The spectrum of triangle-free regular graphs containing a cut vertex

R.S. Rees
Department of Mathematics and Statistics
Memorial University of Newfoundland
Canada

Dedicated to the memory of my mentor, my colleague, and my very dear friend Norman J. Pullman 1931-1999.

Abstract

We determine, for all $n>0$, the set $C(n)=\{k$: there exists a triangle-free k-regular graph on n vertices containing a cut vertex $\}$.

1 Introduction

In a recent paper [3] the authors determined all values $c(n)=\max \{k$: there exists a triangle-free k-regular graph on n vertices containing a cut vertex $\}$. We will make use of the extremal graphs constructed in that paper to determine the complete spectrum $C(n)=\{k$: there exists a triangle-free k-regular graph on n vertices containing a cut vertex $\}$.

We refer the reader to [1] for standard definitions and notations. The degree of a vertex x in the graph G, denoted $\operatorname{deg}_{G}(x)$, is the number of vertices in G to which x is adjacent. A graph G is called k-regular if $\operatorname{deg}_{G}(x)=k$ for all vertices x in G. A graph G will be called almost k-regular if one vertex (called the special vertex) in G has degree $k-2$ and every other vertex in G has degree k. A k-factor in a graph G is a subgraph of G each of whose vertices has degree k, while a near- k-factor is a subgraph of G in which all but one vertex has degree k with the remaining vertex having degree 0 (i.e. is isolated). Note that an almost 2-regular graph is equivalent to a near-2-factor.

The following theorem of Petersen is well-known.

Theorem 1.1

Every $2 t$-regular graph has a 2 -factor.
A k-factorization of a graph G is an edge-decomposition of G into k-factors. Thus the following is an immediate consequence of Theorem 1.1.

Corollary 1.2 (Petersen)

Every $2 t$-regular graph has a 2 -factorization.
The classification of which k-regular graphs (on an even number of vertices) have one-factorizations is a very difficult open problem. The well-known OneFactorization Conjecture, for example, asserts that the largest k for which there exists a k-regular graph of order $2 m$ without a one-factorization is $F(2 m)=2\left\lfloor\frac{m-1}{2}\right\rfloor$; we refer the reader to [2] for further discussion. In fact, one of the motivations for [3] was to determine a lower bound on the quantity $f(2 m)$, which denotes the largest k for which a triangle-free k-regular graph of order $2 m$ without a one-factorization exists. (Note that regular graph with a cut-vertex cannot be one-factorizable, whence $f(2 m) \geq c(2 m)$.) As a consequence of Theorem 1.5 (see ahead) it was determined that $f(2 m) \geq \alpha(2 m)=\left\lfloor\frac{4}{9}(m-1)\right\rfloor+1$ if $m=7,12,16$ or 21 , and $f(2 m) \geq\left\lfloor\frac{4}{9}(m-1)\right\rfloor$ for all other $m \geq 8$. Of course $f(2 m)$ is bounded above by the largest k for which there exists a k-regular graph on $2 m$ vertices with odd girth $\gamma \geq 5$; i.e. $f(2 m) \leq 5$ if $m=7, f(2 m) \leq 9$ if $m=12$, and $f(2 m) \leq 2\left\lfloor\frac{2 m}{5}\right\rfloor$ for all other $m \geq 8$ (see Shi [4]).

Let $t^{\prime}(n)$ denote the largest k for which there exists a triangle-free almost k-regular graph on n vertices. Let $S=\{8,11,14,15,18,21,24\}$ and define

$$
a(n)= \begin{cases}4 & \text { if } n=9 \\ \left\lfloor\frac{2 n-4}{5}\right\rfloor+1 & \text { if } n \in S, \\ \left\lfloor\left\lfloor\frac{2 n-4}{5}\right\rfloor-1\right. & \text { if } n \equiv 1 \text { or } 5 \bmod 10 \text { and } n \notin S, \\ \left\lfloor\frac{2 n-4}{5}\right\rfloor & \text { for all other } n \geq 10 .\end{cases}
$$

The following result was determined in [3]:

Theorem 1.3

$t^{\prime}(n)=a(n)$ for all $n \geq 8$. Moreover, $t^{\prime}(n)$ does not exist if $n=1,2,3,4$, and $t^{\prime}(5)=t^{\prime}(6)=t^{\prime}(7)=2$.

