Homogeneous cartesian products

K. L. McAvaney
Department of Mathematics and Statistics
Sultan Qaboos University
P.O. Box 36, Al Khod 123
Sultanate of Oman
kevin@squ.edu.om

Abstract

A graph G is 1-homogeneous if certain isomorphisms between similarly embedded induced subgraphs of G extend to automorphisms of G. We show that the only connected composite 1-homogeneous graphs are the cube, and $K_{n} \times K_{2}$ and $K_{n} \times K_{n}$ with $n \geq 2$.

1 Introduction

The homogeneity of a graph G may be measured in terms of which isomorphisms between its induced subgraphs extend to automorphisms of G. In the extreme we may insist that all such isomorphisms so extend. Sheehan [10] and Gardiner [3] studied these graphs to find, not surprisingly, that there are only a few. Gardiner called them ultrahomogeneous and proved the following characterisation.

Theorem 1 The ultrahomogeneous graphs are:

1. the disjoint union, $t K_{r}$, of t copies of the complete graph on r vertices,
2. the complete multipartite graph $K_{t ; r}$, the complement of $t K_{r}$,
3. the cartesian product $K_{3} \times K_{3}=L\left(K_{2 ; 3}\right)$,
4. the pentagon C_{5}.

Although $C_{3}\left(=K_{3}\right), C_{4}\left(=K_{2 ; 2}\right)$, and C_{5} are ultrahomogeneous, the cycles C_{n} for $n \geq 6$ are large enough to allow isomorphic induced subgraphs to be embedded in different ways. For example, take two vertices at distance 2 in C_{n} as one subgraph and two at distance 3 for the other. Both subgraphs are isomorphic to $2 K_{1}$ but no isomorphism between them extends to an automorphism of C_{n} because automorphisms preserve distance.

Size permits a similar situation in $K_{n} \times K_{n}$ for $n \geq 4$. To see how exactly we recall the definition of the cartesian product and the nature of its automorphism group. The cartesian product, $G \times H$, of graphs G and H is the graph with vertex set $V G \times V H$ and edges $\left\langle\left(g_{1}, h_{1}\right),\left(g_{2}, h_{2}\right)\right\rangle$ only where $g_{1}=g_{2}$ and h_{1} is adjacent to h_{2} or $h_{1}=h_{2}$ and g_{1} is adjacent to g_{2}. A graph is composite if it is the product of at least two non-trivial graphs. A graph is prime if non-trivial and not composite. We note that K_{n} is prime for $n \geq 2$ because it is connected and has no chordless square. Two graphs are relatively prime if they have no non-trivial factor in common. $G \times H$ has obvious automorphisms that are essentially permutations of copies of G induced by automorphisms of H or permutations of copies of H induced by automorphisms of G. The cartesian product G^{n} has additional automorphisms induced by permuting the coordinates of every vertex with the same permutation. The following theorems tell us that these automorphisms generate all others.

Theorem 2 ([9]) If G and H are relatively prime connected graphs, then every automorphism of $G \times H$ has the form $\gamma=(\alpha, \beta)$ where α and β are automorphisms of G and H respectively and $\gamma(g, h)=(\alpha g, \beta h)$.

Theorem 3 ([5]) For a connected prime graph G, the automorphism group of G^{m} is the set of all permutations $\gamma=\left(\alpha ; \beta_{1}, \ldots, \beta_{m}\right)$ where $\alpha \in S_{m}$ and $\beta_{1}, \ldots, \beta_{m}$ are automorphisms of G, and γ is defined by $\gamma\left(g_{1}, \ldots, g_{m}\right)=\left(\beta_{1} g_{\alpha 1}, \ldots, \beta_{m} g_{\alpha m}\right)$.

An edge in $G \times H$ of the form $\left\langle\left(g_{i}, h_{k}\right),\left(g_{j}, h_{k}\right)\right\rangle$ will be called horizontal and an edge of the form $\left\langle\left(g_{k}, h_{i}\right),\left(g_{k}, h_{j}\right)\right\rangle$ will be called vertical. Two edges are parallel if they are both horizontal or both vertical. From Theorems 2 and 3, any automorphism will map parallel edges to parallel edges. Now consider two induced subgraphs of $K_{n} \times K_{n}$ that are isomorphic to $2 K_{2}$. We suppose both edges in one subgraph are horizontal (this is possible for $n \geq 4$) and in the other subgraph one edge is horizontal and the other is vertical. No isomorphism between them will extend to an automorphism of $K_{n} \times K_{n}$.

