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Abstract

In an earlier paper, we showed that CI-loops and quasigroups with long
inverse cycles have certain properties which make them particularly ap-
propriate for use in cryptography. The same is true of the generalized
structures called m-inverse loops and quasigroups. Here, we investigate
the existence of such structures (initially for small orders).

I. Introduction

A finite quasigroup (Q, ◦) of order n consists of a set Q of symbols on which a binary
operation (◦) is defined such that (i) for all pairs of elements a, b ∈ Q, a ◦ b ∈ Q
(closure) and (ii) for all pairs a, b ∈ Q, there exist unique elements x, y ∈ Q such
that x ◦ a = b and a ◦ y = b (unique solubility of equations).

If there exists an element e ∈ Q such that, for all a ∈ Q, e ◦ a = a = a ◦ e
(existence of a two-sided identity element), the quasigroup is a loop.

A quasigroup may satisfy some or all of the following inverse properties:
(i) for each a ∈ Q, there exists an element a−1

L ∈ Q such that a−1
L ◦ (a ◦ b) = b for

all b ∈ Q (the left inverse property);
(ii) for each a ∈ Q, there exists an element a−1

R ∈ Q such that (b ◦ a) ◦ a−1
R = b

for all b ∈ Q (the right inverse property);
(iii) for each a ∈ Q, there exists an element a′

L ∈ Q such that a′
Lo(b ◦ a) = b for

all b ∈ Q (the left crossed-inverse property);
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(iv) for each a ∈ Q, there exists an element a′
R ∈ Q such that (a ◦ b) ◦ a′

R = b for
all b ∈ Q (the right crossed-inverse property).

A quasigroup which satisfies (i) and (ii) is called an inverse-property quasigroup.
One which satisfies (iii) and (iv) is called a crossed-inverse-property quasigroup (or,
for brevity, a CI-quasigroup). For a quasigroup which is commutative, (i)⇔(iii) and
(ii)⇔(iv) so the inverse and crossed inverse properties coincide.

A quasigroup or loop (Q, ◦) of finite order which has the left crossed-inverse
property also has the right crossed-inverse property; and conversely. So a quasigroup
which has either one of these properties is a CI-quasigroup. For such a quasigroup,
the mapping J : a → a′

R is a permutation of the elements of Q. (For a proof of these
remarks, see Lemma 1.1 of [4].)

In [3], Karklinüsh and Karklin have generalized the concept of a CI-loop to what
they have called an m-inverse loop. We can generalize the concept of a CI-quasigroup
in a similar way as follows:

Suppose that there exists a permutation J of the elements of a quasigroup (Q, ◦)
such that, for all a, b ∈ Q, (a ◦ b)Jm ◦ aJm+1 = bJm. Then (Q, ◦) is an m-inverse
quasigroup. In particular, a CI-quasigroup is a 0-inverse quasigroup. When the
permutation J is written in the form of a product of cycles, these cycles are called
the inverse cycles of the m-inverse quasigroup.

By an m-inverse loop (L, ◦) we shall mean an m-inverse quasigroup with identity
element e such that eJ = e. Then, putting b = e in the relation (a ◦ b)Jm ◦ aJm+1 =
bJm, we find that aJm ◦ aJm+1 = e for all elements a ∈ L. Let b be an arbitrary
element of the loop. Then there exists an element a ∈ L such that aJm = b. But,
aJm ◦ aJm+1 = e. That is, b ◦ bJ = e for all b ∈ L. (This agrees with the definition
given in [3].)

In [4], it was shown that CI-quasigroups with long inverse cycles have a role to
play in cryptography and the same is true of m-inverse loops and quasigroups. The
purpose of the present paper is to determine for which orders m-inverse loops and
quasigroups with a long inverse cycle exist.

We first investigate the existence of m-inverse loops. Since every loop of order
less than five is a group, we need only consider loops of orders n ≥ 5.

R. Artzy[1] has shown that 0-inverse loops of order n > 3 with an inverse cycle
of length n− 1 do not exist so an m-inverse loop (m > 0) which has such a maximal
length cycle cannot satisfy the crossed-inverse property. We say that an m-inverse
loop which is not also an (m− 1)-inverse loop is proper so, in particular, a 1-inverse
loop which has a single long inverse cycle of length n − 1 must be proper.

II. The existence of proper m-inverse loops with a

long inverse cycle, m ≥ 1

We may suppose without loss of generality that the elements of Q are e, 0, 1, . . . , n − 2,
where e is the identity element, and that the notation is chosen so that J =
(e)(0 1 · · · n − 2): that is, so that (0 1 · · · n − 2) is the long inverse cycle. Then
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aJ ≡ a + 1 mod (n− 1) for a ∈ {0, 1, . . . , n− 2} and eJ = e. Also, a ◦ aJ = e: that
is, a ◦ (a + 1) ≡ e mod (n − 1).

For a, b, c �= e, a ◦ b = c ⇒ (a − m)Jm ◦ [b − (m + 1)]Jm+1 = (c − m)Jm.
But, ([b − (m + 1)] ◦ (c − m))Jm ◦ [b − (m + 1)]Jm+1 = (c − m)Jm by the m-

inverse property. So, [b − (m + 1)] ◦ (c − m) = a − m. Iterating this result, we have
a◦ b = c ⇒ [b− (m+1)]◦ (c−m) = a−m ⇒ [c− (2m+1)]◦ (a−2m) = b− (2m+1)
⇒ [a − (3m + 1)] ◦ [(b − (3m + 1)] = [c − (3m + 1)].

Thus, J3m+1 is an automorphism. In fact, J3m+1 is an automorphism of any
m-inverse loop, as was first pointed out in [3].

For an m-inverse loop of order (3m + 1) + 1, the relation [a − (3m + 1)] ◦ [(b −
(3m + 1)] = [c− (3m + 1)] is equivalent to a ◦ b = c since, in such a loop, arithmetic
of elements is modulo 3m+1. (The 1-inverse loops of order 5 and the 2-inverse loops
of order 8 exhibited later in this paper are examples.)

For an m-inverse loop of order n, where n − 1 is relatively prime to 3m + 1, the
implication a ◦ b = c ⇒ [a− (3m + 1)] ◦ [(b− (3m + 1)] = [c− (3m + 1)] leads to the
implication a◦b = c ⇒ (a+h)◦ (b+h) = (c+h) for all integers h because there exist
integers r, s such that r(n− 1)− s(3m+1) = 1 and so −s(3m+1) ≡ 1 mod (n− 1)
whence a − s(3m + 1) ≡ a + 1, b − s(3m + 1) ≡ b + 1, c − s(3m + 1) ≡ c + 1. By
iteration, the result follows. Thus, in this case, J itself is an automorphism of the
loop. It also follows that such a loop is (m + l)-inverse for all positive integers l.

Lemma 2.1 In an m-inverse loop (with a long inverse cycle) of order n, where n−1
is relatively prime to 3m+1, 0◦h = k (for h, k �= e) implies that 0◦(k−h+1) = (n−h)
and that 0 ◦ (n − k) = (h − k).

Proof. 0◦h = k ⇒ [h−(m+1)]◦(k−m) = (n−1)−m mod (n−1) ⇒ 0◦(k−h+1) =
(n−h) by adding m+1−h to each element. That is, 0◦h = k ⇒ 0◦h1 = k1, where
h1 = k − h + 1 and k1 = n − h. Iterating this implication yields the desired result.
(Note that h3 ≡ h mod (n − 1) and that k3 ≡ k.)

Corollary 2.2 When n − 1 is relatively prime to 3m + 1 in an m-inverse loop of
order n with a long inverse cycle, 0 ◦ 2 = v is always impossible for v = 1 and is
impossible for v = 3 unless n = 5.

Proof. 0 ◦ 2 = v ⇒ 0 ◦ (v − 1) = n − 2 and 0 ◦ (n − v) = n + 1 − v mod (n − 1) by
the Lemma. So, when v = 1, we have 0 ◦ 2 = 1 ⇒ 0o0 = n − 2 and 0 ◦ (n − 1) = n
or 0 ◦ 0 = 1. The equalities 0 ◦ 2 = 1 and 0 ◦ 0 = 1 are contradictory. When v = 3,
we have 0 ◦ 2 = 3 ⇒ 0 ◦ 2 = n − 2 and 0 ◦ (n − 3) = n − 2. These are mutually
contradictory except when n = 5.

(a) m-inverse loops of order 5 with an inverse cycle of length 4.

Here, Q = {e, 0, 1, 2, 3} and J = (e)(0 1 2 3). Suppose that 0 ◦ 2 = v. Then
v �= 0, 2 and, since 0 ◦ 1 = e, v �= e.

When 3m + 1 is relatively prime to four, v = 1 is impossible by Corollary 2.2
so v = 3 is the only possibility. This case occurs only when m = 2 in the present
situation since an (m+4)-inverse loop is an m-inverse loop because J4 is the identity
mapping.
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In fact, proper m-inverse loops of order five with m > 1 do not exist, as we shall
show. However, there exist four isomorphically distinct proper 1-inverse loops of
order five. We may show this as follows:

Putting 0 ◦ 0 = u and using the relation a ◦ b = c ⇒ (b − 2) ◦ (c − 1) ≡ (a − 1)
mod 4, we find that 2 ◦ (u+3) = 3 and that (u+1) ◦ 2 = 1. Clearly, u �= 0 or e since
these two elements already occur elsewhere in row 0 of the Cayley table of the loop.
(See Figure 2a.1.)

