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Abstract

We present some results on the growth in various products of graphs. In
particular we study the Cartesian, strong, lexicographic, tensor and free
product of graphs. We show that with respect to distances the tensor
product behaves differently from other products. In general the results
are valid for rooted graphs but have especially nice structure in the case
of vertex-transitive factors.

1 Introduction

Some basic facts on growth of graphs are presented. Although the concept is most
useful for vertex-transitive graphs and comes primarily from groups [9], we consider
finite or special classes of locally finite graphs. The emphasis is on the actual com-
putation of generating functions for various operations on graphs, where we try to
express the growth series of various products in terms of growth series of their factors.
Many of these operations can be carried our completely automatically, as shown by
Flajolet and Salvy [6]. All graphs in this paper are simplicial and connected, unless
specified otherwise.
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In Section 2 we define two different growth functions: the sphere growth and the
ball growth. Although they are related, we find the spherical growth function easier
to compute for most products. The only exception is the strong product which is
more compatible with the ball growth.

In Section 3 we consider growth in the Cartesian product of graphs.
In Section 4 we introduce the notion of the free product of labeled graphs and

study its growth. The motivation for the free product comes from groups via Cayley
graphs. The same way as the Cartesian product of rooted graphs is related to the
direct product of groups, so is the free product related to the free product of groups.
Note that the free product is not considered in the monograph of Imrich and Klavžar
[12] since it can only be defined for rooted graphs.

In Section 5 we turn to the growth in strong products of graphs.
In Section 6 we consider the lexicographic product of graphs, we also mention

tensor product and some other operations on graphs. One such operation is trunca-
tion and was considered quite recently; see [18]. It may come as a surprise but the
growth function of the tensor product is not determined by the growth functions of
its factors.

2 Growth in rooted graphs

Let G be connected, finite or locally finite graph. Select a vertex v and call it a
root. By Gv we denote the graph G rooted at v. Define the spherical growth sequence
{δ(G, v, n)|n = 0, 1, 2, ...}, where δ(G, v, n) denotes the number of vertices at distance
n from v. Similarly define the ball growth sequence {γ(G, v, n)|n = 0, 1, 2, ...} where
γ(G, v, n) is the number of vertices at distance at most n from v. Furthermore, let
∆(G, v; x) be the (spherical) growth series or function , i.e. the generating function
for δ(G, v, n) of G at v.

∆(G, v; x) =
∞∑

n=0

δ(G, v, n)xn.

In the same way let Γ(G, v; x) denote the ball growth series or function, i.e. the
generating function for γ(G, v, n) of G at v.

Γ(G, v; x) =
∞∑

n=0

γ(G, v, n)xn.

Note that the spherical growth sequence {δ(G, v, n)|n = 0, 1, 2, ...} is sometimes
called the distance degree sequence, [2, 3, 11].

Let

D(G) = {∆(G, v; x)|v from V (G)} and G(G) = {Γ(G, v; x)|v from V (G)}

In finite graphs define the averages
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∆̄(G; x) =
1

|V |
∑

v

∆(G, v; x) and Γ̄(G; x) =
1

|V |
∑

v

Γ(G, v; x)

Instead of δ(G, v, n), ∆(G, v; x), γ(G, v, n), Γ(G, v; x), etc. we sometimes write
δ(Gv, n), ∆(Gv; x), γ(Gv, n), Γ(Gv; x) We will drop G, v, when the context is clear.
In particular, for finite and infinite vertex transitive graphs ∆(Gv; x) = ∆̄(G; x) and
Γ(Gv; x) = Γ̄(G; x), and we write ∆(G; x) and Γ(G; x) or just ∆(x) and Γ(x). Note
that δ(Gv, n) = γ(Gv, n) − γ(Gv, n − 1), n > 0.

Recall that for a vertex u in a finite graph G the eccentricity of u is the maximum
distance from u to any other vertex of G; see [10]. Let d denote the eccentricity of u
and let n be the number of vertices of G. Since the series for Γ(v; x) has only a finite
number of non-constant terms, we can introduce a polynomial h(v; x) that contains
only the variable coefficients of Γ(v; x). Then we have:

n = γ(v; d), ∆(v; x) = (1 − x)h(v; x) + nxd+1, h(v; x) =
∆(v; x) − nxd+1

1 − x

and

Γ(v; x) = h(v; x) +
nxd+1

1 − x
.