Following Myers $[7,8]$ we relax the homogeneity condition by limiting the isomorphic induced subgraphs to only those that, in some sense, are similarly embedded in the graph. He made the following inductive definition. Let X and Y be induced subgraphs of a graph G. Any isomorphism f from X to Y is called a 0 -isomorphism. For positive integer k, f is also called a k-isomorphism if for each vertex x in G there is a vertex y in G such that the mapping $f \cup(x, y)$ is a $(k-1)$-isomorphism from the induced subgraph $\langle V X \cup\{x\}\rangle$ to $\langle V Y \cup\{y\}\rangle$ and f^{-1} satisfies the analagous condition from Y to X. Graph G is k-homogeneous if, for every pair of its induced subgraphs X and Y, every k-isomorphism from X to Y can be extended to an automorphism of G. The notion of k-homogeneity has been studied in other areas such as logic [2] and geometry [1]. The 0 -homogeneous graphs are precisely the ultrahomogeneous graphs of Theorem 1. Clearly, if G is k-homogeneous, then it is l-homogeneous for $l \geq k$ and every component is k-homogeneous. Also the complement of G is k-homogeneous if and only if G is k-homogeneous. Exploiting the near uniqueness of G for a given line graph $L(G)$, Myers [7] showed that $L\left(K_{n}\right)$ is 1-homogeneous for all n and $L\left(K_{t ; r}\right)$
is 4-homogeneous for all t and r. In what follows we will confine our attention to 1-homogeneous graphs.

The study of 1-homogeneous graphs can be reduced to certain simpler cases. For a graph G let $F(G)$ denote the set of all vertices in G of full valency, that is, adjacent to all other vertices in G. From the definition of 1-homogeneous graphs we have the following immediate results.

Lemma 4 ([4], [8]) For any graph G :

1. G is 1-homogeneous if and only if its complement is 1-homogeneous.
2. If G is 1-homogeneous and connected, then $G-F(G)$ is 1-homogeneous and transitive.
3. If G is 1-homogeneous and connected, then the diameter of G is at most 3 .

Thus the investigation of 1-homogeneous graphs reduces to the study of connected, transitive graphs of diameter at most 3. By routine argument the only connected 1-homogeneous graphs regular of degree two are the cycles C_{n} for $n \leq 7$. Myers [8] classifed the trivalent variety.

Theorem 5 The connected cubic 1-homogeneous graphs are:

1. K_{4},
2. $K_{3} \times K_{2}$, the complement of C_{6},
3. $K_{2 ; 3}$, the complement of $2 K_{3}$,
4. the Petersen graph, the complement of $L\left(K_{5}\right)$,
5. the cube, K_{2}^{3},
6. the Heawood graph.

We note that only the cube and the Heawood graph have diameter 3 and all except $K_{3} \times K_{2}$ are distance transitive. It was shown in [4] that all connected 1homogeneous graphs are distance transitive or almost so. This result, Lemma 4, and the comprehensive catalogue of transitive graphs in [6] can be used to find all connected transitive 1-homogeneous graphs on fewer than 20 vertices. Inspection of these graphs suggests various infinite families of 1-homogeneous graphs. In the following section we look at composite graphs.

2 Composite graphs

Lemma 6 If a connected composite graph is 1-homogeneous, then it is one of the following:

1. the cube, K_{2}^{3},
2. $K_{n} \times K_{2}$ with $n \geq 2$,
3. $K_{n} \times K_{n}$ with $n>2$.

Proof. Let P be a connected composite 1-homogeneous graph. From Lemma 4 the diameter of P is at most 3 so it has at least one factor of diameter 1. Thus $P=K_{r} \times H$ where H has diameter 1 or 2 .

Case 1: $P=K_{r} \times K_{s}$ with $r \geq s \geq 2$.
If $s>2$ then any edge in a copy of K_{r} is 1 -isomorphic to any edge in a copy of K_{s}. Hence there is an automorphism of P that maps one edge to the other. This contradicts Theorem 2 unless $r=s$.

Case 2: $P=K_{r} \times H$ where $r \geq 2$ and H has diameter 2 .
From Lemma $4 P$ is transitive and hence H is regular of degree at least 2. We label the vertices of K_{r} and H with the integers $0,1,2, \ldots$ and write $i j$ for the vertex (i, j) in P. Let vertices 0 and 2 in H be at distance 2 and mutually adjacent to vertex 1. The induced subgraphs $\langle 00,02\rangle$ and $\langle 00,11\rangle$ are 1 -isomorphic in P and hence there is an automorphism of P that maps one to the other. This contradicts Theorem 2 if K_{r} and H are relatively prime. So $P=K_{r} \times K_{r} \times K_{s}$ where $s \geq 2$. If $r \neq s$ we write $P=K_{s} \times H$ where $H=K_{r} \times K_{r}$ and repeat our argument to contradict Theorem 2.