(◦) e 0 1 2 3
e e 0 1 2 3
0 0 u e · ·
1 1 · · e ·
2 2 · · · e
3 3 e · · ·

Fig. 2a.1.

We find that the remaining values of u define proper 1-inverse loops as follows:
Try u = 1. Then 2◦0 = 3 and 2◦2 = 1. The Cayley table is uniquely completable

as is shown in Figure 2a.2. (The integer superscripts indicate one order in which the
cells may be filled.) To check that the table gives a 1-inverse loop, we require the
following relations to hold:

0 ◦ 1 = e; 1 ◦ 2 = e; 2 ◦ 3 = e; and 3 ◦ 0 = e
0 ◦ 2 = 3 ⇒ 0 ◦ 2 = 3
0 ◦ 3 = 2 ⇒ 1 ◦ 1 = 3 ⇒ 3 ◦ 2 = 0 ⇒ 0 ◦ 3 = 2
1 ◦ 0 = 2 ⇒ 2 ◦ 1 = 0 ⇒ 3 ◦ 3 = 1 ⇒ 1 ◦ 0 = 2
1 ◦ 3 = 0 ⇒ 1 ◦ 3 = 0
2 ◦ 0 = 3 ⇒ 2 ◦ 2 = 1 ⇒ 0 ◦ 0 = 1 ⇒ 2 ◦ 0 = 3
3 ◦ 1 = 2 ⇒ 3 ◦ 1 = 2

(◦) e 0 1 2 3
e e 0 1 2 3
0 0 1 e 39 28

1 1 24 33 e 05

2 2 3 01 1 e
3 3 e 22 06 17

Fig. 2a.2.

So the table defines a proper 1-inverse loop of order five. [We may easily check
that it is not a 0-inverse loop. For example, (2 ◦ 2) ◦ 2J = 1 ◦ 3 = 0 �= 2.]

Try u = 3. Then 2◦2 = 3 and 0◦2 = 1. The Cayley table is uniquely completable
as is shown in Figure 2a.3. To check that the table gives a 1-inverse loop, we require
the following relations to hold:

0 ◦ 1 = e; 1 ◦ 2 = e; 2 ◦ 3 = e; and 3 ◦ 0 = e
0 ◦ 2 = 1 ⇒ 0 ◦ 0 = 3 ⇒ 2 ◦ 2 = 3 ⇒ 0 ◦ 2 = 1
0 ◦ 3 = 2 ⇒ 1 ◦ 1 = 3 ⇒ 3 ◦ 2 = 0 ⇒ 0 ◦ 3 = 2
1 ◦ 0 = 2 ⇒ 2 ◦ 1 = 0 ⇒ 3 ◦ 3 = 1 ⇒ 1 ◦ 0 = 2
1 ◦ 3 = 0 ⇒ 1 ◦ 3 = 0
2 ◦ 0 = 1 ⇒ 2 ◦ 0 = 1
3 ◦ 1 = 2 ⇒ 3 ◦ 1 = 2

(◦) e 0 1 2 3
e e 0 1 2 3
0 0 3 e 1 29

1 1 24 35 e 08

2 2 12 03 3 e
3 3 e 26 01 17

Fig. 2a.3.
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So the table defines a proper 1-inverse loop of order five.
Try u = 2. Then 2 ◦ 1 = 3 and 3 ◦ 2 = 1. The Cayley table completes uniquely

to the partial form shown in Figure 2a.4. This has two completions. We need to
check whether either completed table represents a 1-inverse loop. In fact, we find
that both completed tables represent proper 1-inverse loops of order five with a long
inverse cycle.

In particular, 1 ◦ 1 = 0 ⇒ 3 ◦ 3 = 0 ⇒ 1 ◦ 3 = 2 ⇒ 1 ◦ 1 = 0 and 3 ◦ 1 = 2 ⇒
3 ◦ 1 = 2. On the other hand, 1 ◦ 1 = 2 ⇒ 3 ◦ 1 = 0 ⇒ 3 ◦ 3 = 2 ⇒ 1 ◦ 1 = 2 and
1 ◦ 3 = 0 ⇒ 1 ◦ 3 = 0.

(◦) e 0 1 2 3
e e 0 1 2 3
0 0 2 e 31 12

1 1 34 · e ·
2 2 13 35 06 e
3 3 e · 17 ·

Fig. 2a.4.

We conclude that, up to isomorphism, there exist just four distinct proper 1-
inverse loops of order five with a long inverse cycle.

As regards the existence of 2-inverse or 3-inverse loops, we have 0 ◦ 0 = u ⇒
1 ◦ (u− 2) = 2 ⇒ (u− 1) ◦ 0 = 3 for a 2-inverse loop. If u = 1, 0 ◦ 0 = 1 ⇒ 0 ◦ 0 = 3.
If u = 2, 0 ◦ 0 = 2 ⇒ 1 ◦ 0 = 2. If u = 3, 0 ◦ 0 = 3 ⇒ 2 ◦ 0 = 3. Each of these
implications is contradictory.

For a 3-inverse loop, 0◦0 = u ⇒ −4◦(u−3) = −3 ⇒ (u−7)◦(−2) = −3. That is,
0◦0 = u ⇒ 0◦ (u+1) = 1 ⇒ (u+1)◦2 = 1. If u = 1, 0◦0 = 1 ⇒ 0◦2 = 1. If u = 3,
0 ◦ 0 = 3 ⇒ 0 ◦ 0 = 1. Each of these is contradictory. If u = 2, 0 ◦ 0 = 2 ⇒ 0 ◦ 3 = 1
and 3 ◦ 2 = 1. We find that we obtain the partial Cayley table given in Figure 2a.4.
However, 1 ◦ 1 = 0 ⇒ −3 ◦ −3 = −2 or 1 ◦ 1 = 2 and 1 ◦ 1 = 2 ⇒ −3 ◦ −1 = −2 or
1 ◦ 3 = 2. Both are contradictory.

(b) m-inverse loops of order 6 with an inverse cycle of length 5.

We assume that J = (e)(0 1 2 · · · 4) and that 0 ◦ 2 = v, v �= 0, 2 or e as usual.
Arithmetic is modulo 5.

When n − 1 = 5 is relatively prime to 3m + 1: that is, when m �= 5h + 3,
0 ◦ (v − 1) = 4 and 0 ◦ (6 − v) = 2 − v by Lemma 2.1. Also, J is an automorphism
of the loop.

We have v �= 1 or 3 by Corollary 2.2. If v = 4, the equalities 0 ◦ 2 = v and
0 ◦ (v− 1) = 4 contradict each other. Thus, no 1, 2 or 4-inverse loops of order 6 with
a long inverse cycle exist.

For a 3-inverse loop, the automorphism J10 is the identity because J5 is the
identity. We have a◦b = c ⇒ (b−4)◦ (c−3) = (a−3) ⇒ (c−2)◦ (a−1) = (b−2) ⇒
a ◦ b = c so, in general, an entry c in cell (a, b) determines the entries in two other
cells. However, a ◦ (a − 1) = (a + 2) ⇒ a ◦ (a − 1) = (a − 3). Since a + 2 ⇒ a − 3
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mod 5, an entry a + 2 in cell (a, a− 1) determines no others. All together, there are
20 = (6×3)+2 cells to be filled so just two of the cells of type (a, a−1) must contain
a + 2. An example of a 3-inverse loop for which 0 ◦ 2 = 1 is given in Figure 2b.1.

(◦) e 0 1 2 3 4
e e 0 1 2 3 4
0 0 3 e 1 4 2
1 1 2 4 e 0 3
2 2 4 3 0 e 1
3 3 1 0 4 2 e
4 4 e 2 3 1 0

0 ◦ 2 = 1 ⇒ 3 ◦ 3 = 2 ⇒ 4 ◦ 4 = 0
0 ◦ 0 = 3 ⇒ 1 ◦ 0 = 2 ⇒ 1 ◦ 4 = 3
0 ◦ 3 = 4 ⇒ 4 ◦ 1 = 2 ⇒ 2 ◦ 4 = 1
1 ◦ 3 = 0 ⇒ 4 ◦ 2 = 3 ⇒ 3 ◦ 0 = 1
1 ◦ 1 = 4 ⇒ 2 ◦ 1 = 3 ⇒ 2 ◦ 0 = 4
2 ◦ 2 = 0 ⇒ 3 ◦ 2 = 4 ⇒ 3 ◦ 1 = 0

0 ◦ 4 = 2; 4 ◦ 3 = 1

Fig. 2b.1.

(c) m-inverse loops of order 7 with an inverse cycle of length 6.

No such loops exist. We have the following more general theorem:

Theorem 2.3 m-inverse loops of order n = 3l + 1 with an inverse cycle of length
3l do not exist.

Proof. We assume that J = (e)(0 1 2 · · · 3l − 1) so that arithmetic is modulo 3l.
In this case, n − 1 = 3l is relatively prime to 3m + 1 for all values of m, so

0 ◦ h = k ⇒ 0 ◦ (k − h + 1) = (n − h) ⇒ 0 ◦ (n − k) = (h − k) by Lemma 2.1. Also,
J is an automorphism of the loop.

