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Abstract

A double Dudeney set in Kn is a multiset of Hamilton cycles in Kn

having the property that each 2-path in Kn lies in exactly two of the
cycles. In this paper, we construct a double Dudeney set in Kn when
n = p1p2 · · · ps + 2, where p1, p2, . . . , ps are different odd prime numbers
and s is a natural number.

1 Introduction

A Dudeney set in the complete graph Kn is a set of Hamilton cycles in Kn having
the property that each path of length two (2-path) lies on exactly one of the cycles.
The length of a path is the number of edges in the path. A Dudeney set in Kn has
been constructed when n ≥ 4 is even [4]. In the case when n is odd, a Dudeney set in
Kn has been constructed only when n = 2e +1 (e is a natural number) [6], n = p+2
(p is an odd prime number and 2 or −2 is a primitive root of GF (p)) [1, 3], and in
some other cases when n = p + 2 [3, 5].
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A double Dudeney set in Kn is a multiset of Hamilton cycles having the property
that each 2-path lies on exactly two of the cycles. If there exists a Dudeney set in
Kn, there exists a double Dudeney set in Kn. Except for the above n, it is not known
whether a double Dudeney set of Kn exists.

In this paper we will prove Theorem 1.1. For part of our proof we will use the
same method as used by [4].

Theorem 1.1 There exists a double Dudeney set in Kn when n = p1p2 · · · ps + 2,
where p1, p2, . . . , ps are different odd prime numbers and s is a natural number.

2 Notation and Preliminaries

Let n ≥ 4 be an even number. Put m = n−1 and r = (m−1)/2. Let Kn = (Vn, En)
be the complete graph on n vertices, where Vn is the vertex set and En is the edge
set. From now on, put Vn = {∞}∪Zm = {∞}∪{0, 1, 2, . . . , m−1}, where Zm is the
set of integers modulo m.

For any integer i, 0 ≤ i ≤ m − 1, we define the 1-factor Fi:

Fi = {{∞, i}} ∪ {{a, b} ∈ En | a, b �= ∞, a + b ≡ 2i (mod m)}.

Let σ be the vertex-permutation (∞)(0 1 2 · · · m−1), and put Σ = {σj | 0 ≤
j ≤ m − 1}. Clearly σ induces a permutation of the edges of Kn; we will also
denote this permutation by σ. When C is a set of cycles or circuits in Kn, define
ΣC = {Cτ | C ∈ C, τ ∈ Σ}.

For any edge {a, b} in Kn, we define the length d(a, b):

d(a, b) =

{
(b − a)(mod m) (a, b �= ∞)
∞ (otherwise),

and for any two lengths d1, d2( �= ∞), we define that d1 and d2 are equal as lengths
when d1 = d2 or d1 = −d2 in Zm.

The following proposition is easy to prove.

Proposition 2.1 Let Hi (1 ≤ i ≤ m−1) be a 1-factor in Kn. If F0∪Hi (1 ≤ i ≤ m−
1) is a Hamilton cycle in Kn and ∪m−1

i=1 Hi = En\F0, then Σ{F0∪Hi | 1 ≤ i ≤ m−1}
is a double Dudeney set in Kn.

Let A be a 1-factor in Kn that satisfies A1 and A2:
A1. F0 ∪ A is a Hamilton cycle in Kn.
A2. If S is the multiset {d(a, b) | {a, b} ∈ A}, then we have S = {∞, 1, 2, . . . ,

r}, i.e., A has all lengths.

We construct the complete graph Kn′ by adding a new vertex λ to Kn; that is,
put n′ = n + 1, Kn′ = (Vn′, En′) and Vn′ = Vn ∪ {λ}. Extend σ to be the following
permutation of Vn′, also denoted by σ: σ = (∞)(λ)(0 1 2 · · · m−1). Again, let
Σ = {σj|0 ≤ j ≤ m − 1}.
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If we insert the vertex λ into all the edges in A, we get a set of 2-paths in Kn′.
Denote this set by Aλ, that is,

Aλ = {(a, λ, b) | {a, b} ∈ A}.
We note that paths are undirected, i.e., (a, λ, b) = (b, λ, a). F0 ∪ Aλ is considered to
be a circuit in Kn′.

