 and admits certain super
edge-magic labelings.

Theorem 2.1 Let G be a graph of odd order p ≥ 3 for which there exists a super
edge-magic labeling f with the property that

max {f(u) + f(v)|uv ∈ E(G)} =
3p + 1

2
.

Then G � Kn is super edge-magic for every positive integer n.

Proof. Let f be a super edge-magic labeling of G with valence k, and assume
that f has the property that f(vi) = i for every integer i with 1 ≤ i ≤ p, where
V (G) = {vi |1 ≤ i ≤ p}. Further, let

V (G � Kn) = V (G) ∪ {
wj

i

∣∣ 1 ≤ i ≤ p and 1 ≤ j ≤ n
}

and
E(G � Kn) = E(G) ∪ {

viw
j
i

∣∣ 1 ≤ i ≤ p and 1 ≤ j ≤ n
}

.
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Now, define the vertex labeling g : V (G � Kn) → {1, 2, . . . , p(n + 1)} such that
g(v) = f(v) for every vertex v of G, and

g
(
wj

i

)
=

{
p + i + p(2j−1)+1

2
, if 1 ≤ i ≤ p−1

2
and 1 ≤ j ≤ n;

i + p(2j−1)+1
2

, if p+1
2

≤ i ≤ p and 1 ≤ j ≤ n.

To show that g extends to a super edge-magic labeling of G � Kn, consider the
set

Sj
i =

{
f(vi) + f

(
wj

i

)∣∣ 1 ≤ i ≤ p and 1 ≤ j ≤ n
}

,

and let

mj = min
{

Sj
i

∣∣ 1 ≤ i ≤ p
}

= p + 1 +
p(2j − 1) + 1

2
,

Mj = min
{

Sj
i

∣∣ 1 ≤ i ≤ p
}

= 2p +
p(2j − 1) + 1

2
.

Finally, observe that m1 = (3p + 1)/2 + 1, Mj + 1 = mj+1 (1 ≤ j ≤ n − 1), and
Sj

i is a set of consecutive integers (1 ≤ i ≤ p and 1 ≤ j ≤ n), which implies that g
extends to a super edge-magic labeling of G � Kn with valence k + 2np.

By Lemmas 1.2 and 1.3, we have the following corollary.

Corollary 2.2 Let G be a graph of odd order p ≥ 3 for which there exists a super
edge-magic labeling f with the property that

max {f(u) + f(v)|uv ∈ E(G)} =
3p + 1

2
.

Then G � Kn is harmonious, sequential and felicitous for every positive integer n.

We now provide a similar, though in a sense weaker, result for graphs with even
order at least 4.

Theorem 2.3 Let G be a graph of even order p ≥ 4 having a super edge-magic
labeling f with the property that

max {f(u) + f(v)| uv ∈ E(G)} =
3p

2
.

Then the graph H obtained by attaching n pendant edges to each vertex of G except
the vertex v with f(v) = p is super edge-magic for every positive integer n.

Proof. Let V (G) = {v1, v2, . . . , vp}, then take a super edge-magic labeling f of G
with valence k satisfying the property that f(vi) = i for i = 1, 2, . . . , p. Now, define
the graph H as follows:

V (H) = V (G) ∪ {
wj

i

∣∣ 1 ≤ i ≤ p − 1 and 1 ≤ j ≤ n
}
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and
E(H) = E(G) ∪ {

viw
j
i

∣∣ 1 ≤ i ≤ p − 1 and 1 ≤ j ≤ n
}

.

Consequently, through an analogous argument to the one used in the proof of the
previous theorem, the vertex labeling g : V (H) → {1, 2, . . . , p(n + 1) − n} such that
g(v) = f(v) for every vertex v of G, and

g
(
wj

i

)
=

{
i + p

2
+ (p − 1)j + 1, if 1 ≤ i ≤ p

2
− 1 and 1 ≤ j ≤ n

i + p
2

+ (p − 1)(j − 1) + 1, if p
2
≤ i ≤ p − 1 and 1 ≤ j ≤ n

extends to a super edge-magic labeling of H with valence k + 2n(p − 1).
Again, by Lemmas 1.2 and 1.3, we have the following corollary.

Corollary 2.4 Let G be a graph of even order p ≥ 4 having a super edge-magic
labeling f with the property that

max {f(u) + f(v)| uv ∈ E(G)} =
3p

2
.

Then the graph H obtained by attaching n pendant edges to each vertex of G except
the vertex v with f(v) = p is harmonious, sequential and felicitous for every positive
integer n.