Let us consider row 0 of the Cayley table of the loop. In this row, the cells (0, e)
and (0, 1) are already filled with the elements 0 and e respectively. So n− 2 = 3l−1
cells remain to be filled. But, putting the entry k in cell (0, h) forces the entries
n − h = 3l + 1 − h and h − k in the cells (0, k − h + 1) and (0, n − k) respectively.
Moreover, the three cells (0, h), (0, k−h+1) and (0, n−k) are distinct for all choices
of h and k. We may show this as follows:

The first two coincide only if k−h+1 ≡ h and (3l+1−h) ≡ k mod 3l. The first
and last coincide only if (3l + 1)− k ≡ h and h− k ≡ k mod 3l. Each of these pairs
of equalities requires that 3h ≡ 2 and 3k ≡ 1 mod 3l. Both the latter congruences
are impossible.

Since there are 3l− 1 cells to be filled in row 0 and this is not a multiple of three,
the Cayley table cannot be completed.

(d) m-inverse loops of order 8 with an inverse cycle of length 7.

We assume that J = (e)(0 1 2 · · · 6) and that 0◦2 = v, v �= 0, 2 or e. Arithmetic
is modulo 7.

When n−1 = 7 is relatively prime to 3m+1, 0◦(v−1) = 6 and 0◦(8−v) = 2−v
by Lemma 2.1. Also, J is an automorphism of the loop. Since 0 ◦ (v − 1) = 6, v �= 3
or 6 otherwise 0◦2 = v and 0◦ (v−1) = 6 are mutually contradictory. Furthermore,
v �= 1 by Corollary 2.2. Thus, v �= 0, 1, 2, 3, 6 or e.

If v = 4, 0 ◦ 2 = 4, 0 ◦ 3 = 6 and 0 ◦ 4 = 5(≡ −2). Because J is an automorphism
of the loop, a◦b = c ⇒ (a+h)◦(b+h) = (c+h) and so the entries of the left-to-right
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broken diagonals headed by 0 ◦ 2 = 4, 0 ◦ 3 = 6 and 0 ◦ 4 = 5 in the Cayley table of
the loop are all determined. In particular, 5◦ 0 = 2, 4◦ 0 = 3 and 3◦ 0 = 1. Then no
element for 0◦0 exists (as is shown in Figure 2d.1) so the table cannot be completed.

If v = 5, we have 0 ◦ 2 = 5, 0 ◦ 4 = 6 and 0 ◦ 3 = 4(≡ −3), whence 5 ◦ 0 = 3,
3 ◦ 0 = 2 and 4 ◦ 0 = 1. We again find that no element for 0 ◦ 0 exists so the table
cannot be completed.

(◦) e 0 1 2 3 4 5 6
e e 0 1 2 3 4 5 6
0 0 (?) e 4 6 5 · ·
1 1 · · e 5 0 6 ·
2 2 · · · e 6 1 0
3 3 1 · · 0 e 0 2
4 4 3 2 · · 1 e 1
5 5 2 4 3 · · 2 e
6 6 e 3 5 4 · · ·

Fig. 2d.1.

Thus, no m-inverse loop of order 8 with a long inverse cycle of length 7 exists
when 3m + 1 is relatively prime to 7. However, existence when m = 7h + 2(≡ 2
mod 7) is possible. Let us consider, in more detail, 2-inverse loops of order 8.

We have J = (e)(0 1 2 3 4 5 6). Then a ◦ (a + 1) = e. Also, a ◦ b = c

⇒ (b− 3) ◦ (c− 2) = (a− 2) ⇒ (c− 5) ◦ (a− 4) = (b− 5) ⇒ (a− 7) ◦ (b− 7) = (c− 7)

which is equivalent to a ◦ b = c since addition is modulo 7. Thus, in general, each
relation a ◦ b = c implies two others. Therefore, putting entry c in cell (a, b) forces
two other entries. However, a ◦ (a + 3) = a + 5 ⇒ a ◦ (a + 3) = a − 2. Since
a − 2 ≡ a + 5 mod 7, it is permissible to put the entry a + 5 in the cell (a, a + 3)
without contradiction but such an entry forces no others.

(◦) e 0 1 2 3 4 5 6
e e 0 1 2 3 4 5 6
0 0 1 e 3 5 2 6 4
1 1 5 4 e 0 6 2 3
2 2 6 3 0 e 5 4 1
3 3 4 6 5 2 e 1 0
4 4 3 2 1 6 0 e 5
5 5 2 0 6 4 1 3 e
6 6 e 5 4 1 3 0 2

0 ◦ 3 = 5; 1 ◦ 4 = 6; 6 ◦ 2 = 4

0 ◦ 0 = 1 ⇒ 4 ◦ 6 = 5 ⇒ 3 ◦ 3 = 2
0 ◦ 2 = 3 ⇒ 6 ◦ 1 = 5 ⇒ 5 ◦ 3 = 4
0 ◦ 4 = 2 ⇒ 1 ◦ 0 = 5 ⇒ 4 ◦ 3 = 6
0 ◦ 5 = 6 ⇒ 2 ◦ 4 = 5 ⇒ 1 ◦ 3 = 0
0 ◦ 6 = 4 ⇒ 3 ◦ 2 = 5 ⇒ 6 ◦ 3 = 1
1 ◦ 1 = 4 ⇒ 5 ◦ 2 = 6 ⇒ 6 ◦ 4 = 3
1 ◦ 5 = 2 ⇒ 2 ◦ 0 = 6 ⇒ 4 ◦ 4 = 0
1 ◦ 6 = 3 ⇒ 3 ◦ 1 = 6 ⇒ 5 ◦ 4 = 1
2 ◦ 1 = 3 ⇒ 5 ◦ 1 = 0 ⇒ 5 ◦ 5 = 3
2 ◦ 2 = 0 ⇒ 6 ◦ 5 = 0 ⇒ 2 ◦ 5 = 4
2 ◦ 6 = 1 ⇒ 3 ◦ 6 = 0 ⇒ 3 ◦ 5 = 1
3 ◦ 0 = 4 ⇒ 4 ◦ 2 = 1 ⇒ 6 ◦ 6 = 2
4 ◦ 0 = 3 ⇒ 4 ◦ 1 = 2 ⇒ 5 ◦ 0 = 2

Fig. 2d.2.
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Since there are 42 = 49−7 cells to be filled with entries from the set {0, 1, 2, . . . , 6}
and this is a multiple of three, either 0, 3, or 6 of the cells (a, a + 3) must have an
entry of the form a+5. In our first example (which was originally given in [3] without
any explanation as to how it was obtained), just three of the cells (a, a + 3) have
a + 5 as entry (see Figure 2d.2). In the example of Figure 2d.3, none of the cells
(a, a + 3) have a + 5 as entry.

(◦) e 0 1 2 3 4 5 6
e e 0 1 2 3 4 5 6
0 0 1 e 4 6 5 2 3
1 1 6 3 e 5 2 0 4
2 2 5 4 3 e 0 6 1
3 3 4 5 6 2 e 1 0
4 4 3 2 1 0 6 e 5
5 5 2 6 0 1 3 4 e
6 6 e 0 5 4 1 3 2

3 ◦ 0 = 4 ⇒ 4 ◦ 2 = 1 ⇒ 6 ◦ 6 = 2
4 ◦ 0 = 3 ⇒ 4 ◦ 1 = 2 ⇒ 5 ◦ 0 = 2

0 ◦ 0 = 1 ⇒ 4 ◦ 6 = 5 ⇒ 3 ◦ 3 = 2
0 ◦ 2 = 4 ⇒ 6 ◦ 2 = 5 ⇒ 6 ◦ 3 = 4
0 ◦ 3 = 6 ⇒ 0 ◦ 4 = 5 ⇒ 1 ◦ 3 = 5
0 ◦ 5 = 2 ⇒ 2 ◦ 0 = 5 ⇒ 4 ◦ 3 = 0
0 ◦ 6 = 3 ⇒ 3 ◦ 1 = 5 ⇒ 5 ◦ 3 = 1
1 ◦ 0 = 6 ⇒ 4 ◦ 4 = 6 ⇒ 1 ◦ 4 = 2
1 ◦ 1 = 3 ⇒ 5 ◦ 1 = 6 ⇒ 5 ◦ 4 = 3
1 ◦ 5 = 0 ⇒ 2 ◦ 5 = 6 ⇒ 2 ◦ 4 = 0
1 ◦ 6 = 4 ⇒ 3 ◦ 2 = 6 ⇒ 6 ◦ 4 = 1
2 ◦ 1 = 4 ⇒ 5 ◦ 2 = 0 ⇒ 6 ◦ 5 = 3
2 ◦ 2 = 3 ⇒ 6 ◦ 1 = 0 ⇒ 5 ◦ 5 = 4
2 ◦ 6 = 1 ⇒ 3 ◦ 6 = 0 ⇒ 3 ◦ 5 = 1

Fig. 2d.3.

(e) m-inverse loops of order 9 with an inverse cycle of length 8.

We assume that J = (e)(0 1 2 · · · 7) and that 0 ◦ 2 = v, v �= 0, 2 or e as usual.
Arithmetic is modulo 8.

When n−1 = 8 is relatively prime to 3m+1: that is, when m is even, 0◦(v−1) = 7
and 0 ◦ (9− v) = 2− v by Lemma 2.1. Also, J is then an automorphism of the loop.

