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Abstract

We show that the spectrum, as well as the Laplacian spectrum, does not
suffice to compute exactly the max-cut and the bisection. We examine
what happens if switch-equivalence is required.

We also show that in general no two of the three usual spectra (adja-
cency, Laplacian, Seidel) suffice to compute the third one.

1 Introduction

To each finite simple graph G is associated its adjacency matrix A, whose entry a;;
is 1 if {ij} is an edge and 0 otherwise. The spectrum of G is the spectrum of that
matrix. We will call it Spec(G).

One also associates to GG the Laplacian matrix L defined by the property that
L + A is the diagonal matrix whose entries are the degrees of the corresponding
vertices. The spectrum of L will be denoted Spec (G).

If G is regular of degree d, the spectrum Spec; is obtained from Spec by the
mapping z «— d — x. Morover, in that case, it is easy to compute the spectrum of
the complement G of G from the spectrum of G: since A(G) = J — I — A(G) and A
commutes with the matrix J filled with 1’s, each eigenvalue X is replaced by —1 — A,
except for one occurrence of the degree d, replaced by n — 1 —d.

For example, from the spectrum of the graph G made from two disjoint edges,
namely 1,1, —1, —1, we deduce its Laplacian spectrum 0,0, 2, 2, the spectrum of the
4-cycle (that is the complement of (), namely 2,0,0, —2 and the Laplacian spectrum
of the 4-cycle, that is 0,2, 2, 4.

The max-cut m(G) of a graph is the maximum number of edges between X and
V\ X, where X is a part of the vertex set V' of G. In other words, it is the maximum
number of edges in a bipartite subgraph of G. If G has even order n, its bisection
b(G) is the minimum number of edges between X and V\ X, with the extra condition
that X has n/2 vertices.

The largest and smallest elements in Spec and Spec;, give bounds for the max-cut
m and the bisection b, namely
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Figure 1: Two cospectral trees
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Figure 2: Graphs switch-equivalent to K,

m < % max(Specy) and m < 3 — § min(Spec).

The Laplacian spectrum provides also the inequality

b > 2 min(Spec,, \ 0).

More generally, if the vertex set V' is cut into two parts having n, and ny = n—mny
vertices, the number of edges between these two parts is between ™2 max(Specy,)
and ®22min(Spec; \ 0).

Let us be precise: spectra are multisets, so removing 0 from Spec, is just de-
creasing the multiplicity of 0 by 1.

So in the former example of Cy we find m < 4 and b > 2; these bounds are the
actual values. We also find for the complement m < 2 and b > 0, also the actual
values.

We may ask whether knowing the whole spectrum, and not only its ends, helps
to determine the max-cut and bisection. In other words, do cospectral graphs have
the same max-cut, or bisection?

But already the trees of Figure 1, although cospectral, with common characteristic
polynomial T#(T? —T —3)(T?+T - 3), do not have the same bisection, 1 for the tree
on the left, 2 for the one on the right. Of course they have the same max-cut 7. Their
Laplacian spectra differ: the characteristic polynomials of their Laplacian matrices
are T(T — 4)(T? — 6T +2)(T — 1)* (left) and T(T* — 1173 + 36T — 38T + 8)(T ~ 1)*
{right).

2 Switch-equivalence

We will use also another kind of similarity between graphs, that is switch-equivalence.
Given a graph G, and a part U of its vertex-set, we build the graph Gy by switching
with respect to U, that is the graph with edge-set the symmetric difference between
the set of edges in G and the pairs of vertices with one element in U and the other
in V\U. Two graphs G, H will be said to be switch-equivalent if there exists U such
that H is isomorphic to Gy.

It is worth noticing that (Gy,)y, = Gy, where U; is the symmetric difference
between U, and Us,.

For example, the graphs switch-equivalent to Ky are presented in Figure 2.
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Figure 3: A cospectral pair

It can be seen that switch-equivalent graphs can have different sizes (and therefore
different spectra and Laplacian spectra, since the size e of a graph satisfies 2e =
tr(A?) = tr(L)), and different values for the parameters m and b.

However, switch-cquivalent graphs have the same Seidel spectrum. Indeed, the
effect of switching with respect to S on the Seidel matrix is the same as the conju-
gation by the diagonal matrix with 1’s at places corresponding to vertices in S and
—1’s in the remaining places.

Let us use the Seidel matrix of the graph S = J — I — 24 (see [3, p. 26]); if
the graph is regular, the matrices J and A commute, and hence the spectrum of the
Seidel matrix consists of . — 1 — 2d and the image of Spec(G) \ d by A — —1 — 2.
Since switching does not modify the spectrum of the Seidel matrix, we can conclude
that

switch-equivalent regular graphs having the same degree are cospectral.