Proposition 2.2 (Proposition 2.3 [5]) Let A be a 1-factor in Kn which satisfies A1
and A2 above. Assume hi (1 ≤ i ≤ r) is a Hamilton cycle in Kn and Σ{hi | 1 ≤ i ≤
r} is a Dudeney set in Kn. Then

Σ({F0 ∪ Aλ} ∪ {hi | 1 ≤ i ≤ r})
has each 2-path in Kn′ exactly once.

Proposition 2.3 Let A1 and A2 be 1-factors in Kn which satisfy A1 and A2 above.
(A1 = A2 is allowed.) Assume hi (1 ≤ i ≤ 2r) is a Hamilton cycle in Kn and
Σ{hi | 1 ≤ i ≤ 2r} is a double Dudeney set in Kn. Then

Σ({F0 ∪ Aλ
1 , F0 ∪ Aλ

2} ∪ {hi | 1 ≤ i ≤ 2r})
has each 2-path in Kn′ exactly twice, where { } means a multiset.

Proof. The proof is similar to the proof of Proposition 2.2. �

Now we refer to the following famous theorem.

Proposition 2.4 Let m1, m2 be natural numbers with (m1, m2) = 1. Consider an
m2 by m1 rectangle having m2×m1 cells. If a ball comes in diagonally from the upper
left corner and bounces off the edges as in Figure 2.1, then the ball passes through
each cell exactly once and leaves from the lower right corner when m1 and m2 are
odd, from the lower left corner when m1 is odd and m2 is even, and from the upper
right corner when m1 is even and m2 is odd.

Finally, we explain what we mean by exchanging edges between two 1-factors.
Let H1 and H2 be 1-factors in Kn. Assume that H1 ∪ H2 is not hamiltonian and
that we have a cycle C in H1 ∪ H2. Then we exchange edges of H1 and H2 via C to
obtain two new 1-factors H ′

1 and H ′
2:

H ′
1 = (H1 \ C) ∪ (H2 ∩ C), and

H ′
2 = (H2 \ C) ∪ (H1 ∩ C).

3 Property (Bn)

Let n ≥ 4 be an even number. Put m = n − 1 and r = (m − 1)/2. We denote by
(Bn) the following property of Kn:
(Bn) There exist 1-factors Gi, 1 ≤ i ≤ 2r, in Kn such that
(1) F0 ∪ Gi is a Hamilton cycle in Kn (1 ≤ i ≤ 2r),
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m1: even, m2: odd

Figure 2.1

(2) ∪2r
i=1Gi = En \ F0,

(3) Gi has an edge of length 1 (1 ≤ i ≤ 2r).

In this terminology, if we put D = Σ{F0 ∪ Gi | 1 ≤ i ≤ 2r}, D is a double
Dudeney set in Kn from Proposition 2.1.

Proposition 3.1 Let n ≥ 4 be even. If Kn satisfies property (Bn), then there exists
a double Dudeney set in Kn+1.

Proof. From the assumption, there exist 1-factors Gi, 1 ≤ i ≤ 2r, in Kn satisfying
(1), (2), (3) of (Bn).

Let θ be the vertex permutation:

θ =

{
(2 −2)(4 −4)(6 −6) · · · (r −r) (if m ≡ 1 (mod 4))
(2 −2)(4 −4)(6 −6) · · · (r−1 −(r−1)) (if m ≡ 3 (mod 4)).

Then the order of θ is 2 and each edge in F0 is fixed by θ, i.e., θe = e for e∈F0. Put

E(1) = {{a, b} | d(a, b) = 1} \ {{r,−r}};

then we have |E(1)| = 2r.

Claim 3.1 θE(1) = Fr ∪ F−r \ {{∞, r}, {∞,−r}}.
Since the Gi, 1 ≤ i ≤ 2r, satisfy conditions (1) and (2) of (Bn), the 1-factors θGi,

1 ≤ i ≤ 2r, also satisfy conditions (1) and (2) of (Bn), that is, we have,

Claim 3.2
(1) F0 ∪ θGi is a Hamilton cycle in Kn (1 ≤ i ≤ 2r),
(2) ∪2r

i=1θGi = En \ F0.