3 Super Edge-Magic Labelings of n-Crowns

We now proceed to study the super edge-magicness of n-crowns. To do this, we start
with a result pertaining 2-regular graphs.

Theorem 3.1 If G is a (super) edge-magic 2-regular graph, then G�Kn is (super)
edge-magic for every positive integer n.

Proof. Let f be a (super) edge-magic labeling of G with valence k. Assume that
H is a component of G � Kn. Then H ∼= Cr � Kn for some integer r ≥ 3. Let

V (H) = {vi |i ∈ Zr } ∪ {ui,j |i ∈ Zr and 1 ≤ j ≤ n}

and
E(H) = {vivi+1 |i ∈ Zr } ∪ {viui,j |i ∈ Zr and 1 ≤ j ≤ n} ,

where Zr denotes the set of integers modulo r.
Then f |H extends to a labeling g of H as follows:

g(vi) = (n + 1)f(vi) − n,

g(vi−1vi) = nf(vi−1vi),

g(ui,j) = (n + 1)f(vi−1) − n + j,

g(viui,j) = nf(vi−1vi) − j,
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where i ∈ Zr and 1 ≤ j ≤ n. Therefore, f extends likewise in every component
of G � Kn, and a (super) edge-magic labeling of G � Kn is obtained with valence
n(k − 2) + 2.

Now, recall the following super edge-magic characterization of the n-cycle Cn

found by Enomoto, Lladó, Nakamigawa and Ringel [2].

Theorem 3.2 The n-cycle Cn is super edge-magic if and only if n ≥ 3 is odd.

Hence, by Theorem 3.1, we know that the n-crowns with cycle length m are super
edge-magic when m ≥ 3 is odd. In the following result, we show with considerable
more effort that the n-crowns with cycle length m are also super edge-magic when
m ≥ 4 is even.

Theorem 3.3 For every two integers m ≥ 3 and n ≥ 1, the n-crown G ∼= Cm �Kn

is super edge-magic.

Proof. Let G ∼= Cm � Kn be the n-crown with

V (G) = {ui|1 ≤ i ≤ m} ∪ {vi,j |1 ≤ i ≤ m and 1 ≤ i ≤ n}
and

E(G) = {u1um} ∪ {uiui+1|1 ≤ i ≤ m − 1} ∪ {uivi,j |1 ≤ i ≤ m and 1 ≤ i ≤ n} .

Now, notice that if m ≥ 3 is odd, then the result follows from Theorems 3.1 and 3.2.
Thus, assume that m ≥ 4 is even for the remainder of the proof, and proceed by
cases by means of Lemma 1.1.

Case 1: For m = 4, define the vertex labeling f : V (G) → {1, 2, . . . , 4(n + 1)}
such that

f(u2i−1) = i;

f(v2i−1,1) = 2i + 3;

f(u2i) = 3i;

f(v2i,1) = 12 − 4i

when i = 1 or 2; and f(vi,j) = 4j − i + 5 when 1 ≤ i ≤ 4 and 2 ≤ j ≤ n.

Case 2: For m = 6, define the vertex labeling f : V (G) → {1, 2, . . . , 6(n + 1)}
such that

f(u1) = 9;

f(u4) = 2;

f(v1,1) = 6;

f(v4,1) = 12;

f(u2) = 1;

f(u5) = 5;

f(v2,1) = 8;

f(v5,1) = 11;

f(u3) = 4;

f(u6) = 3;

f(v3,1) = 7;

f(v6,1) = 10;

and

f(vi,j) =

{
5i + 6j − 4, if 1 ≤ i ≤ 2 and 2 ≤ j ≤ n;
i + 6j − 1, if 3 ≤ i ≤ 6 and 2 ≤ j ≤ n.
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Case 3: For m = 8, define the vertex labeling f : V (G) → {1, 2, . . . , 8(n + 1)}
such that

f(u1) = 1;

f(u4) = 6;

f(u7) = 4;

f(v1,1) = 11;

f(v4,1) = 14;

f(v7,1) = 10;

f(u2) = 5;

f(u5) = 3;

f(u8) = 12;

f(v2,1) = 13;

f(v5,1) = 16;

f(v8,1) = 9;

f(u3) = 2;

f(u6) = 7;

f(v3,1) = 15;

f(v6,1) = 8;

and f(vi,j) = 8j − i + 9, if 1 ≤ i ≤ 8 and 2 ≤ j ≤ n.

