Cycles through a given arc in certain almost regular multipartite tournaments

Lutz Volkmann
Lehrstuhl II für Mathematik
RWTH Aachen
52056 Aachen, Germany
volkm@math2.rwth-aachen.de

Abstract

If x is a vertex of a digraph D, then we denote by $d^{+}(x)$ and $d^{-}(x)$ the outdegree and the indegree of x, respectively. The global irregularity of a digraph D is defined by $i_{g}(D)=\max \left\{d^{+}(x), d^{-}(x)\right\}-\min \left\{d^{+}(y), d^{-}(y)\right\}$ over all vertices x and y of D (including $x=y$). If $i_{g}(D)=0$, then D is regular and if $i_{g}(D) \leq 1$, then D is almost regular.

A c-partite tournament is an orientation of a complete c-partite graph. In 1998, Y. Guo showed, if every arc of a regular c-partite tournament is contained in a directed cycle of length three, then every arc belongs to a directed cycle of length n for each $n \in\{4,5, \ldots, c\}$. In this paper we present the following generalization of Guo's result for $n \geq 6$.

Let $V_{1}, V_{2}, \ldots, V_{c}$ be the partite sets of an almost regular c-partite tournament. If $c \geq 6$ and $\left|V_{1}\right|=\left|V_{2}\right|=\ldots=\left|V_{c}\right| \geq 2$, then every arc of D is contained in a directed cycle of length n for each $n \in\{4,5, \ldots, c\}$.

1. Terminology and introduction

In this paper all digraphs are finite without loops or multiple arcs. The vertex set and arc set of a digraph D is denoted by $V(D)$ and $E(D)$, respectively. If $x y$ is an arc of a digraph D, then we write $x \rightarrow y$ and say x dominates y, and if X and Y are two disjoint vertex sets or subdigraphs of D such that every vertex of X dominates every vertex of Y, then we say that X dominates Y, denoted by $X \rightarrow Y$. Furthermore, $X \leadsto Y$ denotes the fact that there is no arc leading from Y to X. For the number of arcs from X to Y we write $d(X, Y)$. If D is a digraph, then the out-neighborhood $N_{D}^{+}(x)=N^{+}(x)$ of a vertex x is the set of vertices dominated by x, and the in-neighborhood $N_{D}^{-}(x)=N^{-}(x)$ is the set of vertices dominating x. The numbers $d_{D}^{+}(x)=d^{+}(x)=\left|N^{+}(x)\right|$ and $d_{D}^{-}(x)=d^{-}(x)=\left|N^{-}(x)\right|$ are called the outdegree and indegree of x, respectively. For a vertex set X of D, we define $D[X]$ as
the subdigraph induced by X. If we speak of a cycle, then we mean a directed cycle, and a cycle of length m is called an m-cycle. If we replace in a digraph D every arc $x y$ by $y x$, then we call the resulting digraph the converse of D, denoted by D^{-1}.

There are several measures of how much a digraph differs from being regular. In [7], Yeo defines the global irregularity of a digraph D by

$$
i_{g}(D)=\max \left\{d^{+}(x), d^{-}(x)\right\}-\min \left\{d^{+}(y), d^{-}(y)\right\}
$$

over all vertices x and y of D (including $x=y$). If $i_{g}(D)=0$, then D is regular and if $i_{g}(D) \leq 1$, then D is called almost regular.

A c-partite or multipartite tournament is an orientation of a complete c-partite graph. A tournament is a c-partite tournament with exactly c vertices. If $V_{1}, V_{2}, \ldots, V_{c}$ are the partite sets of a c-partite tournament D and the vertex x of D belongs to the partite set V_{i}, then we define $V(x)=V_{i}$.

It is very easy to see that every arc of a regular tournament belongs to a 3-cycle. The next example shows that this is not valid for regular multipartite tournaments in general.

Example 1.1 Let C, C^{\prime} and $C^{\prime \prime}$ be three induced cycles of length 4 such that $C \rightarrow C^{\prime} \rightarrow C^{\prime \prime} \rightarrow C$. The resulting 6-partite tournament D_{1} is 5 -regular, but no arc of the three cycles C, C^{\prime}, and $C^{\prime \prime}$ is contained in a 3 -cycle.

Let H, H_{1}, and H_{2} be three copies of D_{1} such that that $H \rightarrow H_{1} \rightarrow H_{2} \rightarrow H$. The resulting 18 -partite partite tournament is 17 -regular, but no arc of the cycles corresponding to the cycles C, C^{\prime}, and $C^{\prime \prime}$ is contained in a 3 -cycle.

If we continue this process, we arrive at regular c-partite tournaments with arbitrary large c which contain arcs that do not belong to any 3-cycle.

However, recently the author [5] showed that every arc of a regular c-partite tournament belongs to a 4 -cycle, when $c \geq 6$. We even proved the following more general result.

Theorem 1.2 (Volkmann [5]) Let $V_{1}, V_{2}, \ldots, V_{c}$ be the partite sets of an almost regular c-partite tournament D. If $\left|V_{1}\right|=\left|V_{2}\right|=\ldots=\left|V_{c}\right|=r$ and $c \geq 6$, then every arc of D is contained in a 4 -cycle.

The condition $c \geq 6$ in Theorem 1.2 is in the following sense best possible. There exist 4- and 5-partite regular tournaments with $r \geq 2$ which contain arcs that do not belong to any 4 -cycle.

In 1998, Y. Guo [2] proved the following generalization of Alspach's classical result [1] that every regular tournament is arc pancyclic.

Theorem 1.3 (Guo [2]) Let D be a regular c-partite tournament with $c \geq 3$. If every arc of D is contained in a 3 -cycle, then every arc of D is contained in an
n-cycle for each $n \in\{4,5, \ldots, c\}$.
Using Theorem 1.2 as the basis of induction, we present in this paper the following generalization of Theorem 1.3 for $c \geq 6$. If D is an almost regular c-partite tournament with the partite sets $V_{1}, V_{2}, \ldots, V_{c}$ such that $\left|V_{1}\right|=\left|V_{2}\right|=\ldots=\left|V_{c}\right| \geq 2$ and $c \geq 6$, then every arc of D is contained in an n-cycle for each $n \in\{4,5, \ldots, c\}$. This result is also a supplement to a theorem of Jacobson [3], which states that in an almost regular tournament with $c \geq 7$ vertices, every arc is contained in an n-cycle for each $n \in\{4,5, \ldots, c\}$.

2. Main results

If D is a regular c-partite tournament with the partite sets $V_{1}, V_{2}, \ldots, V_{c}$, then $\left|V_{1}\right|=\left|V_{2}\right|=\ldots=\left|V_{c}\right|=|V(D)| / c=r$ and $d^{+}(x)=d^{-}(x)=r(c-1) / 2$ for every vertex x of D. The next lemma is immediate.