Proof. (1) Since θ(F0 ∪ Gi) = θF0 ∪ (θGi) = F0 ∪ (θGi), F0 ∪ θGi is a Hamilton
cycle in Kn.
(2) Since ∪Gi = En \ F0, we have θ(∪Gi) = θ(En \ F0) = θEn \ θF0 = En \ F0. �
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Therefore we obtain from Proposition 2.1,

Claim 3.3 Σ{F0 ∪ θGi|1 ≤ i ≤ 2r} is a double Dudeney set in Kn.

Insert the vertex λ into all edges in Fr and F−r and define F λ
r and F λ

−r:

F λ
r = {(a, λ, b) | {a, b} ∈ Fr} and F λ

−r = {(a, λ, b) | {a, b} ∈ F−r},

where (a, λ, b) is a 2-path. Put Dλ = Σ({F0∪F λ
r , F0∪F λ

−r}∪{F0∪θGi | 1 ≤ i ≤ 2r}).
Claim 3.4 Dλ has each 2-path in Kn′ exactly twice.

Proof. From Claim 3.3 and the fact that Fr and F−r satisfy A1 and A2, we
obtain Claim 3.4 by Proposition 2.3. �

We would like to leave λ in the 2-path (∞, λ, r) ∈ F λ
r and λ in the 2-path

(∞, λ,−r) ∈ F λ
−r, and scatter the remaining 2r λs in F λ

r ∪F λ
−r over {θGi | 1 ≤ i ≤ 2r}.

From Claim 3.1, for any i, 1 ≤ i ≤ 2r, there is exactly one edge ei = {ai, bi}
(ai, bi �= ∞) that is in both θGi and Fr ∪ F−r. Denote by θG′

i the set of edges and
the 2-path obtained from θGi by inserting λ into the edge ei, i.e.,

θG′
i = θGi \ {{ai, bi}} ∪ {(ai, λ, bi)}.

Define
F ′

r = Fr \ {{∞, r}} ∪ {(∞, λ, r)} and

F ′
−r = F−r \ {{∞,−r}} ∪ {(∞, λ,−r)},

where (∞, λ, r) and (∞, λ,−r) are 2-paths. Put

D = Σ
(
{F0 ∪ F ′

r, F0 ∪ F ′
−r} ∪ {F0 ∪ θG′

i | 1 ≤ i ≤ 2r}
)

.

Then we have

Claim 3.5 D is a double Dudeney set in Kn′.

Proof. Each element of D is clearly a Hamilton cycle in Kn′. The set of all 2-paths
in D and the set of all 2-paths in Dλ are the same. Hence D has each 2-path in Kn′

exactly twice by Claim 3.4. Therefore D is a double Dudeney set in Kn. �

This completes the proof of Proposition 3.1. �

Proposition 3.2 Kp+1 satisfies property (Bp+1), where p is an odd prime number.

Proof. Put Gi = Fi, 1 ≤ i ≤ p − 1, then the Gi, 1 ≤ i ≤ p − 1, satisfy (1), (2),
(3) of property (Bp+1). �

From Propositions 3.1 and 3.2, we obtain,

Proposition 3.3 There exists a double Dudeney set in Kp+2 where p is an odd
prime number.
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4 A proof of Theorem 1.1

To prove Theorem 1.1, we only have to prove Proposition 4.1 from Proposition 3.1.

Proposition 4.1 Kn satisfies property (Bn) when n = p1p2 · · · ps + 1, where p1, p2,
. . . , ps are different odd prime numbers and s is a natural number.

Proof. We will prove the proposition by induction on s. When s = 1, the propo-
sition holds from Proposition 3.2. Assume s ≥ 2. We can assume p1 < p2 < . . . < ps

without loss of generality. Put m1 = p1, m2 = p2p3 · · · ps and m = m1m2. Put
nl = ml + 1 (l = 1, 2) and n = m + 1. Note that Kn1 satisfies property (Bn1)
from Proposition 3.2, and Kn2 satisfies property (Bn2) from the hypothesis of the
induction. Now we will show that Kn satisfies property (Bn).