We will begin by determining, in Section 2, the spectrum $T^{\prime}(n)=\{k$: there exists a triangle-free almost k-regular graph on n vertices $\}$:

Theorem 1.4

(i) For odd $n \geq 5, T^{\prime}(n)=\left\{k: k\right.$ even and $\left.2 \leq k \leq t^{\prime}(n)\right\}$.
(ii) For even $n \geq 6, T^{\prime}(n)=\left\{k: 2 \leq k \leq t^{\prime}(n)\right\}$.

In Section 3, we then use the almost k-regular graphs constructed in Section 2 to determine the spectrum $C(n)$, using a construction from [3]. Let

$$
\alpha(n)= \begin{cases}\left\lfloor\frac{2 n-4}{9}\right\rfloor+1 & \text { if } n \in\{14,24,32,42\}, \\ \left\lfloor\frac{2 n-4}{9}\right\rfloor_{e}+2 & \text { if } n \in\{17,19,27,37\} \\ \left\lfloor\frac{2 n-4}{9}\right\rfloor & \text { for all other even } n \geq 16, \\ \left\lfloor\frac{2 n-4}{9}\right\rfloor_{e} & \text { for all other odd } n \geq 21\end{cases}
$$

where $\lfloor x\rfloor_{e}$ denotes the largest even integer not exceeding x. The following is the main result from [3].

Theorem 1.5

$c(n)=\alpha(n)$ for all $n \geq 16$. Moreover, $c(14)=\alpha(14)=3$ while $c(n)$ does not exist if $n \leq 13$ or if $n=15$.

Corollary 1.6

If G is a connected k-regular triangle-free graph on n vertices with $k>3$ when $n=14$, or $k>\alpha(n)$ when $n \geq 16$, then G is 2 -connected.

Now Theorem 1.5 implies that $C(n)=\emptyset$ if $n \leq 13$ or if $n=15$. In Section 3 we will obtain the following main result.

Theorem 1.7

(i) For odd $n \geq 17, C(n)=\{k: 4 \leq k \leq c(n)$ and k even $\}$.
(ii) For even $n \geq 14, C(n)=\{k: 3 \leq k \leq c(n)\}$.

In all of the cases in Theorem 1.4 we will use as a starting point the (extremal) almost $t^{\prime}(n)$-regular graphs from [3], removing one-factors and/or two-factors as needed. Throughout we rely heavily on Petersen's Theorem.

2 The spectrum of triangle-free almost k-regular graphs.

In this section we determine $T^{\prime}(n)$ for all $n \geq 5$. We first obtain the following preliminary result.

Theorem 2.1

Let k be an even integer. Then every almost k-regular graph G has a near 2-factor whose isolated vertex is the special vertex in G.

Proof

Let G be an almost k-regular graph $(k \geq 2)$ with special vertex x. Let H be any k-regular graph with $V(G) \cap V(H)=\emptyset$. Let $\{a, b\}$ be an edge in H. Form a graph J whose vertex set is $V(J)=V(G) \cup V(H)$ and whose edge set is $E(J)=$ $((E(G) \cup E(H)) \backslash\{\{a, b\}\}) \cup\{\{x, a\},\{x, b\}\}$. Then J is a k-regular graph and since k is even, J has a 2 -factorization (Corollary 1.2). Let F be a 2 -factor in J containing the edge $\{x, a\}$; then it is clear that F also contains the edge $\{x, b\}$, since x is a cut-vertex in J. Then the restriction of F to the vertices $V(G)-\{x\}$ is the near 2-factor in G whose isolated vertex is x, as desired.