Lemma 2.1 If D is an almost regular c-partite tournament with the partite sets $V_{1}, V_{2}, \ldots, V_{c}$ such that $\left|V_{1}\right|=\left|V_{2}\right|=\ldots=\left|V_{c}\right|=r$, then

$$
\frac{(c-1) r-1}{2} \leq d^{+}(x), d^{-}(x) \leq \frac{(c-1) r+1}{2}
$$

for every vertex x of D.
It may be noted that an almost regular c-partite tournament with the partite sets $V_{1}, V_{2}, \ldots, V_{c}$ such that $\left|V_{1}\right|=\left|V_{2}\right|=\ldots=\left|V_{c}\right|=r$ is regular if and only if c is odd or c and r are even.

Theorem 2.2 Let D be an almost regular c-partite tournament with the partite sets $V_{1}, V_{2}, \ldots, V_{c}$ such that $\left|V_{1}\right|=\left|V_{2}\right|=\ldots=\left|V_{c}\right|=r \geq 2$. If $c \geq 6$, then every arc of D is contained in an n-cycle for each $n \in\{4,5, \ldots, c\}$.

Proof. We prove the theorem by induction on n. For $n=4$ the result follows from Theorems 1.2. Now let e be an arbitrary arc of D and assume that e is contained in an n-cycle $C=a_{n} a_{1} a_{2} \ldots a_{n-1} a_{n}$ with $e=a_{n} a_{1}$ and $4 \leq n<c$. Suppose that $e=a_{n} a_{1}$ is not contained in any $(n+1)$-cycle.

Firstly, we observe that $N^{+}(v)-V(C) \neq \emptyset$ for each $v \in V(C)=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, because otherwise Lemma 2.1 yields the contradiction

$$
n=|V(C)| \geq d^{+}(v)+2 \geq \frac{(c-1) r-1}{2}+2>c
$$

Analogously, one can show that $N^{-}(v)-V(C) \neq \emptyset$ for each $v \in V(C)$.
Next let S be the set of vertices that belong to partite sets not represented on C and define

$$
X=\{x \in S \mid C \rightarrow x\}, \quad Y=\{y \in S \mid y \rightarrow C\} .
$$

Assume that $X \neq \emptyset$ and let $x \in X$. If there is a vertex $w \in N^{-}\left(a_{n}\right)-V(C)$ such that $x \rightarrow w$, then $a_{n} a_{1} a_{2} \ldots a_{n-2} x w a_{n}$ is an $(n+1)$-cycle through $a_{n} a_{1}$, a contradiction. If $\left(N^{-}\left(a_{n}\right)-V(C)\right) \rightarrow x$, then $\left|N^{-}(x)\right| \geq\left|N^{-}\left(a_{n}\right)-V(C)\right|+|V(C)| \geq\left|N^{-}\left(a_{n}\right)\right|+2$, a contradiction to the hypothesis that $i_{g}(D) \leq 1$. If there exists a vertex $b \in$ $\left(N^{-}\left(a_{n}\right)-V(C)\right)$ such that $V(b)=V(x)$, then b is adjacent with all vertices of C. In the case that $N^{-}(b) \cap V(C) \neq \emptyset$, let $k=\max _{1 \leq i \leq n-1}\left\{i \mid a_{i} \rightarrow b\right\}$. Then $a_{n} a_{1} \ldots a_{k} b a_{k+1} \ldots a_{n}$ is an $(n+1)$-cycle through $a_{n} a_{1}$, a contradiction. It remains the case that $N^{-}(b) \cap V(C)=\emptyset$. If there is a vertex $u \in\left(N^{-}(b)-V(C)\right)=N^{-}(b)$ such that $x \rightarrow u$, then $a_{n} a_{1} a_{2} \ldots a_{n-3} x u b a_{n}$ is an $(n+1)$-cycle through $a_{n} a_{1}$, a contradiction. Otherwise, $N^{-}(b) \rightarrow x$, and we arrive at the contradiction $d^{-}(x) \geq$ $d^{-}(b)+|V(C)|$. Altogether, we have seen that $X \neq \emptyset$ is not possible, and analogously we find that $Y \neq \emptyset$ is impossible. Consequently, from now on we shall assume that $X=Y=\emptyset$.

By the definition of S, every vertex of $V(C)$ is adjacent to every vertex of S, and from our assumption $n<c$, we deduce that $S \neq \emptyset$. Now we distinguish different cases.

Case 1. There exists a vertex $v \in S$ with $v \rightarrow a_{n}$. Since $Y=\emptyset$, there is a vertex $a_{i} \in V(C)$ such that $a_{i} \rightarrow v$. If $k=\max _{1 \leq i \leq n-1}\left\{i \mid a_{i} \rightarrow v\right\}$, then $a_{n} a_{1} \ldots a_{k} v a_{k+1} \ldots a_{n}$ is an $(n+1)$-cycle through $a_{n} a_{1}$, a contradiction. This implies $a_{n} \rightarrow S$.

Case 2. There exists a vertex $v \in S$ with $a_{1} \rightarrow v$. Since $X=\emptyset$, there is a vertex $a_{i} \in V(C)$ such that $v \rightarrow a_{i}$. If $k=\min _{2 \leq i \leq n-1}\left\{i \mid v \rightarrow a_{i}\right\}$, then $a_{n} a_{1} \ldots a_{k-1} v a_{k} \ldots a_{n}$ is an $(n+1)$-cycle through $a_{n} a_{1}$, a contradiction. This implies $S \rightarrow a_{1}$.

Case 3. There exists a vertex $v \in S$ such that $v \rightarrow a_{n-1}$. If there is a vertex $a_{i} \in V(C)$ with $2 \leq i \leq n-2$ such that $a_{i} \rightarrow v$, then we obtain as above an $(n+1)$-cycle through $a_{n} a_{1}$, a contradiction. Thus, we investigate now the case that $v \rightarrow\left\{a_{1}, a_{2}, \ldots, a_{n-1}\right\}$. Because of $S \rightarrow a_{1}$, we note that every vertex of $N^{+}\left(a_{1}\right)$ is adjacent to v. If there is a vertex $x \in\left(N^{+}\left(a_{1}\right)-V(C)\right)$ such that $x \rightarrow v$, then $a_{n} a_{1} x v a_{3} a_{4} \ldots a_{n}$ is an $(n+1)$-cycle through $a_{n} a_{1}$, a contradiction. Therefore we assume now that $v \rightarrow\left(N^{+}\left(a_{1}\right)-V(C)\right)$. This leads to $d^{+}(v) \geq d^{+}\left(a_{1}\right)+1$, and thus, because of $i_{g}(D) \leq 1$, it follows that $N^{+}(v)=N^{+}\left(a_{1}\right) \cup\left\{a_{1}\right\}$ and $a_{1} \rightarrow$ $\left\{a_{2}, a_{3}, \ldots, a_{n-1}\right\}$. This is a contradiction, when D is regular.