If $r=s$, then we have $P=K_{r}^{3}$. Suppose $r \geq 3$. We label the vertices in K_{r} with the integers $0,1,2, \ldots$, and write $i j k$ for the vertex (i, j, k) in K_{r}^{3}. Consider $G_{1}=\langle 000,222,102,210\rangle$ and $G_{2}=\langle 000,222,102,021\rangle$. Let f be the isomorphism from G_{1} to G_{2} that fixes $000,222,102$, and maps 210 to 021 . It is easy to check that f is a 1 -isomorphism. Therefore f extends to an automorphism α of P. Since 010 is at distance 1 from both 000 and $210, \alpha(010)=001$ or 020 . But 010 and 001 are respectively at distance 3 and 2 from 102 while 010 and 020 are respectively at distance 3 and 2 from 222 giving us a contradiction.

By Theorem 5, K_{2}^{3} is 1-homogeneous. We show below that $K_{n} \times K_{2}$ and $K_{n} \times K_{n}$ are 1-homogeneous for all n. First a general lemma that allows us to move induced subgraphs around.

Lemma 7 Let G_{1} and G_{2} be induced subgraphs in a graph G and let α and β be automorphisms of G. An isomorphism $\sigma: G_{1} \rightarrow G_{2}$ is a 1-isomorphism in G if and only if $\alpha \sigma \beta^{-1}: \beta G_{1} \rightarrow \alpha G_{2}$ is a 1-isomorphism in G. Moreover, σ extends to an automorphism of G if and only if $\alpha \sigma \beta^{-1}$ does.

Proof. Let g_{1} be a vertex in G and suppose σ is a 1 -isomorphism. There is a vertex g_{2} in G such that $\sigma \cup\left(\beta^{-1} g_{1}, \alpha^{-1} g_{2}\right):\left\langle G_{1} \cup\left\{\beta^{-1} g_{1}\right\}\right\rangle \rightarrow\left\langle G_{2} \cup\left\{\alpha^{-1} g_{2}\right\}\right\rangle$
is an isomorphism. Hence $\alpha \sigma \beta^{-1} \cup\left(g_{1}, g_{2}\right):\left\langle\beta G_{1} \cup\left\{g_{1}\right\}\right\rangle \rightarrow\left\langle\alpha G_{2} \cup\left\{g_{2}\right\}\right\rangle$ is an isomorphism. Similarly, if g_{2} is a vertex in G, then there exists a vertex g_{1} in G such that $\beta \sigma^{-1} \alpha^{-1} \cup\left(g_{2}, g_{1}\right):\left\langle\alpha G_{2} \cup\left\{g_{2}\right\}\right\rangle \rightarrow\left\langle\beta G_{2} \cup\left\{g_{1}\right\}\right\rangle$ is an isomorphism. Thus $\alpha \sigma \beta^{-1}$ is a 1 -isomorphism in G. Also, if σ extends to an automorphism σ^{*} of G, then $\alpha \sigma \beta^{-1}$ extends to the automorphism $\alpha \sigma^{*} \beta^{-1}$ of G. The converses are immediate.

The next two lemmas show that parallel edges in an induced subgraph of $K_{n} \times K_{2}$ and $K_{n} \times K_{n}$ stay parallel under any 1-isomorphism. In both products let H and V denote respectively the set of all their horizontal and vertical edges.

Lemma 8 Let G_{1} and G_{2} be induced subgraphs of $G=K_{n} \times K_{2}$ with $n \geq 3$. If $\sigma: G_{1} \rightarrow G_{2}$ is a 1-isomorphism in G, then $\sigma\left(E G_{1} \cap H\right)=E G_{2} \cap H$ and $\sigma\left(E G_{1} \cap V\right)=$ $E G_{2} \cap V$.

Proof. Suppose e is a horizontal edge in G_{1} and $\sigma(e)$ is a vertical edge in G_{2}. There is a vertex in G adjacent to both vertices of e but no corresponding vertex adjacent to both vertices of $\sigma(e)$. Hence σ can not be a 1-isomorphism. Similarly, if e is a vertical edge in G_{1} and $\sigma(e)$ is a horizontal edge in G_{2}, then σ^{-1} is not a 1-isomorphism.