Theorem 1.4(i) now follows immediately:

Lemma 2.2

For all odd $n \geq 5, T^{\prime}(n)=\left\{k: k\right.$ even and $\left.2 \leq k \leq t^{\prime}(n)\right\}$.

Proof

Let $n \geq 5$ be odd and let G be an almost $t^{\prime}(n)$-regular triangle-free graph on n vertices (e.g. from [3]). Let k be even, $2 \leq k \leq t^{\prime}(n)$. By Theorem 2.1, G has a near 2 -factor F whose isolated vertex is the special vertex in G. Removing the edges of F from G yields a $\left(t^{\prime}(n)-2\right)$-regular graph H on n vertices. Since $t^{\prime}(n)$ is even, $t^{\prime}(n)-2$ is even and so H has a 2-factorization (Corollary 1.2). Therefore, we can remove $\left(t^{\prime}(n)-k\right) / 2$ edge-disjoint 2-factors from H to obtain a $(k-2)$-regular graph H^{\prime}, and then replace the edges of F to obtain a graph G^{\prime} on n vertices (that is, $V\left(G^{\prime}\right)=V\left(H^{\prime}\right)$ and $E\left(G^{\prime}\right)=E\left(H^{\prime}\right) \cup F$) which is almost k-regular (its special vertex is the same as that of G) and triangle-free (G^{\prime} is a subgraph of G). Hence $k \in T^{\prime}(n)$, and the result follows.

Now when n is even, an almost k-regular graph can have k odd (or even). We summarize our strategy in this case in the following observation.

Lemma 2.3

Let n be an even integer, $n \geq 6$, and let G be an almost $t^{\prime}(n)$-regular triangle-free graph on n vertices (e.g. from [3]).
(i) If $t^{\prime}(n)$ is odd and G contains a one-factor, then $T^{\prime}(n)=\left\{k: 2 \leq k \leq t^{\prime}(n)\right\}$.
(ii) If $t^{\prime}(n)$ is even and G contains two edge-disjoint one-factors, then $T^{\prime}(n)=\{k$: $\left.2 \leq k \leq t^{\prime}(n)\right\}$.

Proof

(i) Let F_{1} be a one-factor in G. By Theorem 2.1, the graph obtained by removing the edges of F_{1} from G has a near 2-factor F_{2} whose isolated vertex is the special vertex in G. Removing also from G the edges of F_{2} yields a $\left(t^{\prime}(n)-3\right)$ regular graph H on n vertices. Since $t^{\prime}(n)$ is odd, $t^{\prime}(n)-3$ is even and so by Corollary 1.2 H has a 2 -factorization. Now remove $\left(t^{\prime}(n)-k\right) / 2$ (if k is odd) or $\left(t^{\prime}(n)-k-1\right) / 2$ (if k is even) edge-disjoint 2 -factors from H. In the former case we obtain a $(k-3)$-regular graph H^{\prime}, to which we add the edges of $F_{1} \cup F_{2}$ to yield an almost k-regular triangle-free graph G^{\prime} on n vertices, while in the latter case we obtain a $(k-2)$-regular graph $H^{\prime \prime}$, to which we add the edges of F_{2} to yield an almost k-regular triangle-free graph $G^{\prime \prime}$ on n vertices. In either case we have $k \in T^{\prime}(n)$, and the result follows.
(ii) Let F_{1} and F_{1}^{\prime} be edge-disjoint one-factors in G. By Theorem 2.1, the graph obtained by removing the edges of $F_{1} \cup F_{1}^{\prime}$ from G has a near 2-factor F_{2} whose isolated vertex is the special vertex in G. Removing also from G the edges of F_{2}
yields a $\left(t^{\prime}(n)-4\right)$-regular graph H on n vertices which, since $t^{\prime}(n)$ is even, has a 2-factorization (Corollary 1.2). We may assume that $k<t^{\prime}(n)$. Now remove $\left(t^{\prime}(n)-k-2\right) / 2$ (if k is even) or $\left(t^{\prime}(n)-k-1\right) / 2$ (if k is odd) edge-disjoint 2 -factors from H. In the former case we obtain a $(k-2)$-regular graph H^{\prime}, to which we add the edges of F_{2} to yield an almost k-regular triangle-free graph G^{\prime} on n vertices, while in the latter case we obtain a $(k-3)$-regular graph $H^{\prime \prime}$, to which we add the edges of $F_{1} \cup F_{2}$ to yield an almost k-regular triangle-free graph $G^{\prime \prime}$ on n vertices. Again in either case, we have $k \in T^{\prime}(n)$, and the result follows.