For all graphs we have:

∆(v; x) = (1 − x)Γ(v; x)

Γ(v; x) =
∆(v; x)

1 − x

Let A be the automorphism group of G that partitions the vertex set V (G) into
orbits:

V (G) = [v1] ∪ [v2] ∪ · · · ∪ [vs].

Observe that if the automorphism γ maps u to v then ∆(v; x) = ∆(u; x). In other
words, if u and v belong to the same orbit then ∆(u; x) = ∆(v; x).

∆̄(x) =
1

|V |
s∑

i=1

∆(vi; x)|[vi]|

There are graphs G where ∆(u; x) is independent of u but G is not transitive.
We call such graphs growth regular. In the literature [2, 3, 11] they are also known
as distance degree regular.

Example 2.1 The graph
G = Kn − Cn−3 − C3.

is not transitive but growth regular with ∆(G; x) = 1 + (n − 3)x + 2x2 independent
of vertex u.
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Let Kn(r) denote the complete multipartite graph on nr vertices with n parts of
size r and let Mn denote the Möbius ladder on 2n vertices. In the following example
only the graphs Pn and Km,n, m �= n are not vertex transitive.

Example 2.2 Some examples of growth functions:

∆(Cn; x) = 1 + 2x + · · · + 2x(n−1)/2 =
2x(n+1)/2 − x − 1

x − 1
, . . . n odd

∆(Cn; x) = 1 + 2x + · · · + 2x(n−2)/2 + xn/2

=
xn/2 + x(n+2)/2 − x − 1

x − 1
, . . . n even

∆̄(Pn; x) = 1 + 2((1 − 1/n)x + (1 − 2/n)x2 + · · · + (1 − (n − 1)/n)x(n−1))

∆(Kn; x) = 1 + (n − 1)x

∆(Km,n, u; x) = 1 + nx + (m − 1)x2

∆(Km,n, v; x) = 1 + mx + (n − 1)x2

∆̄(Km,n; x) = 1 +
2mn

m + n
x +

(m(m − 1) + n(n − 1)

m + n
x2

∆(Kn,n; x) = 1 + nx + (n − 1)x2

∆(Kn(r); x) = 1 + r(n − 1)x + (r − 1)x2

∆(K2,2,2; x) = 1 + 4x + x2

∆(Mn; x) = 1 + 3x + 4x2 + · · · + 4x(n−1)/2 + 2x(n+1)/2

= 4
x(n+1)/2 − 1

x − 1
+ 2x(n+1)/2 − x − 3, . . . n odd

∆(Mn; x) = 1 + 3x + 4x2 + · · · + 4xn/2

= 4
xn/2+1 − 1

x − 1
− x − 3, . . . n even

Here are some interpretations of the numbers introduced so far. Clearly, ∆(1)
represents the number of vertices in G. The expression n

2
∆̄′(1) is equal to the sum

of all distances in a graph which is sometimes called Wiener index of a graph; see
for instance [12], p.60. ∆̄′(1) is therefore the average distance in a finite graph. Here
∆̄′ denotes the first derivative of ∆̄′.

Before turning to products, let us introduce an operation on graphs. Let Gr and
Hp be disjoint graphs rooted at vertices r and p and let u be a vertex of Gr. Let
Gr •u Hp denote the graph obtained by attaching a copy of Hp to the vertex u in
such a way that the root p of Hp is identified with u. We may easily generalize
this operation. Let U be an arbitrary set of vertices of Gr, called the set of active
vertices. Then Gr •U Hp denotes the graph obtained by attaching a different copy
of Hp to each active vertex of U . This operation is called a partial corona of graph
Gr with rays Hp with respect to U ⊆ V (G) or simply a U -corona. When all vertices
are active, i.e. U = V (G), we omit the subscript and denote the resulting graph by
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Figure 1: Factors, partial corona and corona.

Gr • Hp. This operation is called the corona of graph Gr with rays Hp. We assume
that r remains the root in the corona.