Case 4: Let m = 8k+2, where k is a positive integer, and define the vertex labeling

f : V (G) → {1, 2, . . . , (8k + 2)(n + 1)}
such that

f(ul) =




12k + 3, if l = 1;
4k + i, if l = 2i − 1 and 2 ≤ i ≤ 4k + 1;
i, if l = 2i and 1 ≤ i ≤ 4k + 1;

f(vl,1) =




8k + i + 1, if l = 2i − 1 and 1 ≤ i ≤ 2k + 2;
12k + 2, if l = 2;
12k + i + 2, if l = 2i and 2 ≤ i ≤ 2k;
14k + 2i + 4, if l = 4k + 4i − 2 and 1 ≤ i ≤ k;
14k − i + 5, if l = 4k + i + 3 and 1 ≤ i ≤ 2;
10k + 2i + 2, if l = 4k + 4i + 3 and 1 ≤ i ≤ k − 1;
14k + 2i + 3, if l = 4k + 4i + 4 and 1 ≤ i ≤ k − 1;
10k + 2i + 3, if l = 4k + 4i + 5 and 1 ≤ i ≤ k − 1;
16k + 3, if l = 8k + 2;

and for 2 ≤ j ≤ n, we have that

f(v2i−1,j) =

{
2(4k + 1)j + i, if 1 ≤ i ≤ 2k + 1;
2(4k + 1)j + i + 1, if 2k + 2 ≤ i ≤ 4k + 1;

f(v2i,j) =

{
(4k + 1)(2j + 1) + i, if 2 ≤ i ≤ 2k;
(4k + 1)(2j + 1) + i − 1, if 2k + 2 ≤ i ≤ 4k + 1;

f(v2,j) = 2(4k + 1)(j + 1) and f(v4k+2,j) = 2(k + 1) + 2(4k + 1)j.

Case 5: Let m = 8k+4, where k is a positive integer, and define the vertex labeling

f : V (G) → {1, 2, . . . , (8k + 4)(n + 1)}
such that

f(ul) =




i, if l = 2i − 1 and 1 ≤ i ≤ 4k + 2;
4k + i + 2, if l = 2i and 1 ≤ i ≤ 4k + 1;
12k + 6, if l = 8k + 4;
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f(vl,1) =




12k + 5, if l = 1;
16k − 4i + 8, if l = 4i − 2 and 1 ≤ i ≤ k;
16k − 4i + 9, if l = 4i − 1 and 1 ≤ i ≤ k;
16k − 4i + 10, if l = 4i and 1 ≤ i ≤ k;
16k − 4i + 7, if l = 4i + 1 and 1 ≤ i ≤ k;
8k + 4, if l = 4k + 2;
16k + 8, if l = 4k + 3;
16k + 7, if l = 8k + 3;
8k + 5, if l = 8k + 4;
12k − i + 5, if l = 4k + i + 3 and 1 ≤ i ≤ 4k − 1;

and f(vi,j) = 4(2k + 1)(j + 1) − i + 1, if 1 ≤ i ≤ 8k + 4 and 2 ≤ j ≤ n.

Case 6: Let m = 8k+6, where k is a positive integer, and define the vertex labeling

f : V (G) → {1, 2, . . . , (8k + 6)(n + 1)}

such that

f(ul) =




12k + 9, if l = 1;
4k + i + 2, if l = 2i − 1 and 2 ≤ i ≤ 4k + 3;
i, if l = 2i and 1 ≤ i ≤ 4k + 3;

f(vl,1) =




8k + i + 5, if l = 2i − 1 and 1 ≤ i ≤ 2k + 3;
12k + 8, if l = 2;
12k + i + 8, if l = 2i and 2 ≤ i ≤ 2k + 1;
14k − 2i + 14, if l = 4k + 3i + 1 and 1 ≤ i ≤ 2;
14k + 2i + 12, if l = 4k + 4i + 2 and 1 ≤ i ≤ k;
14k + 2i + 9, if l = 4k + 4i + 4 and 1 ≤ i ≤ k;
10k + 2i + 7, if l = 4k + 4i + 5 and 1 ≤ i ≤ k;
10k + 2i + 8, if l = 4k + 4i + 7 and 1 ≤ i ≤ k − 1;
16k + 11, if l = 8k + 6;

and for 2 ≤ j ≤ n, we have that

f(vl,j) =

{
2(4k + 3)j + i, if l = 2i − 1, 1 ≤ i ≤ 4k + 3;
(4k + 3)(2j + 1) + i, if l = 2i, 1 ≤ i ≤ 4k + 3.