Thus we will now proceed to show that for each even integer $n>6$ there is an almost $t^{\prime}(n)$-regular triangle-free graph on n vertices which has a one-factor (if $t^{\prime}(n)$ is odd) or two edge-disjoint one-factors (if $t^{\prime}(n)$ is even). In fact we will show that in each case the almost $t^{\prime}(n)$-regular graphs from [3] have this property. (Note that the case $n=6$ is trivial, as clearly $T^{\prime}(6)=\{2\}$.) To do this we must first reconstruct from [3] all of the almost $t^{\prime}(n)$-regular triangle-free graphs on an even number $n>6$ of vertices. For the sake of brevity we will henceforth adopt the notation (k, n)-graph (from [3]) to denote an almost k-regular triangle-free graph on n vertices.

There are three categories of these graphs:
(C1) $n \equiv 0$ or $6 \bmod 10, n \geq 10$.
Let H be the $2 m$-regular graph of order n shown in Figure 1 of the Appendix. Select a vertex $b_{i} \in B_{i}$ for $i=0,1,2$. Let H^{\prime} be the subgraph of H obtained by deleting the vertices b_{0} and b_{2}, and let M be a one-factor in H^{\prime}. Then the graph G obtained from H by deleting the set of edges $M \cup\left\{\left\{b_{0}, b_{1}\right\},\left\{b_{1}, b_{2}\right\}\right\}$ is a $\left(t^{\prime}(n), n\right)$-graph (with special vertex $x=b_{1}$). Note that in all of these cases $t^{\prime}(n)$ is odd.
(C2) $n \in\{8,14,18,24\}$.
The four $\left(t^{\prime}(n), n\right)$-graphs are given in Figure 2 of the Appendix. Note that in all of these cases $t^{\prime}(n)$ is odd.
(C3) $n \equiv 2,4$ or $8 \bmod 10, n \geq 12$ and $n \notin\{14,18,24\}$.
These graphs are given in Figure 3 of the Appendix. Note that in all of these cases $t^{\prime}(n)$ is even.

Lemma 2.4

Each of the graphs in categories (C1) and (C2), as defined above, has a one-factor.

Proof

For a one-factor in each graph in category (C2), see Figure 4 of the Appendix.
For $n=10,16$, a one-factor in the $(3,10)$ and $(5,16)$-graphs is given in Figure 5 of the Appendix. In each case the solid lines indicate the edges in the one-factor,
while the dotted lines indicate the edges of $M \cup\left\{\left\{b_{0}, b_{1}\right\},\left\{b_{1}, b_{2}\right\}\right\}$ (see the foregoing construction for the graphs in this category). For $n \equiv 0 \bmod 10, n \geq 20$, a one-factor in the $\left(t^{\prime}(n), n\right)$-graph can be obtained by adjoining $\frac{1}{10}(n-10)$ vertex-disjoint copies of \mathcal{A} to the one-factor in the $(3,10)$-graph, while for $n \equiv 6 \bmod 10, n \geq 26$, a onefactor in the $\left(t^{\prime}(n), n\right)$-graph can be obtained by adjoining $\frac{1}{10}(n-16)$ vertex-disjoint copies of \mathcal{A} to the one-factor in the (5,16)-graph. In the graph \mathcal{A} (also in Figure 5), the solid lines indicate the edges in the one-factor, while the dotted lines indicate the edges of M.