The vertices of Gr •U Hp may be regarded as old if they belong to V (G) and
new if they do not belong to V (G). Furthermore, the old vertices are partitioned to
active and passive. Finally, the old vertices retain the label from Gr while each new
vertex is labeled by a pair (u, v), u ∈ U, v ∈ V (H). Sometimes we refer to v as the
rightmost label.

Here we need a slightly more general definition of the growth sequence and the
growth function.

Let δ(Gv, U, n) denote the number of vertices from U at distance n from v. Define
the spherical growth sequence with respect to U to be {δ(Gv, U, n)|n = 0, 1, 2, ...}.
Furthermore, let ∆(Gv, U ; x) be the (spherical) growth series or function with respect
to U , i.e. the generating function for δ(Gv, U, n) of G at v.

∆(Gv, U ; x) =
∞∑

n=0

δ(Gv, U, n)xn.

The following proposition gives an alternative definition of the familiar notion of
the breath-first search tree (BFS-tree).

Proposition 2.3 For any connected graph Gr, a spanning tree Tr rooted at r is a
BFS-tree if and only if the growth functions ∆(Gr; x)and ∆(Tr; x) are equal.

Proof. The result follows from the fact that a BFS-tree Tr is characterized by the
fact that the distance from r to any other vertex v is the same in Gr as in Tr. �

Proposition 2.4 The spherical growth function of the partial corona Gr •U Hp is
given by:

∆(Gr •U Hp, r; x) = ∆(Gr, U ; x)∆(Hp; x) + ∆(Gr, V (G) − U ; x)

Proof. Consider an arbitrary vertex at distance d from r in Gr •U Hp. There are
two disjoint cases. Either it is passive, i.e. belongs to V (G) − U , or it belongs to
some copy of Hp. There may be d1 steps in G needed to reach the root of Hp and
then d2 steps in the appropriate copy of Hp with d1 + d2 = d. By combining the two
cases we obtain the result. �
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Figure 2: BFS spanning trees of the two factors and in the Cartesian product.

3 Cartesian products

Let � denote the Cartesian product of graphs. For rooted graphs we have:

Theorem 3.1 Let G be rooted at r and H be rooted at p. The Cartesian product
G�H (rooted at (r, p)) satisfies:

∆(G�H, (r, p); x) = ∆(Gr; x)∆(Hp; x)

Proof. In the proof we use Propositions 2.3 and 2.4. Namely, If Tr is a BFS
spanning tree in Gr and Sp is a BFS spanning tree if Hp then the corona Tr • Sp is
a BFS spanning tree in G�H(r,p); see Figure 2. �

In the examples we exploit the following fact.

Corollary 3.2 If G and H are growth regular then the Cartesian product G�H is
growth regular.

Proof. Follows directly from Theorem 3.1. If the righthand side of the equation

∆(G�H, (r, p); x) = ∆(Gr; x)∆(Hp; x)

is independent of the root, then so is the lefthand side. Also, any root of G�H is of
form (r, p) and projects to the corresponding roots of G and H. �

The following fact is well-known and may simplify computation of the growth
function in case of vertex-transitive factors.

Proposition 3.3 If G and H are vertex transitive, then G�H is also vertex tran-
sitive.

Proof. Folklore. �

Example 3.4 Since
∆(K2; x) = 1 + x

and the n−cube Qn is an n-fold Cartesian product of K2’s, Qn = K2�K2...�K2

∆(Qn; x) = (1 + x)n
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Example 3.5 The line graph of Km,n is the Cartesian product of complete graphs.
Hence:

∆(L(Km,n); x) = (1 + (n − 1)x)(1 + (m − 1)x)

Example 3.6 Let C∞ denote the 2-way infinite path. Then C2
∞ = C∞�C∞ repre-

sents a square grid in the plane.
As ∆(C∞; x) = 1 + 2x + 2x2 + 2x3 + ... = 1+x

1−x
we have:

∆(Ck
∞; x) = (

1 + x

1 − x
)k

for a grid in k-dimensional space.