Neither v = 1 nor v = 3 is possible by Corollary 2.2. If v = 4, 0 ◦ 2 = 4, 0 ◦ 3 = 7
and 0 ◦ 5 = 6. If v = 5, 0 ◦ 2 = 5, 0 ◦ 4 = 7 and 0 ◦ 4 = 5; a contradiction. If v = 6,
0 ◦ 2 = 6, 0 ◦ 5 = 7 and 0 ◦ 3 = 4. If v = 7, 0 ◦ 2 = 7, 0 ◦ 6 = 7 and 0 ◦ 2 = 3; which
are contradictory. Thus, when m is even, v = 4 or 6 are the only possibilities.

Since in general, by Lemma 2.1, the entry k in cell (0, h) determines the entries
in two other cells of row 0 and since there are all together seven cells of this row to
be filled (see Figure 2e.1), one cell (0, h) must have an entry k such that it coincides
with the cells (0, k−h+1) and (0, n−k). Such a coincidence occurs only when h = 6
and k = 3. Thus, if 0 ◦ 2 = 4, 0 ◦ 3 = 7 and 0 ◦ 5 = 6 or if 0 ◦ 2 = 6, 0 ◦ 5 = 7 and
0 ◦ 3 = 4, we must also have 0 ◦ 6 = 3. To complete the entries of row 0, we require
0 ◦ 0 = w where w is such that the elements w + 1 and 9 − w are 4 and 7 since the
two remaining cells to be filled are (0, 4) and (0, 7). No such element w exists. We
conclude that no 2, 4 or 6-inverse loops of order 9 with a long inverse cycle exist.

e 0 1 2 3 4 5 6 7
e e 0 1 2 3 4 5 6 7
0 0 · e · · · · · ·

Fig. 2e.1.
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We look next at 1-inverse loops. For a, b, c �= e, a ◦ b = c ⇒ (b − 2) ◦ (c − 1) =
(a−1) ⇒ (c−3)◦(a−2) = (b−3) ⇒ (a−4)◦(b−4) = (c−4) or (a+4)◦(b+4) = (c+4)
since addition is modulo 4. That is, J4 is an automorphism. Since J8 is the identity,
the multiplication of such a loop takes the form shown in Figure 2e.2.

7
6
5
4
3
2
1
0
e

7
6
5
4
3
2
1
0
e

e

0
0

1
1

2
2

3
3

4
4 5 6

5 6
7
7

A B

B + 4 A + 4

Fig. 2e.2.

However, we need to analyse the structure more precisely. In general, the entry
in the cell (a, b) determines five other entries as follows:

a ◦ b = c (b − 2) ◦ (c − 1) = a − 1 (c − 3) ◦ (a − 2) = b − 3
(a − 4) ◦ (b − 4) = c − 4 (b + 2) ◦ (c + 3) = a + 3 (c + 1) ◦ (a + 2) = b + 1

But a ◦ (a− 2) = c ⇒ (a− 4) ◦ (c− 1) = (a− 1) ⇒ (c− 3) ◦ (a− 2) = (a− 5) so,
if c = a + 3, only two of the above six equalities are distinct. We have

a◦ (a−2) = a+3 ⇒ (a−4)◦ (a+2) = (a−1) ⇒ a◦ (a−2) = a−5(≡ a+3 mod 8).

In the Cayley table of the loop, there are 64 − 8 = 56 cells to be filled which do not
contain the identity element e. Since 56 − 2 or 56 − 8 are divisible by 6, either two
or all eight of the cells of type (a, a − 2) must have entry a + 3.

We note further that a◦(a+2) = c ⇒ a◦(c−1) = a−1 so c = a+3 and c = a−1
respectively contradict the unique solubility for x of the equations a ◦ (a + 2) = x
and a◦x = a−1. Thus, a cell of type (a, a+2) must not contain either of the entries
a + 3 or a − 1.

e 0 1 2 3 4 5 6 7
e e 0 1 2 3 4 5 6 7
0 0 6 e 5 1 7 4 3 2
1 1 7 4 e 5 0 3 2 6
2 2 5 3 4 e (?) 6 7 0
3 3 2 6 0 7 e 1 5 4
4 4 3 0 7 6 2 e 1 5
5 5 4 7 6 2 3 0 e 1
6 6 (?) 2 3 4 1 7 0 e
7 7 e 5 1 0 6 2 4 3

Fig. 2e.3.
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Taking the above facts into consideration, our attempts to fill in the Cayley table
by intelligent trial and error failed to yield a complete table but we were able to obtain
two “almost” solutions. (One of these is shown in Figure 2e.3.) There appears to
be no a priori reason why such loops should not exist despite the severe constraints
just described.

It remains to resolve the much harder question of whether proper 3, 5 or 7-inverse
loops of order 9 with a long inverse cycle exist.

(f) m-inverse loops of order 10 with an inverse cycle of length 9.

No such loops exist by Theorem 2.3.

(g) Summary of results regarding proper m-inverse loops, m > 0.

For all orders up to ten inclusive, proper m-inverse loops with a maximum length
inverse cycle do not exist when 3m + 1 is relatively prime to n − 1.

m-inverse loops of order n = 3l + 1 with a maximum length inverse cycle do not
exist. (In particular, such loops do not exist of orders 7 and 10.)

For order 5, only 1-inverse loops exist. There are four isomorphically distinct
such loops.

For order 6, only 3-inverse loops exist.
For order 8, only 2-inverse loops exist.
For order 9, 1-inverse loops may exist. The existence of proper 3, 5 or 7-inverse

loops has not been investigated.
Our next theorem suggests that m-inverse loops with a maximum length inverse

cycle probably do not exist when 3m + 1 is relatively prime to n− 1 except possibly
when n is very large.

Theorem 2.4 An m-inverse loop of order n with (0 1 2 · · · n − 2) as long inverse
cycle and with J = (e)(0 1 2 · · · n − 2) an automorphism can exist only if a cyclic
neofield of the same order n exists.

Proof. We may write the Cayley table of the m-inverse loop in the form shown in
Figure 2g.1, where f ◦ g = afg for f, g ∈ {0, 1, . . . , n − 2}. Then, because J is an
automorphism of the loop, ai+1,j+1 = aij + 1, where arithmetic of indices is modulo
n − 1.

Let Then
p1 = a03 − a02. p′1 = p1 − 1 = a03 − (a02 + 1) = a03 − a13 = an−4,0 − an−3,0.
p2 = a04 − a03. p′2 = p2 − 1 = a04 − (a03 + 1) = a04 − a14 = an−5,0 − an−4,0.
p3 = a05 − a04. p′3 = p3 − 1 = a05 − (a04 + 1) = a05 − a15 = an−6,0 − an−5,0.
. . . . . . . . . . . . . . . . . . . . .
pn−4 = a0,n−2 − a0,n−3. p′n−4 = pn−4 − 1 = a0,n−2 − (a0,n−3 + 1) = a10 − a20.
pn−3 = a00 − a0,n−2. p′n−3 = pn−3 − 1 = a00 − (a0,n−2 + 1) = a00 − a10.

Since no two entries of the second row of the Cayley table are equal, no one of
the pi’s is equal to zero. Since no two entries of the last column of the addition
table are equal, no one of the p′i’s is equal to zero. Thus, for each i, pi �= 0 or 1;
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so each pi ∈ {2, 3, . . . , n − 2}. Also, the partial sums p1 = a03 − a02, p1 + p2 =
a04−a02, . . . , p1 +p2 + · · ·+pn−4 = a0,n−2−a02, p1 +p2 + · · ·+pn−3 = a00−a02 are all
distinct and non-zero modulo n. Furthermore, the partial sums p′1 = an−4,0 − an−3,0,
p′1 + p′2 = an−5,0 − an−3,0, . . . , p

′
1 + p′2 + · · · + p′n−3 = a00 − an−3,0 are all distinct and

non-zero modulo n.

e 1 2 3 · · · n − 2 0
e e 1 2 3 · · · n − 2 0
0 0 e a02 a03 · · · a0,n−2 a00

1 1 a11 e a13 · · · a1,n−2 a10

2 2 a21 a22 e · · · a2,n−2 a20
...

...
...

...
...

...
...

n − 3 n − 3 an−3,1 an−3,2 an−3,3 · · · e an−3,0

n − 2 n − 2 an−2,1 an−2,2 an−2,3 · · · an−2,n−2 e

Fig. 2g.1

We conclude that existence of an m-inverse loop of order n with (0 1 2 · · · n− 2)
as long inverse cycle and with J = (e)(0 1 2 · · · n − 2) an automorphism implies
that a subset of n − 3 (not necessarily distinct) residues modulo n − 1 from the set
{2, 3, . . . , n − 2} can be arranged in a sequence P such that:

(i) the partial sums of the first one, two, . . . , n− 3 elements are all distinct and
non-zero modulo n − 1; and

(ii) when each element of the sequence is reduced by one, the new sequence, P ′

say, also satisfies (i).
But these are exactly the conditions for existence of a cyclic neofield of order n.

(See [2] or [5].) This proves the theorem.

Corollary. An m-inverse loop of order n with (0 1 2 · · · n−2) as long inverse cycle
and with J = (e)(0 1 2 · · ·n − 2) an automorphism exists if a cyclic neofield of the
same order n exists whose addition table, f ⊕ g = afg for f, g �= e, satisfies the
further conditions that a0h = k implies that a0,k−h+1 = n − h and a0,n−h = h − k.

Proof. The corollary follows directly from Theorem 2.4 and Lemma 2.1.