For l = 1, 2, put rl = (ml−1)/2 and consider the complete graph Knl
= (Vnl

, Enl
),

where Vnl
= {∞l}∪Zml

= {∞l}∪ {0, 1, 2, · · · , ml − 1}. Vertices (other than ∞l) are
considered modulo ml.

Put r = (m − 1)/2 and consider the complete graph Kn = (Vn, En), where
Vn = {∞} ∪ Zm = {∞} ∪ {0, 1, 2, · · · , m − 1}.

Since (m1, m2) = 1, Zm is isomorphic to Zm1 × Zm2 as additive groups, where ×
means a direct product. The isomorphism from Zm to Zm1 × Zm2 is given by

f : a(mod m) 
→ (a(mod m1), a(mod m2)).

We identify Zm and Zm1 ×Zm2 through this mapping. Then we can represent Vn as

Vn = {∞} ∪ {(a1, a2) | a1 ∈ Zm1 , a2 ∈ Zm2}.
For any edge {α, β} in Kn, the length d(α, β) is defined as an element of Zm in Section
2. Since Zm

∼= Zm1 × Zm2 , the length d(α, β) is also represented as an element of
Zm1 × Zm2 :

d(α, β) =

{
((b1 − a1)(mod m1), (b2 − a2)(mod m2)) (α, β �= ∞)
∞ (otherwise),

where we put α = (a1, a2), β = (b1, b2) when α, β �= ∞. And any two lengths
d1, d2( �= ∞) are equal when d1 = d2 or d1 = −d2 in Zm1 ×Zm2 , for example, lengths
(1, 1) and (−1,−1) are equal; (1,−1) and (−1, 1) are equal.

Let σl = (∞l)(0 1 2 · · · ml−1) be a permutation on Vnl
, and put Σ(l) = 〈σl〉

(l = 1, 2). Put σ = (∞)(0 1 2 · · · m−1) and Σ = 〈σ〉. Then σ can be written as
σ = (σ1, σ2) and it is trivial that Σ ∼= Σ(1) × Σ(2). For l = 1, 2, we denote F0 in Knl

by F
(l)
0 , and we denote F0 in Kn by F(0,0):

F(0,0) = {{∞, 0}} ∪ {{α, β} ∈ En | α, β �= ∞, α + β ≡ 0 (mod m)}
= {{∞, (0, 0)}}

∪{{(a1, a2), (b1, b2)} ∈ En |al, bl �= ∞l, al + bl ≡ 0 (mod ml) (l = 1, 2)}.

From our assumption, for l = 1, 2, there are 1-factors G
(l)
1 , G

(l)
2 , . . . , G

(l)
2rl

in Knl

satisfying
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(1) F
(l)
0 ∪ θG

(l)
i is a Hamilton cycle in Knl

(1 ≤ i ≤ 2rl),

(2) ∪2rl
i=1G

(l)
i = Enl

\ F
(l)
0 ,

(3) G
(l)
i has an edge of length 1 (1 ≤ i ≤ 2rl).

We denote by vi and wj the vertices such that (∞1, vi) ∈ G
(1)
i (1 ≤ i ≤ 2r1), and

(∞2, wj) ∈ G
(2)
j (1 ≤ j ≤ 2r2).

Now we define 1-factors in Kn from 1-factors G
(1)
i , 1 ≤ i ≤ 2r1, and G

(2)
j , 1 ≤

j ≤ 2r2, as follows:

(1) For i (1 ≤ i ≤ 2r1) and j (1 ≤ j ≤ 2r2),

G(i,j) = {{∞, (vi, wj)}}
∪{{(vi, a), (vi, b)} | a, b �= ∞2, {a, b} ∈ G

(2)
j }

∪{{(a, wj), (b, wj)} | a, b �= ∞1, {a, b} ∈ G
(1)
i }

∪{{(a1, a2), (b1, b2)} | al, bl �= ∞l (l = 1, 2),

{a1, b1} ∈ G
(1)
i , {a2, b2} ∈ G

(2)
j }.