Example 3.7 Let P∞ denote the one-way infinite path rooted at the vertex of valence
1. Clearly ∆(P∞; x) = 1 + x + x2 + x3 + ... = 1

1−x
. Obviously ∆(P 2

∞; x) = 1
(1−x)2

is
the generating function for the spherical growth of the grid of the quarter-plane.

Note that Cartesian products of graphs correspond to direct products of groups.
If 〈X |R〉 is a presentation for group G and 〈Y |S〉 is a presentation for the group
H then the direct product G�H has a presentation 〈X, Y |R, S, [X, Y ]〉. This means
that we take all the generators X and Y , all relators R and S and then let each
generator x ∈ X commute with each generator y ∈ Y : xy = yx. Let C(G, X) denote
the Cayley graph for G and generating set X . Then

C(G�H, X ∪ Y ) = C(G, X)�C(H, Y ).

4 Free Product

The idea of the free product of groups can be generalized to labeled graphs via Cayley
graphs. If 〈X |R〉 is a presentation for group G and 〈Y |S〉 is a presentation for the
group H then their free product G∗H has a presentation 〈X, Y |R, S〉. We would like
to define the free product of their Cayley graphs as follows:

C(G, X) ∗ C(H, Y ) = C(G ∗ H, X ∪ Y ).

We can define the free product Gr ∗ Hp of two rooted graphs Gr and Hp as follows.
Let the vertex set of Gr ∗ Hp be composed of all finite sequences of vertices from
(V (H)− p)∪ (V (G)− r) where the elements alternate from V (H)− p and V (G)− r.
Two sequences α and β are adjacent in Gr ∗Hp if and only if either α = γ and β = γx
and x is adjacent to the corresponding root vertex, or α = γx and β = γy and x and
y are adjacent in the corresponding factor. The root in Gr ∗ Hp corresponds to the
empty sequence ε.

The free product can be defined in several equivalent ways using repeatedly partial
corona. We give a non-symmetric definition favoring Gr over Hp.
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• Let P0 = Gr, V0 = V P0.

• Let Qi+1 = Pi •Vi
Hp, Ui+1 = V Qi+1 − V Pi, i = 0, 1, 2, ...

• Let Pi = Qi •Ui
Gr, Vi = V Pi − V Qi, i = 1, 2, ...

The graphs form an embedded sequence of rooted graphs

P0 ⊂ Q1 ⊂ P1 ⊂ Q2 ⊂ ...

whose limit graph is denoted by Gr ∗Hp. It is not hard to see that Hp ∗Gr = Gr ∗Hp.
The concept of the limit graph can be found, for instance in [1, 5].

Example 4.1 Consider K3 ∗ K3. Label the vertices in the first copy of K3 by r, 0, 1
and the vertices in the second copy by r′, 0′ and 1′. Let r and r′ be the corresponding
roots. The vertices,ordered by distance from the root are given by:

V (K3 ∗ K3) = {ε, 0, 1, 0′, 1′, 00′, 01′, 10′, 11′, 0′0, 0′1, 1′0, 1′1, ...}

They can be encoded as binary strings with an additional bit of information, say ”1”
or ”0” that tells whether the lefmost digit is followed by a prime (’) or not!).

V (K3 ∗ K3) = {0, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, ...}

In the latter encoding the distance from the root is given by d−1 where d is the length
of the binary string. The product looks like a tree of triangles. It is not hard to see
that the distance sequence at each vertex is given by:

1, 4, 8, 16, 32, ...

Proposition 4.2 If G and H are vertex transitive, then G ∗ H is also vertex tran-
sitive.

Proof. Follows from the definition. Any map from one vertex of G ∗ H to another
can be extended to an automorphism of the whole graph. �

In the proof of the next theorem the following two graphs are very useful. They
are both obtained as limit graphs similarly to the graph Gr ∗ Hp.

• Let P0 = Gr, V0 = V P0 − r.

• Let Qi+1 = Pi •Vi
Hp, Ui+1 = V Qi+1 − V Pi, i = 0, 1, 2, ...

• Let Pi = Qi •Ui
Hp, Vi = V Pi − V Qi, i = 1, 2, ...

