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Abstract

Using elements of the structural theory of matchings and a recently
proved conjecture concerning bricks, it is shown that every n-extendable
brick (except K4, C6 and the Petersen graph) with p vertices and q edges
contains at least q − p + (n − 1)!! perfect matchings. If the girth of
such an n-extendable brick is at least five, then this graph has at least
q − p + nn−1 perfect matchings. As a consequence, the best currently
known lower bound on the number of perfect matchings in a fullerene
graph is obtained.

1 Introduction

All graphs considered in this paper will be finite, simple and connected. For all terms
and concepts not defined here, we refer the reader to the book [7].

Let us consider a graph G with p vertices and q edges, and denote its vertex set
by V (G), and its edge set by E(G). A matching in G is a collection M of edges of
G such that no two edges from M have a vertex in common. In other words, every
vertex from V (G) is incident with at most one edge from M . If every vertex from
V (G) is incident with exactly one edge from M , the matching M is perfect. The
number of perfect matchings in a given graph G we denote by Φ(G).

The problem of determining Φ(G) is, in an algorithmic sense, a difficult one; it
is NP-hard even for the bipartite case ([12]). So it makes sense to seek good upper
and lower bounds for Φ(G) in various classes of graphs.

Let n be an integer with 0 ≤ n ≤ p
2
− 1. A graph G is n-extendable if G has a

matching of size n, and every such matching extends to (i.e. is contained in) a perfect
matching in G. 0-extendable graphs are the graphs with a perfect matching. The
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greatest n ∈ N such that G is n-extendable is called the extendability number of
G (or simply the extendability of G) and is denoted by ext(G).

There are many results on n-extendable graphs, concerning their various invari-
ants and structural properties ([9], [10], [11], [8]), but we are not aware of any results
connecting the numbers Φ(G) and ext(G). We are going to establish such a connec-
tion when an n-extendable graph is also a brick.

2 1-extendable graphs and bricks

A graph G is 1-extendable if every edge e ∈ E(G) appears in some perfect match-
ing of G. A graph G is bicritical if G contains an edge and G− u− v has a perfect
matching, for every pair of distinct vertices u, v ∈ V (G). Obviously, every bicrit-
ical graph is also 1-extendable and no bipartite graph is bicritical. A 3-connected
bicritical graph is called a brick.

In Chapter 5 of [7] it is described how every 1-extendable graph can be decom-
posed into (or built from) simpler building blocks. The number of bricks among
these building blocks gives us a lower bound on the number of perfect matchings in
1-extendable graphs.
Theorem 1
For every 1-extendable graph G,

Φ(G) ≥ q − p + 2 − k,

where k is the number of bricks of G.

For the proof, we refer the reader to pages 296–302 of [7].
When a graph G is itself a brick, the following lower bound holds.

Theorem 2
If G is a brick, then Φ(G) ≥ p

2
+ 1.

Proof
This follows from Theorem 1 and the fact that q − p ≥ 3

2
p − p = p

2
, since the degree

of each vertex in G is at least 3.

It is known that every brick different from K4, C6 and the Petersen graph contains
an edge whose removal leaves a 1-extendable graph. This was proved by Lovász in
[6]. He also conjectured that this 1-extendable graph has exactly one brick in its
brick decomposition. This conjecture was proved in [1]. As we are considering only
simple graphs here, we cite their result in the following form.
Theorem 3
Every brick G different from K4, C6 and the Petersen graph has an edge e� whose
deletion yields a 1-extendable graph with exactly one brick in its brick decomposition.

Let us call such an edge e� terminal. The name is justified by the fact that this
edge serves as the last ear in an ear decomposition of G. For more details about ear
decompositions, see the Section 5.4 of [7].
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From now on, we will consider only bricks satisfying the conditions of Theorem 3.
We call such bricks ordinary.
Corollary 4
Every ordinary brick G has an edge e� such that Φ(G − e�) ≥ q − p.

3 n-extendable bricks

The following simple result holds for all graphs with perfect matchings.
Lemma 5
Let e be an edge in a graph G with the endpoints u and v. Then

Φ(G) = Φ(G − e) + Φ(G − u − v).

We will also need the following properties of n-extendable graphs. (See [9].)
Lemma 6
Let n be a positive integer. An n-extendable graph G is (n − 1)-extendable and
(n + 1)-connected. Hence, the minimal degree of a vertex in an n-extendable graph
is at least (n + 1).

As any brick is 1-extendable, we will consider only the bricks of extendability 2
or more.

Before we state our main result, recall that k!! is defined by the relation

k!! =

�(k−2)/2�∏
i=0

(k − 2i),

for all k ∈ N.
Theorem 7
Let n be a positive integer. An ordinary n-extendable brick contains at least q− p+
(n − 1)!! perfect matchings.
Proof
Let G be an ordinary n-extendable brick, and e� ∈ E(G) a terminal edge of G. Then,
by Corollary 4, Φ(G − e�) ≥ q − p.