Lemma 2.5

Each of the graphs in category (C3) has two edge-disjoint one-factors.

Proof

In each case we will construct a 2 -factor which is composed of even length cycles.
For $n=12$, a 2 -factor in the (4,12)-graph is given in Figure 6 of the Appendix. Now for $n \equiv 2 \bmod 10, n \geq 22$, a 2 -factor in the $\left(t^{\prime}(n), n\right)$-graph can be obtained by adjoining $\frac{1}{10}(n-12)$ vertex-disjoint copies of \mathcal{B} (also in Figure 6) to the 2-factor in the $(4,12)$-graph.

For $n=28$, a 2 -factor in the $(10,28)$-graph can be obtained by adjoining a copy of \mathcal{B} to the 2 -factor in the (non-extremal) $(6,18)$-graph given in Figure 6. Similarly, for $n=34$ a 2 -factor in the (12,34)-graph can be obtained by adjoining two vertexdisjoint copies of \mathcal{B} to the 2 -factor in the (non-extremal) (4,14)-graph given in Figure 6. (Note that these non-extremal $(6,18)$ - and $(4,14)$-graphs are obtained from Figure 3 with $m=3$ and 2 , respectively.) Then for $n \equiv 4$ or $8 \bmod 10, n \geq 38$, a 2 factor in the $\left(t^{\prime}(n), n\right)$-graph can be obtained by adjoining an appropriate number of vertex-disjoint copies of \mathcal{B} to the 2 -factor in the (12,34)-graph or the (10,28)-graph, respectively.

Theorem 1.4(ii) now follows from Lemmas 2.3, 2.4 and 2.5:

Lemma 2.6

For all even $n \geq 6, T^{\prime}(n)=\left\{k: 2 \leq k \leq t^{\prime}(n)\right\}$.

3 The spectrum $C(n)$

In this section we will determine $C(n)$ for all $n \geq 14, n \neq 15(C(15)=\emptyset$, see Theorem 1.5). Following [3] we define

$$
m= \begin{cases}\left\lceil\frac{5 \alpha(n)}{}\right\rceil_{e} & \text { if } n \in\{24,32,42\} \\ \left\lceil\frac{5 \alpha(n)}{2^{2}}\right\rceil_{e}+2 & \text { for all other even } n \geq 16 \\ \left\lceil\frac{5 \alpha^{(n)}}{}\right\rceil_{0} & \text { if } n \in\{19,27,37\}, \text { or } 9 \text { if } n=17 \\ \left\lceil\frac{5 \alpha(n)}{2}\right\rceil_{0}+2 & \text { for all other odd } n \geq 21\end{cases}
$$

where $\alpha(n)$ is as defined in Section 1 and $\lceil x\rceil_{e}$ (resp. $\lceil x\rceil_{0}$) denotes the smallest even (resp. odd) integer not less than x.

Lemma 3.1

For each odd integer $n \geq 17, C(n)=\{k: 4 \leq k \leq c(n)$ and k even $\}$.

Proof

Let k be even, $4 \leq k \leq c(n)$. It is straightforward to verify that $n-m \geq 2 \alpha(n)=$ $2 c(n)$ (Theorem 1.5) $\geq 2 k$. Since $n-m$ is even we can construct a k-regular bipartite graph G_{1} of order $n-m$. On the other hand, it is again straightforward to verify that $t^{\prime}(m)=\alpha(n)=c(n)$ for every odd $n \geq 17$. Hence since k is even and $4 \leq k \leq t^{\prime}(m)$ we can construct an almost k-regular triangle-free graph G_{2} of order m, with special vertex x, such that $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\emptyset$, see Lemma 2.2. Now select two adjacent vertices a and b in G_{1}. We then obtain a k-regular graph on $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ by deleting the edge $\{a, b\}$ and adding the new edges $\{x, a\}$ and $\{x, b\}$. This k-regular graph on n vertices is triangle-free and, since $k \geq 4$, has x as a cut-vertex. Hence $k \in C(n)$, and the result follows.