III. The existence of proper m-inverse quasigroups

with a long inverse cycle, m ≥ 1

We shall suppose that the elements of Q are 0, 1, . . . , n − 1 and that the notation is
chosen so that the long inverse cycle is J = (0 1 · · · n− 1). Then aJ = a+ 1 mod n
and a ◦ b = c ⇒ (a − m)Jm ◦ [b − (m + 1)]Jm+1 = (c − m)Jm.

But, ([b− (m+1)]◦ (c−m))Jm ◦ [b− (m+1)]Jm+1 = (c−m)Jm by the m-inverse
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property. So, [b − (m + 1)] ◦ (c − m) = a − m. Iterating this result, we have

a ◦ b = c ⇒ [b − (m + 1)] ◦ (c − m) = a − m

⇒ [c − (2m + 1)] ◦ (a − 2m) = b − (2m + 1)

⇒ [a − (3m + 1)] ◦ [(b − (3m + 1)] = [c − (3m + 1)].

Thus, as was the case for loops, J3m+1 is an automorphism of any m-inverse quasi-
group.

For an m-inverse quasigroup of order 3m + 1, the relation [a − (3m + 1)] ◦ [(b −
(3m + 1)] = [c − (3m + 1)] is equivalent to a ◦ b = c since, in such a quasigroup,
arithmetic of elements is modulo 3m + 1.

For an m-inverse quasigroup of order n, where n is relatively prime to 3m + 1,
the implication a ◦ b = c ⇒ [a − (3m + 1)] ◦ [(b − (3m + 1)] = [c − (3m + 1)] leads
to the implication a ◦ b = c ⇒ (a + h) ◦ (b + h) = (c + h) for all integers h by an
argument exactly similar to the one we used for loops. Thus, in this case, J itself
is an automorphism of the quasigroup. It also follows that such a quasigroup is
(m + l)-inverse for all positive integers l.

Lemma 3.1 In an m-inverse quasigroup (with a long inverse cycle) of order n, where
n is relatively prime to 3m + 1, 0 ◦ h = k implies that 0 ◦ (k − h + 1) = (n − h + 1)
and that 0 ◦ (n − k + 1) = (n − k + h).

Corollary 3.2 When n is relatively prime to 3m + 1 in an m-inverse loop of order
n with a long inverse cycle, 0 ◦ 2 = 3 is impossible unless n = 4.

Proof. The proof of the Lemma is exactly similar to that of Lemma 2.1. It follows
that 0 ◦ 2 = 3 ⇒ 0 ◦ 2 = n − 1 and 0 ◦ (n − 2) = n − 1. These equations are
contradictory except when n = 4.

(a) m-inverse quasigroups of order 4 with an inverse cycle of length 4.

Here, Q = {0, 1, 2, 3} and J = (0 1 2 3). Arithmetic is modulo four. As for the
case of loops, we shall suppose that 0 ◦ 2 = v.

We shall show that proper m-inverse quasigroups of order four with m > 1 do
not exist. However, there exist many proper 1-inverse quasigroups of order four. We
may show this as follows:

We shall discuss only the case when 0 ◦ 2 = 1. We observe that 0 ◦ 2 = 1 ⇒
0 ◦ 0 = 3 ⇒ 2 ◦ 2 = 3. These equalities require that 0 ◦ 1 = 0 or 2 and that 1 ◦ 2 = 0
or 2.

Case (a). 0 ◦ 1 = 2 ⇒ 3 ◦ 1 = 3 ⇒ 3 ◦ 2 = 2, whence 1 ◦ 2 �= 2 so 1 ◦ 2 = 0 in this
case. When 0 ◦ 1 = 2 and 1 ◦ 2 = 0, the multiplication table completes to a unique
latin square as shown in Figure 3(a).1. Since 0 ◦ 3 = 0 ⇒ 1 ◦ 3 = 3 ⇒ 1 ◦ 2 = 0,
1 ◦ 0 = 2 ⇒ 2 ◦ 1 = 0 ⇒ 3 ◦ 3 = 1 and 1 ◦ 1 = 1 ⇒ 3 ◦ 0 = 0 ⇒ 2 ◦ 3 = 2, the
quasigroup so obtained is 1-inverse. Also, it is commutative.

It does not have the right inverse property, and so, as it is commutative, it is
not 0-inverse. For example, (0 ◦ 1) ◦ 1J = (1 ◦ 0) ◦ 1J = 2 ◦ 2 = 3 �= 0 and
(1 ◦ 0) ◦ 0J = (0 ◦ 1) ◦ 0J = 2 ◦ 1 = 0 �= 1. However, because it is commutative, it
has a generalized right (and left) inverse property: namely, (b ◦ a)J ◦ aJ2 = bJ .
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Case (b). 0 ◦ 1 = 0. Since 0 ◦ 2 = 1 and 0 ◦ 0 = 3, this forces 0 ◦ 3 = 2. Then we
have

0 ◦ 1 = 0 ⇒ 3 ◦ 3 = 3 ⇒ 1 ◦ 2 = 2 and 0 ◦ 3 = 2 ⇒ 1 ◦ 1 = 3 ⇒ 3 ◦ 2 = 0,

as shown in Figure 3(a).2. This permits either 1 ◦ 0 = 1 or 1 ◦ 0 = 0.
In the former case, we have 1 ◦ 0 = 1 ⇒ 2 ◦ 0 = 0 ⇒ 2 ◦ 3 = 1, whence the entry

in the cell (2, 1) must be 2. Then 2 ◦ 1 = 2 ⇒ 3 ◦ 1 = 1 ⇒ 3 ◦ 0 = 2 in a 1-inverse
quasigroup. The entry in the cell (1, 3) is now forced to be 0. The Cayley table so
obtained does represent a 1-inverse quasigroup since 1 ◦ 3 = 0 ⇒ 1 ◦ 3 = 0 in such
a quasigroup. This quasigroup is non-commutative. (See Figure 3(a).3.) It does not
have the right inverse property and is not 0-inverse. For example, (1 ◦ 0) ◦ 0J =
1 ◦ 1 = 3 �= 1 and (1 ◦ 0) ◦ 1J = 1 ◦ 2 = 2 �= 0.

(◦) 0 1 2 3
0 3 2 1 0
1 22 13 0 31

2 15 06 3 23

3 05 3 2 14

(◦) 0 1 2 3
0 3 0 1 2
1 · 3 2 ·
2 · · 3 ·
3 · · 0 3

Fig. 3a.1. Fig. 3a.2.

In the alternative case when 1 ◦ 0 = 0, we have 1 ◦ 0 = 0 ⇒ 2 ◦ 3 = 0 ⇒ 1 ◦ 3 = 1.
There are two possible completions of the partial Cayley table so arising. (See
Figure 3(a).4.) It is easy to check that both completions define proper 1-inverse
quasigroups and that one is commutative and one not. (In fact, 2◦0 = 1 ⇒ 2◦0 = 1,
2◦1 = 2 ⇒ 3◦1 = 1 ⇒ 3◦0 = 2 and, alternatively, 2◦0 = 2 ⇒ 2◦1 = 1 ⇒ 3◦0 = 1,
3 ◦ 1 = 2 ⇒ 3 ◦ 1 = 2.)

(◦) 0 1 2 3
0 3 0 1 2
1 1 3 2 0
2 0 2 3 1
3 2 1 0 3

(◦) 0 1 2 3
0 3 0 1 2
1 0 3 2 1
2 · · 3 0
3 · · 0 3

Fig. 3a.3. Fig. 3a.4.

As regards the existence of 2-inverse or 3-inverse quasigroups, we have 0 ◦ 0 =
u ⇒ 1◦ (u−2) = 2 ⇒ (u−1)◦0 = 3 for a 2-inverse quasigroup. If u = 1, 0◦0 = 1 ⇒
0◦0 = 3. If u = 2, 0◦0 = 2 ⇒ 1◦0 = 2. If u = 3, 0◦0 = 3 ⇒ 2◦0 = 3. Each of these
implications is contradictory. If u = 0, 0◦0 = 0 ⇒ 1◦2 = 2 ⇒ 3◦0 = 3 ⇒ 1◦1 = 1.
Because 3 ·2+1 = 7 is relatively prime to 4, J is an automorphism of the quasigroup
and so we also have 2 ◦ 2 = 2 which contradicts 1 ◦ 2 = 2.

For a 3-inverse loop, 0◦ 0 = u ⇒ −4◦ (u− 3) = −3 ⇒ (u− 7) ◦ (−2) = −3. That
is, 0 ◦ 0 = u ⇒ 0 ◦ (u + 1) = 1 ⇒ (u + 1) ◦ 2 = 1. J10 is an automorphism of such a
quasigroup. Since J4 is the identity mapping, it follows that J2 is an automorphism.
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If u = 1, 0 ◦ 0 = 1 ⇒ 0 ◦ 2 = 1. If u = 3, 0 ◦ 0 = 3 ⇒ 0 ◦ 0 = 1. Each of these is
contradictory.

If u = 2, 0 ◦ 0 = 2 ⇒ 0 ◦ 3 = 1 ⇒ 3 ◦ 2 = 1. Using the fact that J2 is
an automorphism and that the body of the Cayley table must be a latin square,
we find that we obtain the Cayley table given in Figure 3a.5. Similarly, if u = 0,
0 ◦ 0 = 0 ⇒ 0 ◦ 1 = 1 ⇒ 1 ◦ 2 = 1, we find that we obtain the Cayley table given
in Figure 3a.6. Both Cayley tables represent 3-inverse quasigroups but neither is
proper. Each is also 1-inverse. Thus, proper m-inverse quasigroups of order four
with m > 1 do not exist, as we claimed.