Consider now the graph G′ = G − u� − v�, where u�, v� are the endpoints of e�.
Then, by Lemma 6, this graph is at least (n − 1)-connected, and contains a perfect
matching. If G′ is itself bicritical, then, by Theorem 8.6.1 of [7], it contains at least
(n − 1)!! perfect matchings. If G′ is not bicritical, we invoke Theorem 8.6.2 from
[7], which states that every k-connected non-bicritical graph with a perfect matching
contains at least k! perfect matchings, and put k = n−1. Our claim follows by noting
that every perfect matching of G′ is, at the same time, also a perfect matching of G
containing the edge e�, and applying Lemma 5.

The following result gives a better lower bound for p big enough.
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Theorem 8
Let n be a positive integer. Let G be an ordinary n-extendable brick. Then

Φ(G) ≥ q − p + min
{p

2
, (n − 1)!

}
.

Proof
In the same way as in the proof of Theorem 7 we conclude that Φ(G − e�) ≥ q − p,
where e� is the terminal edge of G.

By considering the graph G′, defined in the same way as in the proof of Theorem
7, we conclude that, if G′ is itself bicritical, it contains at least p−2

2
+ 1 = p

2
perfect

matchings, and if G′ is not bicritical, then it must have at least (n − 1)! different
perfect matchings.

For ext(G) = 2, a better lower bound is possible.
Theorem 9
Let G be an ordinary 2-extendable brick. Then G contains at least q−p+2 different
perfect matchings.
Proof
Since G is a brick, it is 3-connected and hence G �= K2. Let e∗ = u∗v∗ be a terminal
edge in G. Then G− e∗ is 1-extendable and hence by Corollary 4, Φ(G− e∗) ≥ q−p.
Let G′ denote G−u∗− v∗. Then by Lemma 5, Φ(G) = Φ(G− e∗)+Φ(G′). So it will
suffice to show that Φ(G′) ≥ 2.

Now if G′ is 2-connected, then if it is bicritical it must contain a perfect matching
and so by Theorem 8.6.1 of [7], it contains at least two perfect matchings. On the
other hand, if G′ is not bicritical, then by Theorem 8.6.2 from [7], G′ contains at
least two perfect matchings. So in any case, Φ(G′) ≥ 2.

So it remains only to show that G′ is 2-connected. Suppose, to the contrary,
that G′ has a cutvertex w∗. Then S = {u∗, v∗, w∗} is a cutset in G and since G
is 3-connected, S is a minimum cut. Moreover, by parity, G − S must contain at
least one odd component. Let Co be such an odd component and let C be any other
component of G − S. Since S is minimum, there must be a vertex x∗ in C which
is adjacent to w∗. But then the matching {u∗v∗, w∗x∗} does not extend to a perfect
matching, contradicting the fact that G is 2-extendable and the proof is complete.

We conclude our review by a lower bound in n-extendable bricks whose girth is
not too small. (The girth of a graph G is the length of a shortest cycle in G, if G
has a cycle. Otherwise, girth(G) = +∞.)
Corollary 10
Let n be a positive integer. Let G be an ordinary n-extendable brick of girth at
least 5. Then

Φ(G) ≥ q − p + nn−1.

Proof
Let us consider one endpoint of a terminal edge e∗ in an ordinary n-extendable brick
G of girth at least 5. Denote this vertex by u∗. The vertex u∗ has, by Lemma 6, at
least n+1 neighbors. One of them, v∗, is the other endvertex of e∗. Let u1, . . . , un−1
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be any other n − 1 neighbors of u∗ and set U = {u1, . . . , un−1}. The set U is an
independent set in G. Moreover, the only common neighbor two vertices ui, uj ∈ U
can have is u∗. So, each vertex ui ∈ U is incident to at least n edges not connecting
it to any other vertex from the set {u1, . . . , un−1, u

∗}. It is obvious that, choosing one
such edge for every vertex from U , we get a matching of size n − 1. There are nn−1

such matchings, and each of them, taken together with the edge e∗, can be extended
to a perfect matching in G that contains e∗. The claim now follows from Corollary
4 and Lemma 5.

Corollary 11
Let n be a positive integer. Let G be an ordinary (n + 1)-regular n-extendable brick
of girth at least 5. Then

Φ(G) ≥ q − p + nn.

Proof
Let U be a set of neighbors of u∗ different from v∗. Now for each ui ∈ U , choose an
edge ei incident with ui which is not incident with u∗ and such that Mj = {e1, . . . , en}
is a matching. Clearly, there are nn such matchings Mj. Then |Mj | = n and so Mj

extends to a perfect matching Fj in G. Furthermore, since Mj covers all neighbors
of u∗, except vertex v∗, perfect matching Fj must contain the edge e∗ = u∗v∗. Again
the proof follows from Corollary 4 and Lemma 5.

As an interesting consequence of Corollary 11, we cite the best currently known
lower bound for number of perfect matchings in fullerene graphs ([3]). A fullerene
graph is a 3-regular, 3-connected planar graph, twelve of whose faces are pentagons,
and any of the remaining faces are hexagons. (For more on fullerene graphs, see, e.g.
[2], [4], [5].)
Corollary 12
Every fullerene graph G on p vertices contains at least p

2
+ 4 perfect matchings.

Proof
It is shown in [3] that every fullerene graph is 2-extendable. The claim now follows
from Corollary 11 and the definition of fullerene graphs.
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