Lemma 3.2

For each even integer $n \geq 14, C(n)=\{k: 3 \leq k \leq c(n)\}$.

Proof

For $n=14$ we have $c(n)=3$ (Theorem 1.5) and so clearly $C(14)=\{3\}$. Suppose now that $n \geq 16$ and that $3 \leq k \leq c(n)$. As with the proof of Lemma 3.1 we have $n-m \geq 2 \alpha(n)=2 c(n) \geq 2 k$ and so, since $n-m$ is even, we can construct a k-regular bipartite graph G_{1} of order $n-m$. Again as with the proof of Lemma 3.1 we have $t^{\prime}(m)=\alpha(n)=c(n)$ for all even $n \geq 16$, except that $t^{\prime}(18)=7=$ $\alpha(30)+1=c(30)+1$. In any case since $3 \leq k \leq c(n) \leq t^{\prime}(m)$ we can construct an almost k-regular triangle-free graph G_{2} of order m, with special vertex x, such that $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\emptyset$, see Lemma 2.6. Now proceed exactly as in the proof of Lemma 3.1 to obtain a k-regular graph on the n vertices $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ which is triangle-free and, since $k \geq 3$, has x as a cut-vertex. Hence $k \in C(n)$, and the result follows.

4 Conclusion

As mentioned in the introduction, part of the motivation for the determination of $c(n)$ in [3] was to determine a lower bound on $f(2 m)$. Let $T F(2 m)$ denote the spectrum
$\{k$: there exists a k-regular triangle-free graph on $2 m$ vertices that does not have a one-factorization $\}$. Then $C(2 m) \subseteq T F(2 m)$; furthermore, $2 \in T F(2 m)$ for all $m \geq 5$ (just take the union of a pair of vertex-disjoint odd cycles, each of length larger than 3). Hence from Theorem 1.7(ii) we have $\{k: 2 \leq k \leq c(2 m)\} \subseteq T F(2 m)$ for all $m \geq 7$. This interval covers a little more than the bottom half of the possible spectrum for $T F(2 m)$.

Acknowledgements

Some of this work was carried out while the author was visiting Utah State University. The author wishes to thank this institution for its hospitality.

REFERENCES

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, The MacMillan Press, London (1977).
[2] A.G. Chetwynd and A.J.W. Hilton, 1-factorizing regular graphs of high degree - an improved bound, Discrete Math. 75 (1989) 103-112.
[3] R.S. Rees and G.-H. Zhang, Extremal triangle-free regular graphs containing a cut vertex, J. Combin. Math. Combin. Computing, to appear.
[4] Shi, Rong Hua, Smallest regular graphs with girth pair (4,5), J. Systems Sci. Math. Sci. 5 (1985) No. 1, 34-42.

Appendix

The following notations apply only to Figures 1 to 3 . A solid circle (i.e. a dot) denotes a single vertex, while a hollow circle with the number t inside denotes an independent set of t vertices. A solid line between two circles indicates the prescence of all possible edges between the corresponding sets of vertices; a dotted line indicates the prescence of all possible edges except those of a one-factor between the corresponding sets of vertices, while two dotted lines indicate the prescence of all edges except those of two disjoint one-factors.

$n=5 m$

$n=5 m+1$

Figure 1

Figure 2

Figure 3

$(7,18)$

$(9,24)$

Figure 4

$(3,10)$

\mathcal{A}

Figure 5

Figure 6
(Received 8/6/2001)