It remains the case that D is not regular, and thus c even and $r \geq 3$ odd. Now let $H=N^{+}\left(a_{1}\right)-V(C), Q=N^{-}(v)-\left\{a_{n}\right\}$, and $R=V(D)-(H \cup Q \cup V(v) \cup V(C))$. With respect to Lemma 2.1, we see that

$$
|R| \leq c r-\left\{\frac{(c-1) r-1}{2}-(n-2)+\frac{(c-1) r-1}{2}-1+r+n\right\}=0 .
$$

If there is an arc $x a_{2}$ with $x \in H$, then $a_{n} a_{1} x a_{2} a_{3} \ldots a_{n}$ is an $(n+1)$-cycle through the $\operatorname{arc} a_{n} a_{1}$, a contradiction.

Subcase 3.1. Let $n \geq 5$. If there is an arc $x y$ with $x \in H$ and $y \in Q$, then $a_{n} a_{1} x y v a_{4} a_{5} \ldots a_{n}$ is an $(n+1)$-cycle, a contradiction. Consequently, it remains the case that $\left(Q \cup\left\{a_{1}, a_{2}, v\right\}\right) \leadsto H$. Hence, since $|R|=0$, for every $x \in H$, we conclude
that $d(x, V(D)-H) \leq r+n-3$ and thus, it follows from Lemma 2.1

$$
d_{D[H]}^{+}(x)=d^{+}(x)-d(x, V(D)-H) \geq \frac{(c-1) r-1}{2}-r-n+3
$$

This implies

$$
\begin{align*}
\frac{|H|(|H|-1)}{2} & \geq|E(D[H])|=\sum_{x \in H} d_{D[H]}^{+}(x) \\
& \geq|H|\left\{\frac{(c-1) r-1}{2}-r-n+3\right\} \tag{1}
\end{align*}
$$

The conditions $d^{+}(v) \geq d^{+}\left(a_{1}\right)+1, a_{1} \rightarrow\left\{a_{2}, a_{3}, \ldots, a_{n-1}\right\}$, and Lemma 2.1 yield $|H|=d^{+}\left(a_{1}\right)-(n-2)=\frac{(c-1) r-1}{2}-n+2$. Combining this with inequality (1), we obtain

$$
|H|-1=\frac{(c-1) r-1}{2}-n+1 \geq 2\left\{\frac{(c-1) r-1}{2}-r-n+3\right\}
$$

It is straightforward to verify that this inequality is equivalent with $2 n \geq(c-5) r+9$. Because of $c-1 \geq n$ and $r \geq 3$, this leads to the contradiction $c \leq 4$.

Subcase 3.2. Let $n=4$. Because of $a_{4} \rightarrow S$, it holds $S \cup\left\{a_{1}\right\} \subseteq N^{+}\left(a_{4}\right)$. This implies together with Lemma 2.1 that $\frac{(c-1) r+1}{2} \geq d^{+}\left(a_{4}\right) \geq|S|+1 \geq(c-4) r+1$, a contradiction, when $c \geq 7$. Therefore, it remains the case that $c=6$ and $r \geq 3$. Now let $F=N^{-}\left(a_{4}\right)-V(C)$ and $L=N^{+}\left(a_{3}\right)-V(C)$. If there is a vertex $w \in F \cap L$, then $a_{4} a_{1} a_{2} a_{3} w a_{4}$ is a 5 -cycle through $a_{4} a_{1}$, a contradiction. If there is an arc $x y$ with $x \in L$ and $y \in F$, then $a_{4} a_{1} a_{3} x y a_{4}$ is a 5 -cycle, a contradiction. Consequently, it remains the case that $F \cap L=\emptyset$ and $F \leadsto\left(L \cup\left\{a_{3}, a_{4}\right\}\right)$. According to Lemma 2.1, we obtain

$$
|L|=\left|N^{+}\left(a_{3}\right)\right|-1 \geq \frac{(c-1) r-1}{2}-1=\frac{5 r-3}{2}
$$

and thus it follows for every $x \in F$ that

$$
d(V(D)-F, x) \leq 6 r-|F|-|L|-2 \leq \frac{7 r}{2}-|F|-\frac{1}{2}
$$

This leads to

$$
d_{D[F]}^{-}(x)=d^{-}(x)-d(V(D)-F, x) \geq \frac{5 r-1}{2}-\frac{7 r}{2}+|F|+\frac{1}{2}=|F|-r
$$

for every $x \in F$. Hence, we conclude on the one hand that

$$
|E(D[F])|=\sum_{x \in F} d_{D[F]}^{-}(x) \geq|F|(|F|-r)
$$

On the other hand, since $F \cap S=\emptyset$, the subdigraph $D[F]$ is 3-partite, and the well known Theorem of Turán [4] yields

$$
|E(D[F])| \leq \frac{1}{3}|F|^{2}
$$

The last two inequalities imply $r \geq 2|F| / 3$. Since $|F|=\left|N^{-}\left(a_{4}\right)-V(C)\right| \geq d^{-}\left(a_{4}\right)-$ 2, we deduce from Lemma 2.1 that

$$
r \geq \frac{2|F|}{3} \geq \frac{2}{3}\left(\frac{5 r-1}{2}-2\right)=\frac{5 r}{3}-\frac{5}{3} .
$$

Therefore, $2 r \leq 5$, a contradiction to $r \geq 3$.
Summarizing the investigations of Case 3, we see that there remains the case that $a_{n-1} \rightarrow S$.

Case 4. There exists a vertex $v \in S$ such that $a_{2} \rightarrow v$. If we consider the converse of D, then analogously to Case 3 , it remains the case that $S \rightarrow a_{2}$.

If $C=a_{n} a_{1} a_{2} \ldots a_{n}$ and $v \in S$, then the following three sets play an important role in our investigations

$$
H=N^{+}\left(a_{1}\right)-V(C), \quad F=N^{-}\left(a_{n}\right)-V(C), \quad Q=N^{-}(v)-V(C)
$$

Summarizing the investigations in the Cases $1-4$, we can assume in the following, usually without saying so, that

$$
\begin{equation*}
\left\{a_{n-1}, a_{n}\right\} \rightarrow S \rightarrow\left\{a_{1}, a_{2}\right\} \sim H \tag{2}
\end{equation*}
$$

Case 5. Let $n=4$. Because of (2), we have $a_{4} \rightarrow S$, and thus $S \cup\left\{a_{1}\right\} \subseteq N^{+}\left(a_{4}\right)$. This implies together with Lemma $2.1 \frac{(c-1) r+1}{2} \geq d^{+}\left(a_{4}\right) \geq|S|+1$, a contradiction, when $c \geq 7$ or $|S| \geq 3 r$, when $c=6$. Therefore, it remains the case that $c=6$, $|S|=2 r, D[V(C)]$ is a tournament, and $D[S]$ is a bipartite tournament.