(◦) 0 1 2 3
0 2 0 3 1
1 3 1 2 0
2 1 3 0 2
3 0 2 1 3

(◦) 0 1 2 3
0 0 1 3 2
1 2 3 1 0
2 1 0 2 3
3 3 2 0 1

Fig. 3a.5. Fig. 3a.6.

(b) m-inverse quasigroups of order 5 with an inverse cycle of length 5.

We assume that J = (0 1 2 · · · 4) and that 0 ◦ 2 = v as usual. Arithmetic is
modulo 5.

When n = 5 is relatively prime to 3m+1: that is, when m �= 5h+3, 0◦(v−1) = 4
and 0◦ (6−v) = 2−v by Lemma 3.1. Also, J is an automorphism of the quasigroup.

If v = 3 or 4, the equalities 0 ◦ 2 = v and 0 ◦ (v − 1) = 4 contradict each other.
When v = 1, the equalities 0 ◦ 2 = v and 0 ◦ (6 − v) = 2 − v contradict each other.
When v = 0, 0 ◦ 2 = 0, 0 ◦ 4 = 4 and 0 ◦ 1 = 2 so the Cayley table takes the form
shown in Figure 3b.1 which clearly cannot be completed. When v = 2, 0 ◦ 2 = 2,
0 ◦ 1 = 4 and 0 ◦ 4 = 0. In this case also, the Cayley table cannot be completed (see
Figure 3b.2). Thus, no 1, 2 or 4-inverse quasigroups of order 5 with a long inverse
cycle exist.

(◦) 0 1 2 3 4
0 · 2 0 · 4
1 0 · 3 1 ·
2 · 1 · 4 2
3 3 · 2 · 0
4 1 4 · 3 ·

(◦) 0 1 2 3 4
0 · 4 2 · 0
1 1 · 0 3 ·
2 · 2 · 1 4
3 0 · 3 · 2
4 3 1 · 4 ·

Fig. 3b.1. Fig. 3b.2.

For a 3-inverse loop, the automorphism J10 is the identity because J5 is the
identity. We have a◦b = c ⇒ (b−4)◦ (c−3) = (a−3) ⇒ (c−2)◦ (a−1) = (b−2) ⇒
a ◦ b = c so, in general, an entry c in cell (a, b) determines the entries in two other
cells. However, a ◦ (a − 1) = (a + 2) ⇒ a ◦ (a − 1) = (a − 3). Since a + 2 ≡ a − 3
mod 5, an entry a + 2 in cell (a, a− 1) determines no others. All together, there are
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25 = (8 × 3) + 1 = (7 × 3) + 4 cells to be filled so either one or four of the cells of
type (a, a−1) must contain a+2. An example of a 3-inverse loop for which 0◦2 = 1
and four of the cells (a, a − 1) contain a + 2 is given in Figure 3b.3.

(◦) 0 1 2 3 4
0 3 0 1 4 2
1 2 1 4 0 3
2 0 4 2 3 1
3 1 3 0 2 4
4 4 2 3 1 0

0 ◦ 2 = 1 ⇒ 3 ◦ 3 = 2 ⇒ 4 ◦ 4 = 0
0 ◦ 0 = 3 ⇒ 1 ◦ 0 = 2 ⇒ 1 ◦ 4 = 3
0 ◦ 3 = 4 ⇒ 4 ◦ 1 = 2 ⇒ 2 ◦ 4 = 1
1 ◦ 3 = 0 ⇒ 4 ◦ 2 = 3 ⇒ 3 ◦ 0 = 1
2 ◦ 0 = 0 ⇒ 1 ◦ 2 = 4 ⇒ 3 ◦ 1 = 3
1 ◦ 1 = 1 ⇒ 2 ◦ 3 = 3 ⇒ 4 ◦ 0 = 4
0 ◦ 1 = 0 ⇒ 2 ◦ 2 = 2 ⇒ 3 ◦ 4 = 4
0 ◦ 4 = 2; 2 ◦ 1 = 4; 3 ◦ 2 = 0; 4 ◦ 3 = 1.

Fig. 3b.3.

(c) m-inverse quasigroups of order 6 with an inverse cycle of length 6.

We assume that J = (0 1 2 · · · 5) and that 0 ◦ 2 = v as usual. Arithmetic is
modulo 6.

In this case, n = 6 is relatively prime to 3m+1 for all values of m, so 0◦(v−1) = 5
and 0◦ (7−v) = 2−v by Lemma 3.1. Also, J is an automorphism of the quasigroup.

We find that when v = 3 or 5, the equalities 0◦2 = v and 0◦(v−1) = 5 contradict
each other. When v = 1, the equalities 0 ◦ 2 = v and 0 ◦ (7 − v) = 2 − v contradict
each other and, when v = 4, the equalities 0 ◦ (v − 1) = 5 and 0 ◦ (7 − v) = 2 − v
contradict each other. When v = 0, 0 ◦ 2 = 0, 0 ◦ 5 = 5 and 0 ◦ 1 = 2. When v = 2,
0 ◦ 2 = 2, 0 ◦ 1 = 5 and 0 ◦ 5 = 0. Thus, v = 0 or 2 are the only possibilities.

Let 0◦3 = w. Then 0◦ (w−2) = 4 and 0◦ (7−w) = 3−w by Lemma 3.1. When
v = 0 or 2, we must have w = 1, 3 or 4. Each choice of w leads to a contradiction.
For example, 0 ◦ 3 = 1 ⇒ 0 ◦ 5 = 4 which is contradictory. Therefore, no m-inverse
quasigroups of order 6 with an inverse cycle of length 6 exist.

(d) m-inverse quasigroups of order 7 with an inverse cycle of length 7.

We assume that J = (0 1 2 · · · 6) and that 0 ◦ 2 = v. Arithmetic is modulo 7.
When n = 7 is relatively prime to 3m + 1, 0 ◦ (v − 1) = 6 and 0 ◦ (8− v) = 2− v

by Lemma 3.1. Also, J is an automorphism of the quasigroup. Since 0 ◦ (v− 1) = 6,
v �= 3 or 6 otherwise 0 ◦ 2 = v and 0 ◦ (v − 1) = 6 are mutually contradictory. If
v = 1, the equalities 0 ◦ 2 = v and 0 ◦ (8 − v) = 2 − v are mutually contradictory.
Thus, v �= 1, 3, 6.

If v = 0, 0 ◦ 2 = 0, 0 ◦ 6 = 6 and 0 ◦ 1 = 2. Because J is an automorphism of
the quasigroup, a ◦ b = c ⇒ (a + h) ◦ (b + h) = (c + h) and so the entries of the
left-to-right broken diagonals headed by 0 ◦ 2 = 0, 0 ◦ 6 = 6 and 0 ◦ 1 = 2 in the
Cayley table of the quasigroup are all determined. We find that the entries of the
cells (a, a + 3) are then forced. In particular, 0 ◦ 3 = 5. By Lemma 3.1, 0 ◦ 3 = 5
does not determine any other entries of row 0. So 0 ◦ 4 = 1 or 3. By Lemma 3.1,
0◦4 = 1 implies that 0◦5 = 4 and 0◦0 = 3. We obtain the quasigroup illustrated in
Figure 3d.1 which is a 0-inverse quasigroup (crossed-inverse quasigroup). Similarly,
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0 ◦ 4 = 3 implies that 0 ◦ 0 = 4 and 0 ◦ 5 = 1. We obtain the quasigroup illustrated
in Figure 3d.2. This also is a 0-inverse quasigroup.

If v = 2, 0 ◦ 2 = 2, 0 ◦ 1 = 6 and 0 ◦ 6 = 0. Again the entries of the cells (a, a+3)
are forced and, in particular, 0 ◦ 3 = 5. Again 0 ◦ 4 = 1 or 3. We obtain two further
0-inverse quasigroups.

If v = 4, 0 ◦ 2 = 4, 0 ◦ 3 = 6 and 0 ◦ 4 = 5. Since J is an automorphism, these
equalities respectively imply that 5 ◦ 0 = 2, 4 ◦ 0 = 3 and 3 ◦ 0 = 1. Also, they imply
that 4 ◦ 6 = 1, 3 ◦ 6 = 2 and 2 ◦ 6 = 0. The equalities 0 ◦ 0 = 0 and 0 ◦ 6 = 3 are then
forced. By Lemma 3.1, 0 ◦ 0 = 0 ⇒ 0 ◦ 1 = 1 and 0 ◦ 6 = 3 ⇒ 0 ◦ 5 = 2. The Cayley
table cannot be completed since 0 ◦ 0 = 0 ⇒ 1 ◦ 1 = 1 and 0 ◦ 5 = 2 ⇒ 1 ◦ 6 = 3
because J is an automorphism.

If v = 5, we have 0 ◦ 2 = 5, 0 ◦ 4 = 6 and 0 ◦ 3 = 4 whence 5 ◦ 0 = 3, 3 ◦ 0 = 2
and 4 ◦ 0 = 1. Also, 4 ◦ 6 = 2, 2 ◦ 6 = 1 and 3 ◦ 6 = 0. 0 ◦ 0 = 0 and 0 ◦ 6 = 3 are
again forced and the Cayley table cannot be completed.