Thus switching provides a way to obtain graphs with the same spectrum, but not

necessarily non-isomorphic ones.

3 Independence of the three spectra

We give here examples showing that graphs having two spectra in common may have
a different third one. These examples of course use non-regular graphs.

3.1 Adjacency and Seidel spectra do not determine the
Laplacian one

We have a classical example (see [4]) with graphs on 7 vertices (sec Figure 3).

The common adjacency spectrum of the two graphs is described by the char-
acteristic polynomial T(T" — 1)(T + 1)(T* — 972 — 4T + 8); the cquality of their
Seidel spectra follows from their being switch-equivalent (Figure 3 shows what set of
vertices should be swapped).

The Laplacian characteristic polynomials are respectively T(T? — 61 + IT? -~
9T +17)(T* — 5T +5) and T(T — 2)(T — 6)(T? — 6T + 7)? for the left hand and right
hand graphs.



Figure 4: A cospectral pair
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Figure 5: A cospectral pair

3.2 Laplacian and Seidel spectra do not determine the ad-
jacency one

Here is a simple example. The Seidel spectra are equal, owing to the switch-equiv-
alence (indicated in Figure 4); the common Laplacian spectrum is 43,23, 02, and the
adjacency characteristic polynomials are respectively T*(T + 2)2(7? — T — 4)? and
(T + 1)3(T — 3)(T — 2)(T + 2)T? for the left hand and right hand graphs.

3.3 Laplacian and adjacency spectra do not determine the
Seidel one

Here is a slightly larger example (Figure 5). The connected components easily provide
the common adjacency spectrum, corresponding to the polynomial T4(T ~ 3)(T —
AT +2)*(T?—T —4)%(T+1)" and the common Laplacian spectrum, corresponding
to the polynomial T3(T — 1)2(T — 2)4(T — 3)4(T — 4)>(T - 5)2.

Maple [6] gives the Seidel spectra TH(T + 4)(T + 2)2(T — 2)"(T? + 2T — 16)(T° —
14T* — 9273 + 52072 + 1344T ~ 5376)(T — 4) and T*(T + 4)(T + 2)%(T — 2)(T? +
2T — 16)(T* — 1073 — 13272 — 8T + 1312)(T — 4)? for the left hand and right hand
graphs respectively.

4 Adjacency and Laplacian Spectra give neither
m nor b

Looking closer at the graphs above, we see that the left hand one has m = 22,
the right hand one has m = 20 (the colors of the vertices in the graphs show an

appropriate vertex partition (Figure 5)). The bisections are 0 (take the triangle and
the two components on 4 vertices to build one side of the vertex partition) and > 0,
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Figure 6: The 4-cube and Hoffmann graph

since 11 is not attainable as a sum of sizes of connected components (actually it is 2,
with a side consisting of the two components on 5 vertices and a vertex of a 4-cycle).

5 Do the equality of the three spectra suffice?

One may now wonder whether graphs having the same spectrum and the same Lapla-
cian spectrum also have the same max-cut and the same bisection.

For regular graphs of the same degree, the equality of adjacency spectra, is equiva-
lent to the equality of Laplacian spectra and also to the the equality of Seidel spectra.
Hence we will now look at regular graphs; maybe however there exist non-regular
graphs with the same three spectra?

5.1 A case of equality

A well-known pair of regular cospectral graphs consists of the cartesian sum Ky x Ky
and Shrikhande graph. Their common spectrum is {6,2°%,(-2)°} (see [1, p. 104-
105]), but they also have the same max-cut 32 and the same bisection 16.

On the other hand, these two graphs are also switch-equivalent. It suffices to
switch with respect to a stable on 4 vertices in one of these graph to obtain a graph
isomorphic to the other one.

5.2 A case of inequality

We consider here the cube of dimension 4 and the Hoffman graph. These two graphs
are described in [1, p. 263}, and drawn in Figure 6. They are bipartite on 16 vertices
and have the same adjacency spectrum, namely {4, 24, 0°, (—2)*,—4}. Hence they
have the same max-cut, namely 32, but their bisections differ, 8 for the cube and 10
for the Hoffman graph.

Mabple [6] was used to obtain the statistics of the number of partitions giving cuts
with a prescribed number of edges; see Table 1.