Subcase 5.1. Assume that $a_{2} \rightarrow a_{4}$. If $a_{1} \rightarrow a_{3}$ and $v \in S$, then $a_{4} a_{1} a_{3} v a_{2} a_{4}$ is a 5 -cycle through $a_{4} a_{1}$, a contradiction. Let now $a_{3} \rightarrow a_{1}$. If there are vertices $v \in S$ and $x \in H$ such that $x \rightarrow v$, then $a_{4} a_{1} x v a_{2} a_{4}$ is a 5 -cycle, a contradiction. Otherwise, we have $S \rightarrow H$. If we choose $v, w \in S$ such that $v \rightarrow w$, then $N^{+}\left(a_{1}\right)=H \cup\left\{a_{2}\right\}$ and $N^{+}(v) \supseteq H \cup\left\{a_{1}, a_{2}, w\right\}$, a contradiction to $i_{g}(D) \leq 1$.

Subcase 5.2. Assume that $a_{4} \rightarrow a_{2}$. Firstly, let $a_{1} \rightarrow a_{3}$. If there are vertices $v \in S$ and $x \in F=N^{-}\left(a_{4}\right)-V(C)$ such that $v \rightarrow x$, then $a_{4} a_{1} a_{3} v x a_{4}$ is a 5 -cycle, a contradiction. Otherwise, we have $F \rightarrow S$. If we choose $v, w \in S$ such that $v \rightarrow w$, then we see that $N^{-}\left(a_{4}\right)=F \cup\left\{a_{3}\right\}$ and $N^{-}(w) \supseteq F \cup\left\{a_{3}, a_{4}, v\right\}$, a contradiction to $i_{g}(D) \leq 1$. In the remaining case that $a_{3} \rightarrow a_{1}$, it follows from Lemma 2.1

$$
\begin{aligned}
6 r & =|V(D)| \geq|H|+|F|+|S|+|V(C)|-|H \cap F| \\
& \geq \frac{5 r-1}{2}-1+\frac{5 r-1}{2}-1+2 r+4-|H \cap F| \\
& =7 r+1-|H \cap F| .
\end{aligned}
$$

Consequently, $|H \cap F| \geq r+1$ and thus, $H \cap F$ consists of at least two partite sets. If we choose $u_{2}, u_{3} \in H \cap F$ such that $u_{2} \rightarrow u_{3}$, then $C^{\prime}=a_{4} a_{1} u_{2} u_{3} a_{4}$ is also a 4-cycle through $a_{4} a_{1}$. Since $u_{2} \rightarrow a_{4}$, the cycle C^{\prime} fulfills the conditions of Subcase 5.1, and we obtain similarly a contradiction.

Altogether, we have shown in the meantime that every arc of D belongs to a 5-cycle.

Case 6. Let $n \geq 5$ and assume that there exists a vertex $v \in S$ such that $v \rightarrow a_{n-2}$. If there is a vertex $a_{i} \in V(C)$ with $3 \leq i \leq n-3$ such that $a_{i} \rightarrow$ v, then we obtain, as in Case 1, an $(n+1)$-cycle through $a_{n} a_{1}$, a contradiction. Thus, we investigate now the case that $v \rightarrow\left\{a_{1}, a_{2}, \ldots, a_{n-2}\right\}$. If there is a vertex $x \in H$ such that $x \rightarrow v$, then $a_{n} a_{1} x v a_{3} a_{4} \ldots a_{n}$ is an $(n+1)$-cycle through $a_{n} a_{1}$, a contradiction. Therefore we assume now that $v \rightarrow H$. This leads to $d^{+}(v) \geq$ $d^{+}\left(a_{1}\right)$, and thus, because of $i_{g}(D) \leq 1$, it follows that $a_{1} \rightarrow\left\{a_{2}, a_{3}, \ldots, a_{n-1}\right\}$ or $a_{1} \rightarrow\left\{a_{2}, a_{3}, \ldots, a_{n-1}\right\}-\left\{a_{j}\right\}$ for some $a_{j} \in\left\{a_{3}, a_{4}, \ldots, a_{n-1}\right\}$ and $a_{j} \rightarrow a_{1}$ or $V\left(a_{1}\right)=V\left(a_{j}\right)$.

Subcase 6.1. Assume that $a_{1} \rightarrow\left\{a_{2}, a_{3}, \ldots, a_{n-1}\right\}$. If there is a vertex $x \in H$ such that $x \rightarrow a_{n}$, then $a_{n} a_{1} a_{3} a_{4} \ldots a_{n-1} v x a_{n}$ is an $(n+1)$-cycle, a contradiction. Therefore, we may assume now that $a_{n} \rightarrow\left(H-V\left(a_{n}\right)\right)$. If $a_{i-1} \rightarrow a_{n}$ for $3 \leq i \leq n-1$, then $a_{n} a_{1} a_{i} a_{i+1} \ldots a_{n-1} v a_{2} a_{3} \ldots a_{i-1} a_{n}$ is an $(n+1)$-cycle, a contradiction. Hence, it remains the case that $a_{n} \rightarrow a_{i-1}$ or $a_{i-1} \in V\left(a_{n}\right)$ for $2 \leq i \leq n-1$. Let $\left\{a_{1}, a_{2}, \ldots, a_{n-2}\right\}=A \cup B$ such that $a_{n} \rightarrow A$ and $B \subseteq V\left(a_{n}\right)$. Then $N^{+}\left(a_{1}\right)=$ $H \cup\left\{a_{2}, a_{3}, \ldots, a_{n-1}\right\}$ and $N^{+}\left(a_{n}\right) \supseteq A \cup S \cup\left(H-\left(V\left(a_{n}\right)-\left(B \cup\left\{a_{n}\right\}\right)\right)\right)$. This leads to

$$
\begin{equation*}
d^{+}\left(a_{n}\right) \geq|A|+|S|+|H|-(r-(|B|+1))=d^{+}\left(a_{1}\right)+|S|-r+1 . \tag{3}
\end{equation*}
$$

This yields a contradiction, when D is regular or $|S| \geq 2 r$. It remains the case that D is not regular and $|S|=r$, and thus $n=c-1, c$ even and $r \geq 3$ odd. Furthermore, we see that $B=\emptyset$ and so $a_{n} \rightarrow\left\{a_{1}, a_{2}, \ldots, a_{n-2}\right\}$. If we define $R=$ $V(D)-(H \cup F \cup S \cup V(C))$, then by Lemma 2.1, we find that

$$
|R| \leq c r-\left\{\frac{(c-1) r-1}{2}-(n-2)+\frac{(c-1) r-1}{2}-1+r+n\right\}=0 .
$$