(2) For i (1 ≤ i ≤ 2r1),

G(i,0) = {{∞, (vi, 0)}}
∪{{vi, a), (vi, b)} | a, b �= ∞2, {a, b} ∈ F

(2)
0 }

∪{{(a1, a2), (b1, b2)} | al, bl �= ∞l(l = 1, 2), {a1, b1} ∈ G
(1)
i ,

a2 + b2 ≡ 0 (mod m2)}.
(3) For j (1 ≤ j ≤ 2r2),

G(0,j) = {{∞, (0, wj)}}
∪{{(a, wj), (b, wj)} | a, b �= ∞1, {a, b} ∈ F

(1)
0 }

∪{{(a1, a2), (b1, b2)} | al, bl �= ∞l(l = 1, 2), a1 + b1 ≡ 0 (mod m1),

{a2, b2} ∈ G
(2)
j }.

It is trivial that these are 1-factors in Kn and any two of these 1-factors have no
common edges.

We can represent these 1-factors in Kn geometrically. Since F
(1)
0 ∪ G

(1)
i (1 ≤ i ≤

2r1) is a Hamilton cycle in Kn1, put

F
(1)
0 ∪ G

(1)
i = (∞1, x1i=0, x2i, x3i, . . . , xn1−1,i=vi),

where xsi ∈ Vn1 (1 ≤ s ≤ n1 − 1), and

{∞1, x1i} ∈ F
(1)
0 , {x1i, x2i} ∈ G

(1)
i , {x2i, x3i} ∈ F

(1)
0 , . . . ,

{xn1−2,i, xn1−1,i} ∈ F
(1)
0 , {xn1−1,i,∞1} ∈ G

(1)
i .

Similarly, since F
(2)
0 ∪ G

(2)
j (1 ≤ j ≤ 2r2) is a Hamilton cycle in Kn2, put

F
(2)
0 ∪ G

(2)
j = (∞2, y1j = 0, y2j , y3j , . . . , yn2−1,j = wj),

71



0
y2j

y3j

...

yn2−2,j

wj

...
...

...
...

...
...

...

0 x2ix3i · · ·
xn1−2,i

↓ vi

· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

∞
Figure 4.1: G(i,j)

where ytj ∈ Vn2 (1 ≤ t ≤ n2 − 1), and

{∞2, y1j} ∈ F
(2)
0 , {y1j , y2j} ∈ G

(2)
j , {y2j, y3j} ∈ F

(2)
0 , . . . ,

{yn2−2,j , yn2−1,j} ∈ F
(2)
0 , {yn2−1,j ,∞2} ∈ G

(2)
j .

The 1-factor G(i,j) (1 ≤ i ≤ 2r1, 1 ≤ j ≤ 2r2) is represented in Figure 4.1.
In the figures each cell represents a vertex ( �= ∞) in Kn: the cell (xsi, ytj) repre-

sents the vertex (xsi, ytj). The 1-factor G(i,0) (1 ≤ i ≤ 2r1) is represented in Figure

4.2, where we can take any G
(2)
j (1 ≤ j ≤ 2r2).

The 1-factor G(0,j) (1 ≤ j ≤ 2r2) is represented in Figure 4.3, where we can take

any G
(1)
i (1 ≤ i ≤ 2r1).

The 1-factor F(0,0) is represented in Figure 4.4, where we can take any G
(1)
i and

G
(2)
j (1 ≤ i ≤ 2r1, 1 ≤ j ≤ 2r2).

Put
G1 = {G(i,j) | 1 ≤ i ≤ 2r1, 1 ≤ j ≤ 2r2},
G2 = {G(i,0) | 1 ≤ i ≤ 2r1},
G3 = {G(0,j) | 1 ≤ j ≤ 2r2}, and
G = G1 ∪ G2 ∪ G3.

Claim 4.1
(1) F(0,0) ∪ G(i,j) is a Hamilton cycle (1 ≤ i ≤ 2r1, 1 ≤ j ≤ 2r2).
(2) F(0,0) ∪ G(i,0) is not a Hamilton cycle (1 ≤ i ≤ 2r1).
(3) F(0,0) ∪ G(0,j) is not a Hamilton cycle (1 ≤ j ≤ 2r2).
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y3j
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wj
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...
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...