(◦) 0 1 2 3 4 5 6
0 3 2 0 5 1 4 6
1 0 4 3 1 6 2 5
2 6 1 5 4 2 0 3
3 4 0 2 6 5 3 1
4 2 5 1 3 0 6 4
5 5 3 6 2 4 1 0
6 1 6 4 0 3 5 2

(◦) 0 1 2 3 4 5 6
0 4 2 0 5 3 1 6
1 0 5 3 1 6 4 2
2 3 1 6 4 2 0 5
3 6 4 2 0 5 3 1
4 2 0 5 3 1 6 4
5 5 3 1 6 4 2 0
6 1 6 4 2 0 5 3

Fig. 3d.1. Fig. 3d.2.

Thus, no proper m-inverse quasigroups (m > 0) of order 7 with an inverse cycle
of length 7 exist when 3m + 1 is relatively prime to 7. This leaves the case when
m = 2. In this case,

a◦b = c ⇒ (b−3)◦(c−2) = (a−2) ⇒ (c−5)◦(a−4) = (b−5) ⇒ (a−7)◦(b−7) = (c−7)

which is equivalent to a ◦ b = c since addition is modulo 7. Thus, in general, each
relation a ◦ b = c implies two others. Therefore, putting entry c in cell (a, b) forces
two other entries. However, a ◦ (a + 3) = a + 5 ⇒ a ◦ (a + 3) = a − 2. Since
a − 2 ≡ a + 5 mod 7, it is permissible to put the entry a + 5 in the cell (a, a + 3)
without contradiction but such an entry forces no others.
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(◦) 0 1 2 3 4 5 6
0 1 3 0 5 2 6 4
1 5 4 2 0 6 3 1
2 2 6 1 4 5 0 3
3 3 0 5 2 1 4 6
4 0 1 3 6 4 2 5
5 4 5 6 3 0 1 2
6 6 2 4 1 3 5 0

3 ◦ 0 = 3 ⇒ 4 ◦ 1 = 1 ⇒ 5 ◦ 6 = 2
4 ◦ 2 = 3 ⇒ 6 ◦ 1 = 2 ⇒ 5 ◦ 0 = 4

0 ◦ 3 = 5; 1 ◦ 4 = 6; 2 ◦ 5 = 0; 6 ◦ 2 = 4

0 ◦ 0 = 1 ⇒ 4 ◦ 6 = 5 ⇒ 3 ◦ 3 = 2
0 ◦ 1 = 3 ⇒ 5 ◦ 1 = 5 ⇒ 5 ◦ 3 = 3
0 ◦ 2 = 0 ⇒ 6 ◦ 5 = 5 ⇒ 2 ◦ 3 = 4
0 ◦ 4 = 2 ⇒ 1 ◦ 0 = 5 ⇒ 4 ◦ 3 = 6
0 ◦ 5 = 6 ⇒ 2 ◦ 4 = 5 ⇒ 1 ◦ 3 = 0
0 ◦ 6 = 4 ⇒ 3 ◦ 2 = 5 ⇒ 6 ◦ 3 = 1
1 ◦ 1 = 4 ⇒ 5 ◦ 2 = 6 ⇒ 6 ◦ 4 = 3
1 ◦ 2 = 2 ⇒ 6 ◦ 0 = 6 ⇒ 4 ◦ 4 = 4
1 ◦ 5 = 3 ⇒ 2 ◦ 1 = 6 ⇒ 5 ◦ 4 = 0
1 ◦ 6 = 1 ⇒ 3 ◦ 6 = 6 ⇒ 3 ◦ 4 = 1
2 ◦ 0 = 2 ⇒ 4 ◦ 0 = 0 ⇒ 4 ◦ 5 = 2
2 ◦ 2 = 1 ⇒ 6 ◦ 6 = 0 ⇒ 3 ◦ 5 = 4
2 ◦ 6 = 3 ⇒ 3 ◦ 1 = 0 ⇒ 5 ◦ 5 = 1

Fig. 3d.3.

Since there are 49 = 48 + 1 = 45 + 4 = 42 + 7 cells to be filled with entries from
the set {0, 1, 2, . . . , 6} and this is not a multiple of three, either 1, 4, or 7 of the cells
(a, a + 3) must have an entry of the form a + 5. In our example above (Figure 3d.3),
just four of the cells (a, a + 3) have a + 5 as entry.

It is easy to check that the above quasigroup is not 0-inverse. For example,
(0 ◦ 1) ◦ 0J = 3 ◦ 1 = 0 �= 1.

(e) m-inverse quasigroups of order 8 with an inverse cycle of length 8.

We assume that J = (0 1 2 · · · 7) and that 0 ◦ 2 = v. Arithmetic is modulo 8.
When n = 8 is relatively prime to 3m+1: that is, when m is even, 0◦ (v−1) = 7

and 0 ◦ (9 − v) = 2 − v by Lemma 3.1. Also, J is then an automorphism of the
quasigroup.

If v = 0, 0 ◦ 2 = 0, 0 ◦ 7 = 7 and 0 ◦ 1 = 2. If v = 1, 0 ◦ 2 = 1, 0 ◦ 0 = 7 and
0 ◦ 0 = 1; which are contradictory. If v = 2, 0 ◦ 2 = 2, 0 ◦ 1 = 7 and 0 ◦ 7 = 0. If
v = 3, 0 ◦ 2 = 3, 0 ◦ 2 = 7 and 0 ◦ 6 = 7; which are contradictory (as in Corollary
3.2). If v = 4, 0 ◦ 2 = 4, 0 ◦ 3 = 7 and 0 ◦ 5 = 6. If v = 5, 0 ◦ 2 = 5, 0 ◦ 4 = 7 and
0 ◦ 4 = 5; a contradiction. If v = 6, 0 ◦ 2 = 6, 0 ◦ 5 = 7 and 0 ◦ 3 = 4. If v = 7,
0 ◦ 2 = 7, 0 ◦ 6 = 7 and 0 ◦ 2 = 3; which are contradictory. Thus, when m is even,
v = 0, 2, 4 or 6 are the only possibilities.

Since in general, by Lemma 3.1, the entry k in cell (0, h) determines the entries
9−h and 8−k+h in the two other cells (0, k−h+1) and (0, 9−k) of row 0 and since
there are all together eight cells of this row to be filled, some coincidences among
these cells must occur. However, such a coincidence occurs only when h = 6 and
k = 3 and then all three of the cells coincide. In each of the possible cases v = 0, 2, 4
or 6, this leaves four cells of row 0 to be filled. Since each remaining cell that is filled
determines two others distinct from it that are also filled, it is impossible to complete
row 0 in such a way as to define a 2, 4 or 6-inverse quasigroup. We conclude that no
2, 4 or 6-inverse quasigroups of order 8 with a long inverse cycle exist.
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Fig. 3e.1.

We look next at 1-inverse quasigroups. We have a ◦ b = c ⇒ (b − 2) ◦ (c − 1) =
(a−1) ⇒ (c−3)◦(a−2) = (b−3) ⇒ (a−4)◦(b−4) = (c−4) or (a+4)◦(b+4) = (c+4)
since addition is modulo 4. That is, J4 is an automorphism. Since J8 is the identity,
the multiplication of such a quasigroup takes the form shown in Figure 3e.1. However,
we need to analyse the structure more precisely (cf. 1-inverse loops of order 9). In
general, the entry in the cell (a, b) determines five other entries as follows:

a ◦ b = c (b − 2) ◦ (c − 1) = a − 1 (c − 3) ◦ (a − 2) = b − 3

(a − 4) ◦ (b − 4) = c − 4 (b + 2) ◦ (c + 3) = a + 3 (c + 1) ◦ (a + 2) = b + 1

Since J = (0 1 2 · · · 7), we have

a◦ (a−2) = a+3 ⇒ (a−4)◦ (a+2) = (a−1) ⇒ a◦ (a−2) = a−5(≡ a+3 mod 8)

as in the case of loops of order 9. The entry c in each other cell (a, b), b �= a − 2,
determines five others. There are 64 cells to be filled so, since 64−4 = 60 is divisible
by 6 and there are only eight cells of type (a, a − 2), just four of these latter must
contain the entry a + 3.

Also, as in the case of a 1-inverse loop of order 9, no cell of type (a, a + 2) can
contain an entry a+3 or a−1 otherwise unique solubility of equations is contradicted.

Quasigroups satisfying these necessary conditions do exist. An example is given
in Figure 3e.2.

0 1 2 3 4 5 6 7
0 2 3 4 7 1 0 6 5
1 3 0 6 2 5 1 7 4
2 7 2 5 6 0 3 4 1
3 0 6 1 4 2 5 3 7
4 5 4 2 1 6 7 0 3
5 1 5 3 0 7 4 2 6
6 4 7 0 5 3 6 1 2
7 6 1 7 3 4 2 5 0

Fig. 3e.2.
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It remains to resolve the much harder question of whether proper 3, 5 or 7-inverse
quasigroups of order 8 with a long inverse cycle exist (cf. loops of order 9 with a
long inverse cycle).

(f) m-inverse quasigroups of order 9 with an inverse cycle of length 9.