Lemma 9 Let G_{1} and G_{2} be induced subgraphs of $G=K_{n} \times K_{n}$ with $n \geq 2$. If $\sigma: G_{1} \rightarrow G_{2}$ is a 1-isomorphism in G, then $\left\{\sigma\left(E G_{1} \cap H\right), \sigma\left(E G_{1} \cap V\right)\right\}=$ $\left\{E G_{2} \cap H, E G_{2} \cap V\right\}$.

Proof. Suppose e and d are edges in G_{1} with $e, d, \sigma(e)$ horizontal and $\sigma(d)$ vertical. Because G_{1} and G_{2} are isomorphic induced subgraphs of $K_{n} \times K_{n}$, simple inspection of the few possible cases shows that $\langle e, d\rangle$ and $\langle\sigma(e), \sigma(d)\rangle$ are both isomorphic to $2 K_{2}$. Hence there is a vertex in G adjacent to both vertices in e but only one vertex in d, while each vertex in G that is adjacent to both vertices in $\sigma(e)$ is adjacent to both or none of the vertices in $\sigma(d)$. Thus σ is not a 1-isomorphism of G.

For simplicity in what follows we denote the vertices (i, j) of $K_{n} \times K_{2}$ and $K_{n} \times K_{n}$ by $i j$.

Theorem $10 K_{n} \times K_{2}$ is 1-homogeneous for $n \geq 1$.
Proof. From Theorem $1 K_{n} \times K_{2}$ is 0-homogeneous for $1 \leq n \leq 2$ so we may assume $n \geq 3$. Let G_{1} and G_{2} be isomorphic induced subgraphs of $G=K_{n} \times K_{2}$ and suppose $\sigma: G_{1} \rightarrow G_{2}$ is a 1-isomorphism in G. If G_{1} has no vertical edge then, by Lemma 8, neither does G_{2} and both are therefore isomorphic to a complete graph or the union of two complete graphs. From Theorem 2 and Lemma 7 we may assume that $G_{1}=G_{2}=\langle A \cup B\rangle$ where $A=\{11,21, \ldots, r 1\}$ and $B=\emptyset$ or $\{(r+1) 2,(r+2) 2, \ldots, s 2\}$ where $1 \leq r \leq n$ and $r<s \leq n$. Thus σ fixes all vertices in G_{1} and extends to the identity automorphism of G.

If G_{1} does have a vertical edge then, from Theorem 2 and Lemma 7, we may assume $G_{1}=\langle\{11,21, \ldots, r 1\} \cup\{12,22, \ldots, r 2\} \cup A \cup B\rangle$ where $A=\emptyset$ and $B=\emptyset$ or $A=\{(r+1) 1,(r+2) 1, \ldots, s 1\}$ and $B=\emptyset$ or $A=\{(r+1) 1,(r+2) 1, \ldots, s 1\}$ and $B=\{(s+1) 2,(s+2) 2, \ldots, t 2\}$ where $1 \leq r<s<t \leq n$. From Theorem 2, Lemma 7, and Lemma 8 we may assume $G_{2}=G_{1}$. Again σ extends to the identity automorphism of G.

Theorem $11 K_{n} \times K_{n}$ is 1-homogeneous for $n \geq 1$.
Proof. From Theorem 1, $K_{n} \times K_{n}$ is 0-homogeneous for $1 \leq n \leq 3$. We use induction on n. Let G_{1} and G_{2} be isomorphic induced subgraphs of $G=K_{n} \times K_{n}$ and suppose $\sigma: G_{1} \rightarrow G_{2}$ is a 1-isomorphism in G. Let $X=\{11,21, \ldots, n 1\} \cup$ $\{11,12, \ldots, 1 n\}, G^{\prime}=G-X, G_{1}^{\prime}=G_{1}-X$, and σ^{\prime} denote σ restricted to G_{1}^{\prime}.

Case 1: G_{1} contains an isolated vertex.
From Lemma 7 and Theorem 3 we may assume the isolated vertex is 11 and $\sigma 11=11$. We claim σ^{\prime} is a 1 -isomorphism in G^{\prime}. If g_{1} is a vertex in G^{\prime}, then there is a vertex g_{2} in G such that $\sigma \cup\left(g_{1}, g_{2}\right)$ is an isomorphism from $\left\langle V G_{1} \cup\left\{g_{1}\right\}\right\rangle$ to $\left\langle V G_{2} \cup\left\{g_{2}\right\}\right\rangle$. Because g_{1} is not adjacent to 11 , neither is g_{2} and therefore g_{2} is in G^{\prime}. By induction σ^{\prime} extends to an automorphism τ^{\prime} of G^{\prime}. From Theorem 3, τ^{\prime} extends to an automorphism τ of G that fixes 11 . Thus σ extends to τ.