...

0 x2ix3i · · · vi

· · ·
· · ·

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

∞

Figure 4.2: G(i,0)

0
y2j

y3j

...

wj

...
...

...
...

...
...

...

0 x2ix3i · · · vi

· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

∞
Figure 4.3: G(0,j)
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0
y2j

y3j

...

wj

...
...

...
...

...
...

...

0 x2ix3i · · · vi

· · ·
· · ·

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

∞

Figure 4.4: F(0,0)

Proof.
(1) Combining Figures 4.1 and 4.4, we obtain Figure 4.5.

Then we see F(0,0) ∪ G(i,j) is a Hamilton cycle from Proposition 2.4.
(2) Combining Figures 4.2 and 4.4, we obtain Figure 4.6.

Then we see F(0,0) ∪G(i,0) is the union of one cycle of length m1 + 1 and r2 cycles
of length 2m1.
(3) Combining Figures 4.3 and 4.4, we obtain Figure 4.7.

Then we see F(0,0) ∪G(0,j) is the union of one cycle of length m2 +1 and r1 cycles
of length 2m2. �

Claim 4.2 G satisfies conditions (2) and (3) of property (Bn), that is,

∪G∈GG = En \ F(0,0),

and G (G ∈ G) has an edge of length 1 = (1, 1).

Proof. Since | ∪G∈G G| = n(n−2)/2 and (∪G∈GG)∩F(0,0) = ∅, we have ∪G∈GG =
En \ F(0,0).

From our assumption, there exists an edge {a, b} of length 1 in G
(1)
i and there

exists an edge {c, d} of length 1 in G
(2)
j . The edges {(a, c), (b, d)} and {(a, d), (b, c)}

are in G(i,j) and their lengths are 1 = (1, 1) and (1,−1). So, there exists an edge of
length 1 in G(i,j).

As there exists an edge of length 1 in F0, proofs about G(i,0) and G(0,j) are similar.
�

For any G ∈ G2 ∪G3, F(0,0) ∪G is not a Hamilton cycle from Claim 4.1, so we will
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0
y2j

y3j

...

wj

...
...

...
...

...
...

...

0 x2ix3i · · · vi

· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

∞

∞

Figure 4.5: F(0,0) ∪ G(i,j)

0
y2j

y3j

...

wj

...
...

...
...

...
...

...

0 x2ix3i · · · vi

· · ·
· · ·

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

∞∞

Figure 4.6: F(0,0) ∪ G(i,0)

75



0
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y3j

...

wj

...
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...
...

...
...

...

0 x2ix3i · · · vi

· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

∞

∞

Figure 4.7: F(0,0) ∪ G(0,j)

exchange edges of 1-factors in G2 ∪ G3 and 1-factors in G1.
Let G(i,0) ∈ G2. Consider the union of G(i,0) and G(i,j) (1 ≤ i ≤ 2r1, 1 ≤ j ≤ 2r2)

(Figure 4.8).
It contains r1 2m2-cycles and one (m2 + 1)-cycle. Let C1 be the (m2 + 1)-cycle.

Exchange their edges via C1. Then we obtain (Figures 4.9, 4.10)

G(i,0)(i,j) = (G(i,0) \ C1) ∪ (G(i,j) ∩ C1); and

G∗
(i,j)(i,0) = (G(i,j) \ C1) ∪ (G(i,0) ∩ C1).

Claim 4.3
(1) F(0,0) ∪ G(i,0)(i,j) is a Hamilton cycle (1 ≤ i ≤ 2r1, 1 ≤ j ≤ 2r2).
(2) F(0,0) ∪ G∗

(i,j)(i,0) is a Hamilton cycle (1 ≤ i ≤ 2r1, 1 ≤ j ≤ 2r2).
(3) Both G(i,0)(i,j) and G∗

(i,j)(i,0) have an edge of length 1 (1 ≤ i ≤ 2r1, 1 ≤ j ≤
2r2).