We assume that J = (0 1 2 · · · 8). Arithmetic is modulo 9. Let 0◦1 = u, 0◦2 = v,
0 ◦ 3 = w and 0 ◦ 4 = x. Since n = 9 is relatively prime to 3m + 1 for all values of
m, we can make use of Lemma 3.1 so

0 ◦ 1 = u ⇒ 0 ◦ u = 0 ⇒ 0 ◦ (1 − u) = 1 − u (⇒ 0 ◦ 1 = u);

0 ◦ 2 = v ⇒ 0 ◦ (v − 1) = 8 ⇒ 0 ◦ (1 − v) = 2 − v (⇒ 0 ◦ 2 = v);

0 ◦ 3 = w ⇒ 0 ◦ (w − 2) = 7 ⇒ 0 ◦ (1 − w) = 3 − w (⇒ 0 ◦ 3 = w);

0 ◦ 4 = x ⇒ 0 ◦ (x − 3) = 6 ⇒ 0 ◦ (1 − x) = 4 − x (⇒ 0 ◦ 4 = x).

Also, J is an automorphism of the quasigroup.
We find that u = 0, 1, 5; v = 1, 3, 8; w = 5, 6, 7; and x = 2, 6, 7 lead immediately

to contradictions.

Case (a) 0 ◦ 1 = 2 ⇒ 0 ◦ 2 = 0 and 0 ◦ 8 = 8.
Case (b) 0 ◦ 1 = 3 ⇒ 0 ◦ 3 = 0 and 0 ◦ 7 = 7.
Case (c) 0 ◦ 1 = 4 ⇒ 0 ◦ 4 = 0 and 0 ◦ 6 = 6.
Case (d) 0 ◦ 1 = 6 ⇒ 0 ◦ 6 = 0 and 0 ◦ 4 = 4.
Case (e) 0 ◦ 1 = 7 ⇒ 0 ◦ 7 = 0 and 0 ◦ 3 = 3.
Case (f) 0 ◦ 1 = 8 ⇒ 0 ◦ 8 = 0 and 0 ◦ 2 = 2.

Case (A) 0 ◦ 2 = 4 ⇒ 0 ◦ 3 = 8 and 0 ◦ 6 = 7.
Case (B) 0 ◦ 2 = 5 ⇒ 0 ◦ 4 = 8 and 0 ◦ 5 = 6.
Case (C) 0 ◦ 2 = 6 ⇒ 0 ◦ 5 = 8 and 0 ◦ 4 = 5.
Case (D) 0 ◦ 2 = 7 ⇒ 0 ◦ 6 = 8 and 0 ◦ 3 = 4.

(The remaining values of 0 ◦ 2 are already covered or lead to contradictions.)

0 ◦ 3 = 1 ⇒ 0 ◦ 8 = 7 and 0 ◦ 0 = 2. 0 ◦ 4 = 1 ⇒ 0 ◦ 7 = 6 and 0 ◦ 0 = 3.
0 ◦ 3 = 2 ⇒ 0 ◦ 0 = 7 and 0 ◦ 8 = 1. 0 ◦ 4 = 3 ⇒ 0 ◦ 0 = 6 and 0 ◦ 7 = 1.

(The remaining values of 0 ◦ 3 and 0 ◦ 4 are already covered.)

Trial of the various cases shows that the first row of the Cayley table (that
representing the products 0 ◦ z) cannot be completed. For example, if Case (a) is
assumed, then the two possible entries for 0 ◦ 3 give contradictions. If Case (b) is
assumed, then Cases (A) and (D) are not possible. If 0 ◦ 2 = 5 (Case (B)), then
0◦1 = 3, 0◦2 = 5, 0◦3 = 0, 0◦4 = 8, 0◦5 = 6 and 0◦7 = 7, so 0◦0 = 1, 2 or 4. By
Lemma 3.1, 0 ◦ 0 = 1 ⇒ 0 ◦ 2 = 1, 0 ◦ 0 = 2 ⇒ 0 ◦ 3 = 1, 0 ◦ 0 = 4 ⇒ 0 ◦ 5 = 1, all of
which are contradictory. If 0 ◦ 2 = 6 (Case (C)), then 0 ◦ 1 = 3, 0 ◦ 2 = 6, 0 ◦ 3 = 0,
0 ◦ 4 = 5, 0 ◦ 5 = 8 and 0 ◦ 7 = 7, so 0 ◦ 0 = 1, 2 or 4 as before and each of these
values leads to a contradiction.

We conclude that no m-inverse quasigroups of order 9 with an inverse cycle of
length 9 exist.
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(g) Summary of results regarding proper m-inverse quasigroups with
a maximum length inverse cycle,m > 0.

For all orders up to nine inclusive, proper m-inverse quasigroups with a maximum
length inverse cycle do not exist when 3m + 1 is relatively prime to n.

For order 4, only 1-inverse quasigroups exist.
For order 5, only 3-inverse quasigroups exist.
For order 6, no m-inverse quasigroups (m > 0) exist.
For order 7, only 2-inverse quasigroups exist.
For order 8, 1-inverse quasigroups exist. There are no 2, 4 or 6-inverse quasi-

groups. The existence of proper 3, 5 or 7-inverse quasigroups remains to be investi-
gated.

For order 9, no m-inverse quasigroups exist.

Note. Our investigation of the case when n = 7 shows that it is probable that, for
larger n, proper m-inverse quasigroups (m > 0) with an inverse cycle of maximum
length do exist when 3m + 1 is relatively prime to n.

IV. A direct product construction

Let (Q1, ◦) and (Q2,×) be m-inverse quasigroups with respect to the permutations J1,
J2 of Q1, Q2 respectively. Define (x1, x2)J = (x1J1, x2J2), where J is a permutation
of Q1 × Q2. Let |Q1| = n1 and |Q2| = n2.

We may define a binary operation (⊗) on Q1 × Q2 by (x1, x2) ⊗ (y1, y2) = (x1 ◦
y1, x2 × y2). Then, since (x1 ◦ y1)J

m
1 ◦ x1J

m+1
1 = y1J

m
1 and (x2 × y2)J

m
2 × x2J

m+1
2 =

y2J
m
2 , we have

[(x1, x2) ⊗ (y1, y2)]J
m⊗(x1, x2)J

m+1

= (x1 ◦ y1, x2 × y2)J
m ⊗ (x1, x2)J

m+1

= [(x1 ◦ y1)J
m
1 , (x2 × y2)J

m
2 ] ⊗ (x1J

m+1
1 , x2J

m+1
2 )

= [(x1 ◦ y1)J
m
1 ◦ x1J

m+1
1 , (x2 × y2)J

m
2 × x2J

m+1
2 ]

= (y1J
m
1 , y2J

m
2 )

= (y1, y2)J
m.

Thus, (Q1 × Q2,⊗) is an m-inverse quasigroup of order n1n2 relative to the permu-
tation J of Q1 ×Q2. Moreover, if at least one of (Q1, ◦) and (Q2,×) is proper, then
the direct product will be proper.

If J1 defines a long inverse cycle of length h1 of (Q1, ◦) and J2 defines a long
inverse cycle of length h2 of (Q2,×), then J defines an inverse cycle of (Q1 ×Q2,⊗)
of length equal to the least common multiple of h1 and h2.

We have proved:

Theorem 4.1 Let (Q1, ◦) and (Q2,×) be m-inverse quasigroups with respect to the
permutations J1, J2 of Q1, Q2 respectively of which at least one is proper. Then, their
direct product will be a proper m-inverse quasigroup with respect to the permutation
J of Q1 × Q2 defined by (x1, x2)J = (x1J1, x2J2).
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Example 4.1 Let (Q1, ◦) and (Q2,×) be respectively the 0-inverse quasigroup of
order 7 whose Cayley table is given in Figure 3d.1 and the proper 3-inverse quasi-
group of order 5 whose Cayley table is given in Figure 3b.3. Since every 0-inverse
quasigroup (Q1, ◦) is also a 3-inverse quasigroup (because the permutation J1 is an
automorphism), the direct product is a proper 3-inverse quaigroup of order 35 and
has a long inverse cycle of length 35 (equal to the LCM of 7 and 5).

Clearly, we may use a similar procedure to obtain the direct product of any
number of m-inverse quasigroups.

V. A generalization: (r, s, t)-quasigroups

We may generalize the concept of an m-inverse quasigroup in the following way:

Definition. Suppose that there exists a permutation J of the elements of a quasi-
group (Q, ◦) such that, for all a, b ∈ Q, (a ◦ b)Jr ◦ aJs = bJ t. Then (Q, ◦) is an
(r, s, t)-inverse quasigroup.

Let us first observe that

Lemma 5.1 An (r, s, t)-inverse loop (L, ◦) with identity element e in which a◦aJ = e
for all a ∈ L is an r-inverse loop.

Proof. Suppose that (a◦ b)Jr ◦aJs = bJ t (Equation 1) for all pairs of elements a, b in
a loop with identity element e. Since e ◦ eJ = e, we have eJ = e and so eJu = e for
all positive integers u. If we put a = e in Equation 1, we get bJr ◦ eJs = bJ t. That
is, bJr ◦ e = bJ t. Therefore, bJr = bJ t and so t = r. If we put b = e in Equation 1,
we get aJr ◦ aJs = eJ t = e and so aJs = (aJr)J . It follows that s = r + 1.

Thus, s = r + 1 and t = r so the loop is r-inverse.

We shall discuss the construction of (r, s, t)-inverse quasigroups in a forthcoming
paper.
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