Case 7: Let m = 16k, where k is a positive integer, and define the vertex labeling

f : V (G) → {1, 2, . . . , 16k(n + 1)}

such that

f(ul) =




i, if l = 2i − 1 and 1 ≤ i ≤ 8k;
8k + i, if l = 2i and 1 ≤ i ≤ 8k − 1;
24k, if l = 16k;
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f(v1,1) = 24k − 1; f(v2,1) = 16k + 3; f(v3,1) = 32k − 1;

f(vl,1) =




32k − 2i + 1, if l = 2i − 1 and 3 ≤ i ≤ 4k;
32k − 2i + 2, if l = 2i and 2 ≤ i ≤ 4k;
32k − 3i + 3, if l = 8k + 2i − 1 and 1 ≤ i ≤ 2;
24k − 8i + 5, if l = 8k + 8i − 6 and 1 ≤ i ≤ k;
24k − 8i + 6, if l = 8k + 8i − 4 and 1 ≤ i ≤ k;
24k − 8i + 4, if l = 8k + 8i − 3 and 1 ≤ i ≤ k;
24k − 8i, if l = 8k + 8i − 2 and 1 ≤ i ≤ k;
24k − 8i + 2, if l = 8k + 8i − 1 and 1 ≤ i ≤ k;
24k − 8i + 1, if l = 8k + 8i and 1 ≤ i ≤ k;
24k − 8i + 3, if l = 8k + 8i + 1 and 1 ≤ i ≤ k − 1;
24k − 8i − 1, if l = 8k + 8i + 3 and 1 ≤ i ≤ k − 1;

and f(vi,j) = 16k(j + 1) − i + 1, if 1 ≤ i ≤ 16k and 2 ≤ j ≤ n.

Case 8: Let m = 16k + 8, where k is a positive integer, and define the vertex
labeling

f : V (G) → {1, 2, . . . , (16k + 8)(n + 1)}
such that

f(ul) =




i, if l = 2i − 1 and 1 ≤ i ≤ 8k + 4;
8k + i + 4, if l = 2i and 1 ≤ i ≤ 8k + 3;
24k + 12, if l = 16k + 8;

f(v1,1) = 24k + 11; f(v2,1) = 16k + 11; f(v3,1) = 32k + 15;

f(vl,1) =




32k − 2i + 17, if l = 2i − 1 and 3 ≤ i ≤ 4k + 2;
32k − 2i + 18, if l = 2i and 2 ≤ i ≤ 4k + 2;
32k − 3i + 19, if l = 8k + 2i + 3 and 1 ≤ i ≤ 2;
24k − 8i + 16, if l = 8k + 8i − 2 and 1 ≤ i ≤ k + 1;
24k − i + 11, if l = 8k + i + 7 and 1 ≤ i ≤ 2;
24k − 8i + 13, if l = 8k + 8i + 2 and 1 ≤ i ≤ k;
24k − 8i + 15, if l = 8k + 8i + 3 and 1 ≤ i ≤ k;
24k − 8i + 14, if l = 8k + 8i + 4 and 1 ≤ i ≤ k;
24k − 8i + 12, if l = 8k + 8i + 5 and 1 ≤ i ≤ k;
24k − 8i + 10, if l = 8k + 8i + 7 and 1 ≤ i ≤ k;
24k − 8i + 9, if l = 8k + 8i + 8 and 1 ≤ i ≤ k;
24k − 8i + 11, if l = 8k + 8i + 9 and 1 ≤ i ≤ k − 1;

and f(vi,j) = (16k + 8)(j + 1) − i + 1, if 1 ≤ i ≤ 16k + 8 and 2 ≤ j ≤ n.

Therefore, by Lemma 1.1, f extends to a super edge-magic labeling of G with
valence m(4n + 5)/2 + 2.

Using the relationships between super edge-magic labelings and other labelings
mentioned in the introduction, we finish with the following corollary, which settles a
conjecture by Yegnanarayanan [11].

Corollary 3.4 For every two integers m ≥ 3 and n ≥ 1, the n-crown G ∼= Cm �Kn

is harmonious, sequential and felicitous.
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4 Conclusions

The constructions in the second section are of particular interest to the authors as
before no binary graph operations were known to preserve the felicitous, harmonious,
sequential and super edge-magic properties of graphs.

The results in the last section of this paper lead us to visualize, as a topic for
further exploration, the question of which connected unicyclic graphs are super edge-
magic, and which are not. This question is related to the conjecture by Enomoto,
Lladó, Nakamigawa and Ringel [2] that all trees are super edge-magic; however, it
provides more variety as not all such graphs are super edge-magic as illustrated by
the even cycles.

We also remark that Theorem 3.3 significantly expands what was known about
the harmoniousness and sequentialness of n-crowns with even cycle length as before
only crowns were known to be harmonious and sequential; see [5] for a detailed
discussion of this.
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