Case 2: G_{1} contains an edge.
From Lemma 7 and Theorem 3 we may assume that the edge is $\langle 11, i 1\rangle, \sigma 11=11$, and $\sigma i 1=j 1$ where $1<i, j \leq n$. From Lemma 9 we may also assume that $V G_{1} \cap\{11,21, \ldots, n 1\}=\{11,21, \ldots, r 1\}=V G_{2} \cap\{11,21, \ldots, n 1\}$ and $V G_{1} \cap$ $\{11,12, \ldots, 1 n\}=\{11,12, \ldots, 1 s\}=V G_{2} \cap\{11,12, \ldots, 1 n\}$ for some r and s with $2 \leq r \leq n$ and $1 \leq s \leq n$.

Case 2.1: G_{1}^{\prime} contains no edge.
Let $t=\min (r, s)$. Again from Lemma 7 and Theorem 3 we may assume that G_{1} contains at most t vertices $11,22, \ldots$; at most $r-t$ vertices $(t+1)(s+1),(t+2)(s+$ $2), \ldots$; and at most $s-t$ vertices $(r+1)(t+1),(t+2)(s+2), \ldots$; and every vertex in G_{1} is fixed by σ. Thus σ extends to the identity automorphism of G.

Case 2.2: G_{1}^{\prime} contains an edge.
As in Case $1, \sigma^{\prime}$ is a 1 -isomorphism in G^{\prime} and by induction extends to an automorphism τ^{\prime} of G^{\prime}. From Lemma 9, under σ the horizontal edges of G_{1} remain horizontal and the vertical edges remain vertical. In particular the edge we have in G_{1}^{\prime} remains either horizontal or vertical under σ, hence under σ^{\prime}, and therefore under τ^{\prime}. For $2 \leq k \leq n$ let $A_{k}=\{k 2, \ldots, k n\}$ and $B_{k}=\{2 k, \ldots, n k\}$. From Theorem $3, \tau^{\prime} A_{k}=A_{l}$ for some l and $\tau^{\prime} B_{k}=B_{m}$ for some m. To ease notation we assume that σ fixes each vertex in $V G_{1} \cap X$ as permitted by Lemma 7. If for some k where $2 \leq k \leq r, A_{k}$ contains a vertex of G_{1} or G_{2}, then τ^{\prime} fixes A_{k}. If A_{k} does not contain a vertex of G_{1} or G_{2}, then we may change $\tau^{\prime}=\left(\tau_{1}^{\prime}, \tau_{2}^{\prime}\right)$ by deleting the disjoint cycle in τ_{1}^{\prime} that contains k. The resulting automorphism of G^{\prime} still extends σ^{\prime} but fixes A_{k}. So we may assume that τ^{\prime} fixes A_{k} for $2 \leq k \leq r$ and B_{k} for $2 \leq k \leq s$. Thus τ^{\prime} extends to an automorphism τ of G that fixes each vertex in $V G_{1} \cap X$ and so σ extends to τ.

From Lemma 6 and Theorems 5, 10, and 11 we have our characterisation of connected composite 1-homogeneous graphs.

Theorem 12 The connected composite 1-homogeneous graphs are:

1. the cube, K_{2}^{3},
2. $K_{n} \times K_{2}$ with $n \geq 2$,
3. $K_{n} \times K_{n}$ with $n>2$.

References

[1] E. Artin, Geometric algebra, Wiley-Interscience, New York, 1957.
[2] D.M. Clark and P.H. Krauss, Relatively homogeneous structures, Logic Colloquium 76, (North-Holland, Amsterdam, 1977), 225-285.
[3] A. Gardiner, Homogeneous graphs, J. Combin. Theory Ser. B 20 (1976), 94-102.
[4] A. Gardiner and K.L. McAvaney, Symmetry properties of 1-homogeneous graphs, Ars Combinatoria 16-A (1983), 151-160.
[5] F. Harary and E.M. Palmer, On the automorphism group of a composite graph, Studia Sci. Math. Hungar. 3 (1968), 439-441.
[6] B.D. McKay, Transitive graphs with fewer than twenty vertices, Math. Comp. 33 (1979), 1101-1121.
[7] R.W. Myers, N-homogeneous graphs, Rev. Roumaine Math. Pures Appl. 29 (1984), 255-261.
[8] R.W. Myers, 1-homogeneous graphs, Discrete Math. 57 (1985) 67-88.
[9] G. Sabidussi, Graph multiplication, Math. Z. 72 (1960), 446-457.
[10] J. Sheehan, Smoothly embeddable graphs, J. London Math. Soc. (2) 9 (1974), 212-218.