Let S(Gr, Hp) be limit graph obtained via the above process. Its root vertex is
the r in the first copy of Gr which has nothing attached to it. Note that in general
S(Gr, Hp) is not isomorphic to S(Hp, Gr).
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Lemma 4.3 The graph S(Gr, Hp) is isomorphic to Gr •V (G)−r S(Hp, Gr)

Proof. Follows from the definition of these graphs. �
We have:

Theorem 4.4

1/(∆(Gr ∗ Hp; x) − 1 = 1/∆(Gr; x) − 1 + 1/∆(Hp; x) − 1

Proof. Let F1(x) denote the growth function of S(Gr, Hp) and let F2(x) denote
the growth function of S(Hp, Gr). Observe that the intersection of S(Gr, Hp) and
S(Hp, Gr) is a single vertex, namely the root, while its union is the graph F (Gr, Hp).
This gives rise to the first equation:

∆(Gr ∗ Hp; x) = F1(x) + F2(x) − 1

The other two equations follow from Lemma 4.3 and Proposition 2.4:

F1(x) = 1 + (∆(Gr; x) − 1)F2(x)

F2(x) = 1 + (∆(Hp; x) − 1)F1(x)

By elimination of F1(x) and F2(x) one obtains the formula stated in the theorem. �

The above theorem was used for groups in several places, see for instance [19]. In
the special case when G = H we get:

Corollary 4.5

∆(G ∗ G; x) =
∆(G; x)

2 − ∆(G; x)

We can easily show that:

Corollary 4.6

1

∆(G1 ∗ G2 ∗ ... ∗ Gk; x)
− 1 =

1

∆(G1; x)
− 1 +

1

∆(G2; x)
− 1 + ... +

1

∆(Gk; x)
− 1

Proof. By induction on k. �

In the special case when Gi = G the formula reduces to:

Corollary 4.7

∆(G ∗ G ∗ ... ∗ G; x) =
∆(G; x

k − (k − 1)∆(G; x)

If we apply this to the complete graph Kn, we get:
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Corollary 4.8

∆(Kn ∗ Kn; x) =
1 + (n − 1)x

1 − (n − 1)x

In our Example 4.1 we have n = 3 and ∆(K3 ∗ K3; x) = 1+2x
1−2x

. If we choose

n = 2 we get ∆(K2 ∗ K2; x) = 1+x
1−x

which is a function that we have seen already in
Example 3.6. This is not a surprise since one can easily verify that K2 ∗ K2 = C∞.
The k−fold free product of K2 by itself has the generating function:

Corollary 4.9

∆(K2 ∗ K2 ∗ ... ∗ K2; x) =
1 + x

1 − (k − 1)x

We have calculated the growth of a k−way infinite tree. If k = 2m is even,
K2 ∗K2 ∗ ...∗K2 can be written as the product m copies of C∞. This is the standard
Cayley graph for the free group Fm with m generators. Its growth series is 1+x

1−(2k−1)x
;

see [9].

Proposition 4.10 If G and H are growth regular, then G∗H is also growth regular.

Proof. Follows from Theorem 4.4 since the growth function of the product is
determined by the growth functions of the two factors. �

Finally, for any (finite) graph G we may generate an (infinite) vertex transitive
graph by a construction that is similar to the multiple free product. We assume that
G has a finite number, say m, of vertex orbits. Let v1, v2, ..., vm be representatives of
the respecitve vertex orbits [v1], [v2], ..., [vm]. Then F (Gv1 , Gv2 , ..., Gvm) is constructed
as follows.

• Let F0 = G, V0(j) = V (G) − [vj ], j = 1, 2, ..., m.

• Let Fi+1 = Fi •Vi(1) Gv1 •Vi(2) Gv2 ... •Vi(m) Gvm , i = 0, 1, 2, ...