If there is an $\operatorname{arc} x y$ with $x \in H$ and $y \in F$, then $a_{n} a_{1} a_{4} \ldots a_{n-1} v x y a_{n}$ is an $(n+1)$ cycle, a contradiction. Consequently, it remains the case that $\left(F \cup\left\{a_{1}, a_{2}, a_{n}, v\right\}\right) \leadsto$ H. Hence, since $|R|=0$, for every $x \in H$, we conclude that $d(x, V(D)-H) \leq r+c-5$ and thus, it follows from Lemma 2.1

$$
d_{D[H]}^{+}(x)=d^{+}(x)-d(x, V(D)-H) \geq \frac{(c-1) r-1}{2}-r-c+5
$$

This implies

$$
\begin{align*}
\frac{|H|(|H|-1)}{2} & \geq|E(D[H])|=\sum_{x \in H} d_{D[H]}^{+}(x) \\
& \geq|H|\left\{\frac{(c-1) r-1}{2}-r-c+5\right\} \tag{4}
\end{align*}
$$

According to (3), we have $d^{+}\left(a_{n}\right) \geq d^{+}\left(a_{1}\right)+1$ and thus, it follows from Lemma 2.1 that $|H|=d^{+}\left(a_{1}\right)-(n-2)=\frac{(c-1) r-1}{2}-c+3$. Combining this with inequality (4), we obtain

$$
|H|-1=\frac{(c-1) r-1}{2}-c+2 \geq 2\left\{\frac{(c-1) r-1}{2}-r-c+5\right\}
$$

The last inequality is equivalent with $2 c \geq(c-5) r+15$. Because of $r \geq 3$, this leads to the contradiction $2 c \geq 3 c$.

Subcase 6.2. Assume that there exists exactly one $j \in\left\{a_{3}, a_{4}, \ldots, a_{n-1}\right\}$ such that $a_{1} \rightarrow\left(\left\{a_{2}, a_{3}, \ldots, a_{n-1}\right\}-\left\{a_{j}\right\}\right)$ and $a_{j} \rightarrow a_{1}$ or $V\left(a_{j}\right)=V\left(a_{1}\right)$. This condition implies $d^{+}(v) \geq d^{+}\left(a_{1}\right)+1$. Therefore, it remains the case that D is not regular, c even and $r \geq 3$. If we define $R=V(D)-(H \cup Q \cup V(v) \cup V(C))$, then it follows from $Q=N^{-}(v)-\left\{a_{n-1}, a_{n}\right\}$ and Lemma 2.1

$$
|R| \leq c r-\left\{\frac{(c-1) r-1}{2}-(n-3)+\frac{(c-1) r-1}{2}-2+r+n\right\}=0
$$

Subcase 6.2.1. Let $n \geq 6$. If there is an arc $x y$ with $x \in H$ and $y \in Q$, then $a_{n} a_{1} x y v a_{4} a_{5} \ldots a_{n}$ is an $(n+1)$-cycle, a contradiction. Hence, it remains the case that $\left(Q \cup\left\{a_{1}, a_{2}, v\right\}\right) \leadsto H$. However, in this situation we obtain, analogously to Case 3, the contradiction $c \leq 6$.

Subcase 6.2.2. Let $n=5$ and assume that $a_{1} \rightarrow\left\{a_{2}, a_{3}\right\}$ and $a_{4} \rightarrow a_{1}$ or $V\left(a_{4}\right)=V\left(a_{1}\right)$. If there is a vertex $x \in H$ such that $x \rightarrow a_{5}$, then $a_{5} a_{1} a_{3} a_{4} v x a_{5}$ is a 6 cycle, a contradiction. Therefore, we may assume that $a_{5} \rightarrow\left(H-V\left(a_{5}\right)\right)$. If $a_{2} \rightarrow a_{5}$, then $a_{5} a_{1} a_{3} a_{4} v a_{2} a_{5}$ is a 6 -cycle, a contradiction. Hence, it remains the case that $a_{5} \rightarrow a_{2}$ or $V\left(a_{2}\right)=V\left(a_{5}\right)$. Let $\left\{a_{1}, a_{2}\right\}=A \cup B$ such that $a_{5} \rightarrow A$ and $B \subseteq V\left(a_{5}\right)$. Then $N^{+}\left(a_{1}\right)=H \cup\left\{a_{2}, a_{3}\right\}$ and $N^{+}\left(a_{5}\right) \supseteq A \cup S \cup\left(H-\left(V\left(a_{5}\right)-\left(B \cup\left\{a_{5}\right\}\right)\right)\right)$. This leads to

$$
\begin{equation*}
d^{+}\left(a_{5}\right) \geq|A|+|S|+|H|-(r-(|B|+1))=d^{+}\left(a_{1}\right)+|S|-r+1 . \tag{5}
\end{equation*}
$$

This yields a contradiction, when $|S| \geq 2 r$. It remains the case that D is not regular and $|S|=r$, and thus $c=6$ and $r \geq 3$ odd. Furthermore, $D[V(C)]$ is a tournament and so $a_{5} \rightarrow\left\{a_{1}, a_{2}\right\}$ and $a_{4} \rightarrow a_{1}$. In the case that $a_{5} \rightarrow a_{3}$, we deduce analogously to (5) the contradiction $d^{+}\left(a_{5}\right) \geq d^{+}\left(a_{1}\right)+2$. Hence, we assume that $a_{3} \rightarrow a_{5}$. In addition, we find that $d^{+}(v) \geq d^{+}\left(a_{1}\right)+1$. If we define $R=V(D)-(H \cup Q \cup S \cup V(C))$, then it follows from $Q=N^{-}(v)-\left\{a_{4}, a_{5}\right\}$ and Lemma 2.1

$$
|R| \leq 6 r-\left\{\frac{5 r-1}{2}-2+\frac{5 r-1}{2}-2+r+5\right\}=0 .
$$

If there is an arc $x y$ with $x \in H$ and $y \in Q$, then $a_{5} a_{1} x y v a_{3} a_{5}$ is a 6 -cycle, a contradiction. Hence, it remains the case that $\left(Q \cup\left\{a_{1}, a_{2}, a_{n}, v\right\}\right) \leadsto H$. However, in this situation we obtain analogously to Case 3 a contradiction.