These two graphs are not switch-equivalent. Indeed, since the degree is one fourth
of the order, the only way to switch without losing the 4-regularity is to switch with
respect to a stable component. This amounts to swapping all 4 pairs of opposite
vertices in one stable component of the cube.
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cube Hoffman | cube Hoffman
(8,8) (7.9

8 4 0 0 0

0] 0 24 64 56

12 | 384 320 624 676
14} 800 904 1920 1776
16 | 2178 2058 3680 3900
18 | 1632 1736 3136 2936
20 | 1056 992 1392 1500
22| 288 312 512 480

241 60 56 96 100
26 | 32 32 0 0
28 0 0 16 16
32 1 1 0 0

Table 1: Statistics for the 4-cube and Hoffman graph

Figure 7: Graphs with 8 vertices, degree 3 and parts suitable for switching

6 Do cospectral regular switch-equivalent graphs
have the same cuts?

If G and H are switch-equivalent, then their complements are also switch-equivalent.
Hence we may assume d < n/2 — 1, without loss of generality.

Let GG be a graph of order n, regular of degrec d. If U is a subset of V' containing
u vertices, such that switching with respect to U again gives a d-regular graph, each
vertex of U must be connected to %7% vertices in V' \ U, and each vertex of V' — U
must be connected to § vertices in U. So it is necessary that u and n — u are even,
and u < 2d and n —u < 2d (hence d > §). We may assume u < n/2 since we may
exchange the roles of U and V' \ U.

If u = 2, and thus d = n/2—1, the suitable parts U are pair of vertices at distance
> 3. Switching then gives isomorphic graphs.

If u = 4 and n = 8, the case of degree 2 only contains 2C, and Cj, and switching
gives isomorphic graphs; the cases of degree 3 are displayed in Figure 7, and they
also are unchanged up to isomorphism by switching.

If u = 4 and 7 = 10, the cases of degree 3 are displayed in Figure 8. They also
are unchanged up to isomorphism by switching. There are also fifty odd cases of

188



Figure 9: Two switch-equivalent tripartite graphs with 12 vertices of degree 4

degree 4. It seems that they also do not change up to isomorphism when switched
with no modification of the degree.

6.1 No: a small ad hoc example

Foru=4,n =12, d = 4, we find a pair of switch-equivalent (and thus cospectral)
graphs with characteristic polynomial (T —1)(T —4)(T? - T —4)(T? - 1-T)*(T +2)%;
thus the lowest eigenvalue is —2. The upper bound for the max-cut is thus 18, and
can be obtained only with two parts both having 6 vertices.

The max-cut of G (left) is 18; the max-cut of Gy (right) is only 16.

Here again, we used Maple to obtain statistics:

Of course the complements of G and G; have m = 30 and bisections 18 and 20
respectively.
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G G
6 1 1
81 13 15
10| 70 60
121120 140
14| 167 147
167 8 99
18 2 0

Table 2: Cuts for G and G4

(@)

7'(8)

T"(S)

TIII(8)

64
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98

840
30240
70560

208320

357840

910560

1139040

2328900
2772000
4844160
4841760
7111440
5404560
6108480
2963520
1024380

0

840
27744
77856

193536
408240
805440
1272960
2096484
3230304
4253952
5433312
6392592
6278640
5379360
3330528
922908
11904

840
26880
80160

192480
409920
796320
1280400
2101380
3228960
4243200
5437440
6401040
6271680
5379360
3332400
922140
12000

840
26760
80880

191040
410010
800460
1274280
2101680
3237330
4234560
5437200
6407880
6266910
5379180
3334200
921240
12150

Table 3: Statistics for 7'(8) and Chang graphs

6.2 No: a larger example

The graph T'(8), in other words the line-graph of the complete graph K3, has order 28,
is regular of degree 12, its adjacency spectrum is 12,47, (—2)?%; hence its Laplacian
spectrum is 0,87,14% and its Seidel spectrum is 3%, (—9)7. It shares these spectra
with the three Chang graphs (see [1, p. 105]) that are switch-equivalent to it and
are also strongly regular with the same parameters. But the statistics of cuts (with

2 parts of size 14) differ, as shown in Table 3.

190




References

I1] A.E. Brouwer, A.M. Cohen and A. Neumaier, Distance-regular graphs, Springer-
Verlag, Berlin Heidelberg 1989.

12] J.A. Bondy and U.S.R. Murty, Graph theory with applications, North Holland,
New York 3rd edition 1980.

[3] D. M. Cvetkovi¢, M. Doob and H. Sachs, Spectra of graphs, Academic Press, New
York 1979.

[4] M. Capobianco and J.C. Moluzzo, Examples and counterezamples in graph theory,
North Holland, Amsterdam 1978.

[5] C. Delorme. Eigenvalues and weights of induced subgraphs, Publ. Mat. Inst.
(Beograd) 65(79) (1999), 20-30.

[6] Maple V, Symbolic Computation System, Waterloo Maple Inc.

[7] J.J. Seidel, A survey of two-graphs pp. 481--511, in Teorie combinatorie, Acad.
Nazionale dei Lincei Rome, 1976.

(Received 1/7/2001)

191