• Let Vi+1 = V (Fi+1) − V (Fi), i = 0, 1, 2, ..., j = 1, 2, ..., m

• Let Vi+1(j) ⊂ Vi+1 denote the vertices whose leftmost label does not belong to
[vj ] for i = 0, 1, 2, ..., j = 1, 2, ..., m

In other words Fi+1 is obtained from Fi by attaching at vertex v, belonging to
the orbit [vj ], a copy of each Gvi

except for i = j. The resulting limit graph [1, 5]
F (Gv1 , Gv2 , ..., Gvm) is vertex transitive, called the free transitive closure of G. Its
growth function can be easily computed by setting up and solving a system of linear
equations similar to the one in the proof of Theorem 4.4. Let mi,j(x) = ∆(G, [vj ]vi

; x)
denote the growth function defined by [vj ] in Gvi

and let M(x) = (mi,j(x)), E =
(1)(i,j) and I (identity matrix)) be m×m matrices. The growth function is given by

eT (E − M(x)(E − I))−1((m − 1)I − (m − 2)M(x))e − m + 1,
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where e = (1, 1, ..., 1)T .
The construction of F (Gv1 , Gv2 , ..., Gvm) makes sense for any equivalence relation

on V (G) with m equivalence classes. However, if the classes are not vertex orbits then
the formula for growth function does not apply as the functions mi,j(x) are not well-
defined. On the other hand, if the classes are defined by the full automorphism group
they depend on the graph alone and we may shorten notation F (Gv1 , Gv2 , ..., Gvm) =
F (G). If G is itself vertex-transitive we have F (G) = G.

Example 4.11 Let D be the Dürer graph, i.e. the generalized Petersen graph P (6, 2).
Clearly D has two vertex orbits, one composed of a hexagon, and another consisting
of two triangles. A simple calculation shows that

m1,1(x) = 1 + 2x + 2x2 + x3

m1,2(x) = x + 4x2 + x3

m2,1(x) = x + 4x2 + x3

m2,2(x) = 1 + 2x + 2x3 + x4

Note that F (D) is 6-valent, 1-connected, vertex-transitive, planar graph whose
growth function is given by:

∆(F (D); x) =
1 + 5x + 10x2 + 9x3 − 2x4 − 4x5 − x6

1 − x − 12x2 − 10x3 + 2x4 + 4x5 + x6

F (D) is obtained by gluing infinitely many copies of D. Each vertex of the outer
hexagon of D is glued to a vertex of a triangle of separate copy of D (see the left
part of Figure 3). D can be embedded in the plane so that either a triangle bounds
the infinite outer face, or a pentagon. The former, called a triangular patch, has the
outer face of size 3, while the latter, called a pentagonal patch, has a pentagonal outer
face. To each of the two patches we have to glue six triangular and six pentagonal
patches, as indicated in central and right part of Figure 3.

5 Strong Product

Strong product is similar to the Cartesian product. Here we denote it by �. If G and
H are graphs their strong product G � H is defined on the vertex set V (G)�V (H)
and two vertices (v, u) and (v′, u′) are adjacent in G � H if and only if either v is
adjacent to v′ and u is adjacent to u′ or v = v′ and u is adjacent to u′ or v is adjacent
to v′ and u = u′.

It is possible to visualize the strong product in terms of direct product of group
presentations and their Cayley graphs. If 〈X |R〉 is a presentation for group Γ and
〈Y |S〉 is a presentation for the group Σ, we may take the following presentation for
their direct product Γ�Σ: 〈X, Y, Z|R, S, [X, Y ], Z = XY 〉. This means that we add
new generators Z and relators, so that z = xy for z ∈ Z, x ∈ X and y ∈ Y . Then
C(Γ�Σ, X ∪ Y ∪ Z) = C(Γ, X) � C(Γ, Y ).
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Figure 3: The Dürer graph (left) is planar and can be drawn in the plane in two
distinct ways (center and right) forming the so-called triagonal and pentagonal patch.
Small pentagons and triangles indicate the gluing process that yields the limit graph
F (D).

By � we denote not only the strong product of graphs but also the Hadamard
product of series. If g1(x) =

∑∞
i=0 γ1(i)x

i and g1(x) =
∑∞

i=0 γ2(i)x
i then let g1 �

g2(x) =
∑∞

i=0 γ1(i)γ2(i)x
i.

Theorem 5.1
Γ(G � H, (r, p); x) = Γ(Gr; x) � Γ(Hp; x)

In other words:
∆(G � H, (r, p); x)

1 − x
=

∆(Gr; x)

1 − x
� ∆(Hp; x)

1 − x

Proof. Follows easily from the observation that for any positive integer d the
distance between any two vertices of G � H is at most d if and only if the distance
in both projections is at most d. �

There is a program by Marko Petkovšek based on the work [17] included in the
system Vega [20] for calculating the Hadamard product of any two rational functions.