Subcase 6.2.3. Let $n=5$ and assume that $a_{1} \rightarrow\left\{a_{2}, a_{4}\right\}$ and $a_{3} \rightarrow a_{1}$ or $V\left(a_{3}\right)=V\left(a_{1}\right)$. If there exist vertices $x, y \in H$ such that $x \rightarrow y$ and $y \rightarrow a_{5}$, then $a_{5} a_{1} a_{4} v x y a_{5}$ is a 6 -cycle, a contradiction. Let now $W=H-V\left(a_{5}\right)$ and $U=\{x \in$ $\left.W \mid d_{D[H]}^{-}(x)=0\right\}$. It follows that U is a subset of one partite set and $a_{5} \rightarrow(W-U)$. Since $|U| \leq r-1$, we note that $|W-U| \geq \frac{5 r-1}{2}-2-2(r-1)=\frac{r-1}{2}>0$. If $a_{3} \rightarrow a_{5}$, then $a_{5} a_{1} a_{4} v a_{2} a_{3} a_{5}$ is a 6 -cycle, a contradiction. Hence, it remains the case that $a_{5} \rightarrow a_{3}$ or $V\left(a_{3}\right)=V\left(a_{5}\right)$. Let $\left\{a_{1}, a_{3}\right\}=A \cup B$ such that $a_{5} \rightarrow A$ and $B \subseteq V\left(a_{5}\right)$. Then $N^{+}\left(a_{1}\right)=H \cup\left\{a_{2}, a_{4}\right\}$ and $N^{+}\left(a_{5}\right) \supseteq A \cup S \cup\left(H-\left(\left(V\left(a_{5}\right)-\left(B \cup\left\{a_{5}\right\}\right)\right) \cup U\right)\right)$ and therefore

$$
\begin{equation*}
d^{+}\left(a_{5}\right) \geq|A|+|S|+|H|-(r-(|B|+1))-|U| \geq d^{+}\left(a_{1}\right)+|S|-2 r+2 \tag{6}
\end{equation*}
$$

This yields a contradiction, when $|S| \geq 2 r$ and thus for $c \geq 7$. It remains the case that $|S|=r$, and thus $c=6$ and $r \geq 3$ odd. Furthermore, $D[V(C)]$ is a tournament and so $a_{5} \rightarrow\left\{a_{1}, a_{3}\right\}$ and $a_{3} \rightarrow a_{1}$. If we define $U^{\prime}=\left(N^{+}\left(a_{1}\right) \cap N^{-}\left(a_{5}\right)\right)-V(C)$, then $U^{\prime} \subseteq U$. Let now $J=N^{-}\left(a_{5}\right)-\left(U^{\prime} \cup V(C)\right)$ and $G=N^{+}\left(a_{1}\right)-\left(U^{\prime} \cup\left\{a_{2}, a_{4}\right\}\right)$. If there is an arc $x y$ with $x \in G$ and $y \in J \cup U^{\prime}$, then $a_{5} a_{1} a_{4} v x y a_{5}$ is a 6-cycle, a contradiction. Hence, it remains that $\left(J \cup U^{\prime} \cup\left\{a_{1}, a_{2}, a_{5}, v\right\}\right) \leadsto G$.

Suppose next that there exist vertices $b \in G$ and $w \in S$ such that $b \rightarrow w$. If $w \rightarrow$ a_{3}, then $a_{5} a_{1} b w a_{3} a_{4} a_{5}$ is a 6-cycle, a contradiction. So, we can assume that $a_{3} \rightarrow w$. If there is a vertex $x \in\left(N^{-}\left(a_{5}\right)-V(C)\right)$ such that $w \rightarrow x$, then $a_{5} a_{1} a_{2} a_{3} w x a_{5}$ is a 6 cycle, a contradiction. Thus, we can assume that $\left(N^{-}\left(a_{5}\right)-V(C)\right) \rightarrow w$. Altogether, we see that $N^{-}\left(a_{5}\right) \subseteq\left(N^{-}\left(a_{5}\right)-V(C)\right) \cup\left\{a_{2}, a_{4}\right\}$ and $N^{-}(w) \supseteq\left(N^{-}\left(a_{5}\right)-V(C)\right) \cup$ $\left\{a_{3}, a_{4}, a_{5}, b\right\}$ and this yields the contradiction $d^{-}(w) \geq d^{-}\left(a_{5}\right)+2$. Consequently, it remains the case that $S \rightarrow G$. If we define $R=V(D)-(H \cup J \cup S \cup V(C))$, then, because of $|J| \geq\left|N^{-}\left(a_{5}\right)\right|-\left|U^{\prime}\right|-2 \geq \frac{5 r-1}{2}-r-1$, we obtain

$$
|R| \leq 6 r-\left\{\frac{5 r-1}{2}-2+\frac{5 r-1}{2}-r-1+r+5\right\}=r-1
$$

Hence, for each $x \in G$, we conclude that $d(x, V(D)-G) \leq r+1$ and thus it follows

$$
d_{D[G]}^{+}(x)=d^{+}(x)-d(x, V(D)-G) \geq \frac{5 r-1}{2}-r-1=\frac{3 r-3}{2} .
$$

This implies

$$
\begin{equation*}
\frac{|G|(|G|-1)}{2} \geq|E(D[G])|=\sum_{x \in G} d_{D[G]}^{+}(x) \geq|G| \frac{3 r-3}{2} . \tag{7}
\end{equation*}
$$

In view of Lemma 2.1, we have $|G|=d^{+}\left(a_{1}\right)-\left|U^{\prime}\right|-2 \leq d^{+}\left(a_{1}\right)-2 \leq \frac{5 r+1}{2}-2=\frac{5 r-3}{2}$. Combining this with inequality (7), we obtain $\frac{5 r-3}{2}-1 \geq|G|-1 \geq 3 r-3$, and thus the contradiction $r \leq 1$.

Summarizing the investigations of Case 6, we see that there remains the case that $a_{n-2} \rightarrow S$.

Case 7. Let $n=5$. If we consider the cycle $C^{-1}=a_{1} a_{5} a_{4} a_{3} a_{2} a_{1}=b_{5} b_{1} b_{2} b_{3} b_{4} b_{5}$ in the converse D^{-1} of D, then $\left\{b_{4}, b_{5}\right\} \rightarrow S \rightarrow\left\{b_{1}, b_{2}, b_{3}\right\}$. Since this is exactly the situation of Case 6 , there exists in D^{-1} a 6 -cycle, containing the arc $b_{5} b_{1}=a_{1} a_{5}$, and hence there exists in D a 6 -cycle through $a_{5} a_{1}$.

Case 8. Let $n \geq 6$. Assume that there exists a vertex $v \in S$ such that $a_{3} \rightarrow v$. If we consider the converse of D, then in view of Case 6 , it remains the case that $S \rightarrow a_{3}$.

Case 9. Let $c>n \geq 6$. If there exist vertices $v \in S$ and $x \in H$ such that $x \rightarrow v$, then $a_{n} a_{1} x v a_{3} a_{4} \ldots a_{n}$ is an $(n+1)$-cycle, a contradiction. Consequently, we assume now that $S \rightarrow H$. Let $v \in S$. If there exists a vertex $x \in H$ such that $x \rightarrow a_{n}$, then $a_{n} a_{1} a_{2} \ldots a_{n-2} v x a_{n}$ is an $(n+1)$-cycle, a contradiction. Hence, it remains the case that $\left(S \cup\left\{a_{1}, a_{2}, a_{n}\right\}\right) \sim H$.