Proof.
(1) F(0,0) ∪ G(i,0)(i,j) is shown in Figure 4.11, so (1) is trivial.
(2) F(0,0)∪G∗

(i,j)(i,0) is shown in Figure 4.12. We have (m1−1, m2) = 1 from minimality
of p1. So, (2) holds from Proposition 2.4.
(3) Both G(i,0) and G(i,j) have an edge of length 1 from Claim 4.2. The cycle C1

doesn’t have edges of length 1 because the length of any edge in C1 is of type (0, a)
or ∞. So, after the exchange of edges, both G(i,0)(i,j) and G∗

(i,j)(i,0) still have an edge
of length 1. �
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Figure 4.8: G(i,0) ∪ G(i,j)
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Figure 4.9: G(i,0)(i,j)
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Figure 4.10: G∗
(i,j)(i,0)
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Figure 4.11: F(0,0) ∪ G(i,0)(i,j)
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Figure 4.12: F(0,0) ∪ G∗
(i,j)(i,0)

Next, let G(0,j) ∈ G3. Consider the union of G(0,j) and G(i,j) (1 ≤ i ≤ 2r1, 1 ≤
j ≤ 2r2) (Figure 4.13). It contains r2 2m1-cycles and one (m1 + 1)-cycle. Let C1 be
the (m1 + 1)-cycle and C2 the uppermost 2m1-cycle.

If (m1, m2 − 1) = 1, then exchange edges of G(0,j) and G(i,j) via C1. If (m1, m2 −
1) �= 1, then exchange edges of G(0,j) and G(i,j) via C2. Then we obtain (Figures
4.14, 4.15, 4.16, 4.17)

G(0,j)(i,j) = (G(0,j) \ C) ∪ (G(i,j) ∩ C); and

G∗
(i,j)(0,j) = (G(i,j) \ C) ∪ (G(0,j) ∩ C),

where C = C1 if (m1, m2 − 1) = 1; C = C2 if (m1, m2 − 1) �= 1.

Claim 4.4
(1) F(0,0) ∪ G(0,j)(i,j) is a Hamilton cycle (1 ≤ i ≤ 2r1, 1 ≤ j ≤ 2r2).
(2) F(0,0) ∪ G∗

(i,j)(0,j) is a Hamilton cycle (1 ≤ i ≤ 2r1, 1 ≤ j ≤ 2r2).
(3) Both G(0,j)(i,j) and G∗

(i,j)(0,j) have an edge of length 1 (1 ≤ i ≤ 2r1, 1 ≤ j ≤ 2r2).

Proof. If (m1, m2 − 1) = 1, then we exchange edges via C1. In this case, proofs
of (1), (2), (3) are similar to the proof of Claim 4.3. So, we will omit them.

Assume (m1, m2 − 1) �= 1. Then we have (m1, m2 − 2) = 1 because m1 is prime.
Since (m1, 2) = 1, (1) holds from Proposition 2.4. Since (m1, m2 − 2) = 1, (2) holds
from Proposition 2.4.

Next we will prove (3). Both G(0,j) and G(i,j) have an edge of length 1 from Claim
4.2. If C2 has no edges of length 1, G(0,j)(i,j) and G∗

(i,j)(0,j) still have an edge of length
1 trivially.

Assume G(0,j) ∩ C2 has an edge of length 1. Let {(a, 0), (b, c)} be the edge in
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Figure 4.13: G(0,j) ∪ G(i,j)

0
y2j

y3j

...

wj

...
...

...
...

...
...

...

0 x2ix3i · · · vi

· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

∞

Figure 4.14: G(0,j)(i,j) (the case (m1, m2 − 1) = 1)
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Figure 4.15: G∗
(i,j)(0,j) (the case (m1, m2 − 1) = 1)
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Figure 4.16: G(0,j)(i,j) (the case (m1, m2 − 1) �= 1
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Figure 4.17: G∗
(i,j)(0,j) (the case (m1, m2 − 1) �= 1)

G(0,j) ∩ C2 of length 1 = (1, 1). Then (b − a, c) or (a − b,−c) is (1, 1). There exists

an edge {e, f} ∈ G
(1)
i of length 1. Then the edges {(e, 0), (f, c)} and {(f, 0), (e, c)}

belong to G(i,j) ∩C2. One of these edges is of length 1 = (1, 1). (The other edge is of
length (1,−1).) Therefore, after exchanging edges, both G(0,j)(i,j) and G∗

(i,j)(0,j) have
an edge of length 1.