Corollary 5.2 Let G and H be growth regular then their strong product G � H is
growth regular.

6 Lexicographic Product, Tensor Product

and more

Lexicographic product is not commutative. For many of its properties, see [12]. The
edges that project to the first factor from a complete bipartite graph. This makes
the growth function easy to compute. The distance between any two vertices that
project to different vertices in the first factor is determined by the distance in the
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Figure 4: Strong product, two lexicographic products and the tensor product of the
two graphs from Figure 1.

first factor. On the other hand, any two vertices projecting to the same vertex of the
first factor are at distance two in the lexicographic product. This can be summarized
in the form of the following result.

Proposition 6.1

∆(Gr[Hp]; x) = 1 + |V (H)|(∆(Gr; x) − 1) + (|V (H)| − 1)x2

We may use this result to recompute the growth in the regular complete n−partite
graph Kn(r) = Kn[K̄r], compare Example 2.2.

Since |V (H)| = ∆(Hp; 1) we may express the growth in the lexicographic product
in terms of growth functions of its factors:

∆(Gr[Hp]; x) = 1 + |∆(Hp; 1)|(∆(Gr; x) − 1) + (|∆(Hp; 1)| − 1)x2

The proposition has the following immediate consequence.

Corollary 6.2 Let G be growth regular and H finite then the lexicographic product
G[H] is growth regular.

The last product we mention is the so-called tensor product of graphs. In [12]
it is called the direct product. It is the product in the category of graphs and non-
degenerate graph maps. However, its behavior in terms of growth is most surprising.

Proposition 6.3 The growth function of the tensor product of the graphs Gr and
Hp cannot be expressed in terms of the growth functions of the two factors.

Proof. The growth functions of C3 and P3 rooted in the central vertex are equal
and are given by 1 + 2x. However, the tensor products C3 × C3 and C3 × P3 have
different growth functions: 1 + 4x + 4x2 and 1 + 4x + 2x2 + 2x3. �

In view of this negative result we may introduce the notion of a growth compatibil-
ity. If a function on graphs has the property that the growth of the resulting graph is
determined by the growth of its arguments then such a function is called growth com-
patible. Cartesian product, free product, strong product and lexicographic product
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are growth compatible functions with two arguments. Tensor product is not growth
compatible.

There are functions of one argument, such as the subdivision graph S(G), the line
graph L(G), etc. One could explore growth compatibility of such functions. Clearly,
S(G) is not growth compatible. However, if restricted to trees subdivision is growth
compatible. For any tree T we have:

∆(S(T )v; x) = ((1 + x)∆(Tv; x
2) − 1)/x

In particular, this applies to a k-way infinite tree.

∆(S(K2 ∗ K2 ∗ ... ∗ K2)v; x) =
1 + kx + x2

1 − (k − 1)x2

Here S(K2 ∗ K2 ∗ ... ∗ K2) is rooted at a k-valent vertex v.
If we want to root S(T) in a new vertex of valence two, we must generalize the

notion of a rooted graph. In general we may root a graph G in any subset U of
its vertex set. Here we assume that the growth at each vertex u ∈ U is equal to
x0 = 1. For any vertex v ∈ V (G) − U the growth is given by xd, where d is the
(minimum) distance from v to U . We also restrict our attention to the sets composed
of two adjacent vertices. If e = {u, v} is an edge of a tree T we may denote by e the
corresponding vertex of valence 2 in S(T ). In such a case we obtain

∆(S(T )e; x) = (1 + x)∆(Te; x
2) − 1

In particular

∆(S(K2 ∗ K2 ∗ ... ∗ K2)e; x) =
1 + 2x + (k − 1)x2

1 − (k − 1)x2

Finally, a refinement is in order. For instance, if we know the growth in G, S(G),
and S(S(G)) can we determine the growth in S(S(S(G)))? An interesting question
along these lines was addressed in [18] where the iteration of the so-called truncation
T (G) = L(S(G)) was performed ad infinitum.
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