If $a_{1} \rightarrow a_{i}$ and $a_{i-1} \rightarrow a_{n}$ for $i \in\{3,4, \ldots, n-1\}$, then the $(n+1)$-cycle $a_{n} a_{1} a_{i} \ldots a_{n-1} v a_{2} \ldots a_{i-1} a_{n}$ yields a contradiction. Thus, if $a_{1} \rightarrow a_{i}$ for an $i \in$
$\{3,4, \ldots, n-1\}$, then we may assume that $a_{n} \rightarrow a_{i-1}$ or $V\left(a_{i}\right)=V\left(a_{n}\right)$. Let $N=\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}\right\}$ be exactly the subset of $V(C)-\left\{a_{2}\right\}$ with the property that $a_{1} \rightarrow N$. Then we define $A \cup B=\left\{a_{i_{1}-1}, a_{i_{2}-1}, \ldots, a_{i_{k}-1}\right\}$ such that $a_{n} \rightarrow A$ and $B \subseteq V\left(a_{n}\right)$. This definition and the fact that $a_{n} \rightarrow\left(H-V\left(a_{n}\right)\right)$ lead to $N^{+}\left(a_{1}\right)=\left\{a_{2}\right\} \cup N \cup H$ and $N^{+}\left(a_{n}\right) \supseteq\left\{a_{1}\right\} \cup A \cup S \cup\left(H-\left(V\left(a_{n}\right)-\left(B \cup\left\{a_{n}\right\}\right)\right)\right)$. This implies

$$
\begin{aligned}
d^{+}\left(a_{n}\right) & \geq|A|+|S|+1+|H|-(r-(|B|+1)) \\
& =|A|+|B|+2+|S|-r+d^{+}\left(a_{1}\right)-|N|-1 \\
& =d^{+}\left(a_{1}\right)+|S|-r+1 .
\end{aligned}
$$

This yields a contradiction, when D is regular or $c \geq n+2$. It remains the case that D is not regular and $|S|=r$, and thus $c=n+1 \geq 8$ even and $r \geq 3$ odd. Furthermore, $D[V(C)]$ is a tournament, $B=\emptyset$, and it follows by Lemma 2.1

$$
\begin{equation*}
d^{+}\left(a_{n}\right)=d^{+}\left(a_{1}\right)+1=\frac{(c-1) r+1}{2} . \tag{8}
\end{equation*}
$$

Subcase 9.1. There exists a vertex $v \in S$ such that $v \rightarrow a_{n-3}$. If there is a vertex $a_{i} \in V(C)$ with $4 \leq i \leq n-4$ such that $a_{i} \rightarrow v$, then we obtain, as in Case 1, an $(n+1)$-cycle through $a_{n} a_{1}$, a contradiction. Thus, we investigate now the case that $v \rightarrow\left\{a_{1}, a_{2}, \ldots, a_{n-3}\right\}$. If $R=V(D)-(H \cup Q \cup S \cup V(C))$, then because of $|H|=\left|N^{+}\left(a_{1}\right)-V(C)\right| \geq d^{+}\left(a_{1}\right)-(n-2)$ and $|Q|=\left|N^{-}(v)-V(C)\right| \geq d^{-}(v)-3$, we see with respect to Lemma 2.1 that

$$
|R| \leq c r-\left\{\frac{(c-1) r-1}{2}-(n-2)+\frac{(c-1) r-1}{2}-3+r+n\right\}=2
$$

If there is an arc $x y$ with $x \in H$ and $y \in Q$, then $a_{n} a_{1} x y v a_{4} a_{5} \ldots a_{n}$ is an $(n+1)$-cycle, a contradiction. Consequently, it remains the case that $\left(Q \cup S \cup\left\{a_{1}, a_{2}, a_{n}\right\}\right) \leadsto H$. Hence, since $|R| \leq 2$, for every $x \in H$, we conclude that $d(x, V(D)-H) \leq n-3+2=$ $c-2$ and thus, it follows from Lemma 2.1

$$
d_{D[H]}^{+}(x)=d^{+}(x)-d(x, V(D)-H) \geq \frac{(c-1) r-1}{2}-c+2=\frac{(c-1) r+3}{2}-c
$$

This implies

$$
\begin{equation*}
\frac{|H|(|H|-1)}{2} \geq|E(D[H])|=\sum_{x \in H} d_{D[H]}^{+}(x) \geq|H|\left\{\frac{(c-1) r+3}{2}-c\right\} . \tag{9}
\end{equation*}
$$

Since $d^{+}(v) \geq|H|+(n-3)=|H|+c-4$ and $d^{+}(v) \leq d^{+}\left(a_{1}\right)+1$, we deduce from Lemma 2.1 and (8)

$$
|H| \leq d^{+}(v)-(n-3) \leq d^{+}\left(a_{1}\right)-c+5=\frac{(c-1) r-1}{2}-c+5 .
$$

Combining this with inequality (9), we obtain

$$
\frac{(c-1) r-1}{2}-c+4 \geq|H|-1 \geq(c-1) r+3-2 c .
$$

This inequality is equivalent with $2 c \geq(c-1) r-1$. Since $r \geq 3$, this leads to the contradiction $c \leq 4$.

Subcase 9.2. Finally, we assume that $a_{n-3} \rightarrow S$. If there is a vertex $w \in H \cap F$, then $a_{n} a_{1} a_{2} \ldots a_{n-2} v w a_{1}$ is a $(n+1)$-cycle, a contradiction. Now let $H \cap F=\emptyset$, and let $R=V(D)-(H \cup F \cup S \cup V(C))$. We have seen above that $|H|=d^{+}\left(a_{1}\right)-|N|-1$ and $\left|N^{+}\left(a_{n}\right) \cap V(C)\right| \geq|N|+1$. Hence $\left|N^{-}\left(a_{n}\right) \cap V(C)\right| \leq n-|N|-2$, and thus $|F|=\left|N^{-}\left(a_{n}\right)-V(C)\right| \geq d^{-}\left(a_{n}\right)-(n-2-|N|)$. It follows from Lemma 2.1 that

$$
|R| \leq c r-\left\{\frac{(c-1) r-1}{2}-|N|-1+\frac{(c-1) r-1}{2}-n+2+|N|+r+n\right\}=0 .
$$

According to (8), we have $|H|=\frac{(c-1) r-3}{2}-|N|$, and therefore, (8) and $|R|=0$ show that $|F|=d^{-}\left(a_{n}\right)-(n-2-|N|)=\frac{(c-1) r+5}{2}-c+|N|$. If there is an arc $x y$ with $x \in H$ and $y \in F$, then $a_{n} a_{1} a_{2} \ldots a_{n-3} v x y a_{n}$ is an $(n+1)$-cycle, a contradiction. If there is an arc $u y$ with $u \in S$ and $y \in F$, then $a_{n} a_{1} a_{2} \ldots a_{n-2} u y a_{n}$ is an $(n+1)$-cycle, a contradiction. Consequently, it remains the case that $\left(F \cup S \cup\left\{a_{1}, a_{2}, a_{n}\right\}\right) \sim H$ and $F \leadsto\left(\left\{a_{1}, a_{n}\right\} \cup S \cup H\right)$.