Assume G(i,j)∩C2 has an edge of length 1. Then G(0,j)∩C2 has an edge of length
1.

Therefore we have completed the proof. �

Now we specify 1-factors G(i,j) ∈ G1 for exchanging edges of G(i,0) ∈ G2 and
G(0,j) ∈ G3. For G(i,0) ∈ G2, we exchange edges of G(i,0) and G(i,−1) when 1 ≤ i ≤ r1;
G(i,0) and G(i,1) when r1 + 1 ≤ i ≤ 2r1. For G(0,j) ∈ G3, we exchange edges of G(0,j)

and G(1,j) when 1 ≤ j ≤ r2; G(0,j) and G(−1,j) when r2 + 1 ≤ j ≤ 2r2. Put

G′
1 = {G∗

(i,−1)(i,0) | 1≤i≤r1} ∪ {G∗
(i,1)(i,0) | r1+1≤i≤2r1}

∪{G∗
(1,j)(0,j) | 1≤j≤r2} ∪ {G∗

(−1,j)(0,j) | r2+1≤j≤2r2}
∪ (G1 \ {G(i,−1) | 1≤i≤r1} \ {G(i,1) | r1+1≤i≤2r1}

\{G(1,j) | 1≤j≤r2} \ {G(−1,j) | r2+1≤j≤2r2}),
G′

2 = {G(i,0)(i,−1) | 1≤i≤r1} ∪ {G(i,0)(i,1) | r1+1≤i≤2r1},
G′

3 = {G(0,j)(1,j) | 1≤j≤r2} ∪ {G(0,j)(−1,j) | r2+1≤j≤2r2}, and
G′ = G′

1 ∪ G′
2 ∪ G′

3.

Claim 4.5 The 1-factors G ∈ G′ satisfy (1), (2), (3) of property (Bn), that is,
(1) F(0,0) ∪ G is a Hamilton cycle in Kn (G ∈ G′),
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(2) ∪G∈G′G = En \ F(0,0),
(3) G has an edge of length 1 (G ∈ G′).

Proof. Condition (1) holds from Claims 4.1, 4.3 and 4.4. Since G′ is obtained
by exchanging edges in G, we have ∪G∈GG = ∪G∈G′G. So (2) holds from Claim 4.2.
Condition (3) holds from Claims 4.2, 4.3 and 4.4. �

Hence Kn satisfies property (Bn). This completes the proof of Proposition 4.1.
�

Therefore we complete the proof of Theorem 1.1.

Acknowledgments
The authors would like to express their thanks to the referee for helpful comments.

References

[1] K. Heinrich, M. Kobayashi and G. Nakamura, Dudeney’s Round Table Problem,
Annals of Discrete Math. 92 (1991), 107–125.

[2] K. Heinrich, D. Langdeau and H. Verrall, Covering 2-paths uniformly, J. Com-
bin. Des. 8 (2000), 100–121.

[3] M. Kobayashi, J. Akiyama and G. Nakamura, On Dudeney’s round table prob-
lem for p + 2, Ars Combinatoria, to appear.

[4] M. Kobayashi, Kiyasu-Z. and G. Nakamura, A solution of Dudeney’s round
table problem for an even number of people, J. Combinatorial Theory (A) 62
(1993), 26–42.

[5] M. Kobayashi, N. Mutoh, Kiyasu-Z. and G. Nakamura, New Series of Dudeney
Sets for p + 2 Vertices, Ars Combinatoria, to appear.

[6] G. Nakamura, Kiyasu-Z. and N. Ikeno, Solution of the round table problem for
the case of pk +1 persons, Commentarii Mathematici Universitatis Sancti Pauli
29 (1980), 7–20.

[7] H. Verrall, Pairwise Compatible Hamilton Decompositions of Kn, J. Combina-
torial Theory (A) 79 (1997) 209-222.

(Received 2/5/2001)

83