Subcase 9.2.1. Assume that $|N| \geq \frac{c}{2}$. Since $|R|=0$, for every $x \in H$, we conclude that $d(x, V(D)-H) \leq n-3=c-4$ and thus, it follows from Lemma 2.1

$$
d_{D[H]}^{+}(x)=d^{+}(x)-d(x, V(D)-H) \geq \frac{(c-1) r-1}{2}-c+4=\frac{(c-1) r+7}{2}-c .
$$

This implies

$$
\frac{|H|(|H|-1)}{2} \geq|E(D[H])|=\sum_{x \in H} d_{D[H]}^{+}(x) \geq|H|\left\{\frac{(c-1) r+7}{2}-c\right\} .
$$

Because of $|H|=\frac{(c-1) r-3}{2}-|N| \leq \frac{(c-1) r-3}{2}-\frac{c}{2}$, we obtain

$$
\frac{(c-1) r-3}{2}-\frac{c}{2}-1 \geq|H|-1 \geq(c-1) r+7-2 c .
$$

This inequality is equivalent with $3 c \geq(c-1) r+19$. The condition $r \geq 3$ leads to the contradiction $0 \geq 16$.

Subcase 9.2.2. Assume that $|N| \leq \frac{c}{2}-1$. Since $|R|=0$, for every $y \in F$, we conclude that $d(V(D)-F, y) \leq n-2=c-3$ and thus, it follows from Lemma 2.1

$$
d_{D[F]}^{-}(x)=d^{-}(y)-d(V(D)-F, y) \geq \frac{(c-1) r-1}{2}-c+3=\frac{(c-1) r+5}{2}-c .
$$

This implies

$$
\frac{|F|(|F|-1)}{2} \geq|E(D[F])|=\sum_{y \in F} d_{D[F]}^{-}(y) \geq|F|\left\{\frac{(c-1) r+5}{2}-c\right\} .
$$

Because of $|F|=\frac{(c-1) r+5}{2}-c+|N| \leq \frac{(c-1) r+3}{2}-\frac{c}{2}$, we obtain

$$
\frac{(c-1) r+3}{2}-\frac{c}{2}-1 \geq|F|-1 \geq(c-1) r+5-2 c .
$$

This inequality is equivalent with $3 c \geq(c-1) r+9$. The condition $r \geq 3$ leads to the contradiction $0 \geq 6$. This completes the proof of the theorem.

From the theorem of Alspach [1] and Theorem 2.2 we can immediately deduce the following result.

Corollary 2.3 If D is a regular c-partite tournament with $c \geq 6$, then every arc of D is contained in an n-cycle for each $n \in\{4,5, \ldots, c\}$.

Example 2.4 Let $A_{1}=\left\{u, u_{2}, u_{3}\right\}, A_{2}=\left\{v, v_{2}, v_{3}\right\}, A_{3}=\left\{w_{1}, w_{2}, w_{3}\right\}$, and $A_{4}=\left\{x_{1}, x_{2}, x_{3}\right\}$ be the partite sets of a 4-partite tournament such that $u \rightarrow v \rightarrow$ $u_{2} \rightarrow\left(A_{4} \cup\left\{v_{3}\right\}\right),\left(A_{4} \cup\left\{u_{3}\right\}\right) \rightarrow v_{2} \rightarrow u \rightarrow\left(A_{4} \cup\left\{v_{3}\right\}\right),\left(A_{4} \cup\left\{u_{3}\right\}\right) \rightarrow v \rightarrow A_{3} \rightarrow u$, $v_{2} \rightarrow A_{3} \rightarrow u_{2}, v_{2} \rightarrow u_{2}, v_{3} \rightarrow A_{3} \rightarrow u_{3} \rightarrow A_{4} \rightarrow v_{3} \rightarrow u_{3}, w_{1} \rightarrow x_{1} \rightarrow w_{2} \rightarrow x_{2} \rightarrow$ $w_{3} \rightarrow x_{3} \rightarrow w_{2}, x_{2} \rightarrow w_{1}, x_{1} \rightarrow w_{3}$, and $x_{3} \rightarrow w_{1}$ (see Figure 1). The resulting 4 -partite tournament is almost regular, every arc belongs to a 3-cycle, however, the arc $u v$ is not contained in a 4-cycle.

Figure 1: An almost regular 4-partite tournament with the property that every arc belongs to a 3 -cycle, but the arc $u v$ is not contained in a 4-cycle

Remark 2.5 Example 2.4 shows that it is not possible to generalize Guo's Theorem 1.3 to almost regular 4-partite tournaments with the partite sets $V_{1}, V_{2}, V_{3}, V_{4}$ such that $\left|V_{1}\right|=\left|V_{2}\right|=\left|V_{3}\right|=\left|V_{4}\right|=r$ is odd.

Remark 2.6 In [6], the author has constructed an almost regular 6-partite tournament D with $\left|V_{1}\right|=\left|V_{2}\right|=\left|V_{3}\right|=2,\left|V_{4}\right|=\left|V_{5}\right|=3$, and $\left|V_{6}\right|=4$ which contains an arc that does not belong to any 4 -cycle. This example shows that Theorem 2.2 is not valid for almost regular c-partite $(c \geq 6)$ tournaments in general.

References

[1] B. Alspach, Cycles of each length in regular tournaments, Canad. Math. Bull. 10 (1967), 283-286.
[2] Y. Guo, Semicomplete Multipartite Digraphs: A Generalization of Tournaments, Habilitation thesis, RWTH Aachen (1998), 102 pp.
[3] O.S. Jacobson, Cycles and paths in tournaments, Ph. D. Thesis, Aarhus University (1972).
[4] P. Turán, An extremal problem in graph theory, Mat.-Fiz. Lapok 48 (1941), 436-452 (in Hungarian).
[5] L. Volkmann, Cycles in multipartite tournaments: results and problems, Discrete Math. 245 (2002), 19-53.
[6] L. Volkmann, Cycles of length four through a given arc in almost regular multipartite tournaments, Ars Combin., to appear.
[7] A. Yeo, How close to regular must a semicomplete multipartite digraph be to secure Hamiltonicity? Graphs Combin. 15 (1999), 481-493.

