Double Dudeney sets for an odd number of vertices

Midori Kobayashi* Nobuaki Mutoh
School of Administration and Informatics
University of Shizuoka, Shizuoka 422-8526
Japan
Kiyasu-Zen'iti
Semiconductor Research Institute
Sendaisi Aobaku Kawauti 980-0862
Japan
Gisaku Nakamura
Tokai University
Shibuyaku Tokyo 151-0063
Japan

Abstract

A double Dudeney set in K_{n} is a multiset of Hamilton cycles in K_{n} having the property that each 2-path in K_{n} lies in exactly two of the cycles. In this paper, we construct a double Dudeney set in K_{n} when $n=p_{1} p_{2} \cdots p_{s}+2$, where $p_{1}, p_{2}, \ldots, p_{s}$ are different odd prime numbers and s is a natural number.

1 Introduction

A Dudeney set in the complete graph K_{n} is a set of Hamilton cycles in K_{n} having the property that each path of length two (2-path) lies on exactly one of the cycles. The length of a path is the number of edges in the path. A Dudeney set in K_{n} has been constructed when $n \geq 4$ is even [4]. In the case when n is odd, a Dudeney set in K_{n} has been constructed only when $n=2^{e}+1$ (e is a natural number) [6], $n=p+2$ (p is an odd prime number and 2 or -2 is a primitive root of $G F(p)$) [1, 3], and in some other cases when $n=p+2[3,5]$.

[^0]A double Dudeney set in K_{n} is a multiset of Hamilton cycles having the property that each 2-path lies on exactly two of the cycles. If there exists a Dudeney set in K_{n}, there exists a double Dudeney set in K_{n}. Except for the above n, it is not known whether a double Dudeney set of K_{n} exists.

In this paper we will prove Theorem 1.1. For part of our proof we will use the same method as used by [4].
Theorem 1.1 There exists a double Dudeney set in K_{n} when $n=p_{1} p_{2} \cdots p_{s}+2$, where $p_{1}, p_{2}, \ldots, p_{s}$ are different odd prime numbers and s is a natural number.

2 Notation and Preliminaries

Let $n \geq 4$ be an even number. Put $m=n-1$ and $r=(m-1) / 2$. Let $K_{n}=\left(V_{n}, E_{n}\right)$ be the complete graph on n vertices, where V_{n} is the vertex set and E_{n} is the edge set. From now on, put $V_{n}=\{\infty\} \cup Z_{m}=\{\infty\} \cup\{0,1,2, \ldots, m-1\}$, where Z_{m} is the set of integers modulo m.

For any integer $i, 0 \leq i \leq m-1$, we define the 1-factor F_{i} :

$$
F_{i}=\{\{\infty, i\}\} \cup\left\{\{a, b\} \in E_{n} \mid a, b \neq \infty, a+b \equiv 2 i(\bmod m)\right\} .
$$

Let σ be the vertex-permutation $(\infty)\left(\begin{array}{llll}0 & 1 & \cdots & m-1) \text {, and put } \Sigma=\left\{\sigma^{j} \mid 0 \leq\right. \\ 0\end{array}\right.$ $j \leq m-1\}$. Clearly σ induces a permutation of the edges of K_{n}; we will also denote this permutation by σ. When \mathcal{C} is a set of cycles or circuits in K_{n}, define $\Sigma \mathcal{C}=\left\{C^{\tau} \mid C \in \mathcal{C}, \tau \in \Sigma\right\}$.

For any edge $\{a, b\}$ in K_{n}, we define the length $d(a, b)$:

$$
d(a, b)= \begin{cases}(b-a)(\bmod m) & (a, b \neq \infty) \\ \infty & \text { (otherwise) }\end{cases}
$$

and for any two lengths $d_{1}, d_{2}(\neq \infty)$, we define that d_{1} and d_{2} are equal as lengths when $d_{1}=d_{2}$ or $d_{1}=-d_{2}$ in Z_{m}.

The following proposition is easy to prove.
Proposition 2.1 Let $H_{i}(1 \leq i \leq m-1)$ be a 1-factor in K_{n}. If $F_{0} \cup H_{i}(1 \leq i \leq m-$ 1) is a Hamilton cycle in K_{n} and $\cup_{i=1}^{m-1} H_{i}=E_{n} \backslash F_{0}$, then $\Sigma\left\{F_{0} \cup H_{i} \mid 1 \leq i \leq m-1\right\}$ is a double Dudeney set in K_{n}.

Let A be a 1-factor in K_{n} that satisfies A1 and A2:
A1. $F_{0} \cup A$ is a Hamilton cycle in K_{n}.
A2. If S is the multiset $\{d(a, b) \mid\{a, b\} \in A\}$, then we have $S=\{\infty, 1,2, \ldots$, $r\}$, i.e., A has all lengths.

We construct the complete graph $K_{n^{\prime}}$ by adding a new vertex λ to K_{n}; that is, put $n^{\prime}=n+1, K_{n^{\prime}}=\left(V_{n^{\prime}}, E_{n^{\prime}}\right)$ and $V_{n^{\prime}}=V_{n} \cup\{\lambda\}$. Extend σ to be the following permutation of $V_{n^{\prime}}$, also denoted by $\sigma: \sigma=(\infty)(\lambda)\left(\begin{array}{ll}0 & 1\end{array} \cdots m-1\right)$. Again, let $\Sigma=\left\{\sigma^{j} \mid 0 \leq j \leq m-1\right\}$.

If we insert the vertex λ into all the edges in A, we get a set of 2-paths in $K_{n^{\prime}}$. Denote this set by A^{λ}, that is,

$$
A^{\lambda}=\{(a, \lambda, b) \mid\{a, b\} \in A\} .
$$

We note that paths are undirected, i.e., $(a, \lambda, b)=(b, \lambda, a) . F_{0} \cup A^{\lambda}$ is considered to be a circuit in $K_{n^{\prime}}$.
Proposition 2.2 (Proposition 2.3 [5]) Let A be a 1-factor in K_{n} which satisfies A1 and A2 above. Assume $h_{i}(1 \leq i \leq r)$ is a Hamilton cycle in K_{n} and $\Sigma\left\{h_{i} \mid 1 \leq i \leq\right.$ $r\}$ is a Dudeney set in K_{n}. Then

$$
\Sigma\left(\left\{F_{0} \cup A^{\lambda}\right\} \cup\left\{h_{i} \mid 1 \leq i \leq r\right\}\right)
$$

has each 2-path in $K_{n^{\prime}}$ exactly once.
Proposition 2.3 Let A_{1} and A_{2} be 1-factors in K_{n} which satisfy $A 1$ and $A 2$ above. $\left(A_{1}=A_{2}\right.$ is allowed.) Assume $h_{i}(1 \leq i \leq 2 r)$ is a Hamilton cycle in K_{n} and $\Sigma\left\{h_{i} \mid 1 \leq i \leq 2 r\right\}$ is a double Dudeney set in K_{n}. Then

$$
\Sigma\left(\left\{F_{0} \cup A_{1}^{\lambda}, F_{0} \cup A_{2}^{\lambda}\right\} \cup\left\{h_{i} \mid 1 \leq i \leq 2 r\right\}\right)
$$

has each 2-path in $K_{n^{\prime}}$ exactly twice, where \{ \} means a multiset.
Proof. The proof is similar to the proof of Proposition 2.2.
Now we refer to the following famous theorem.
Proposition 2.4 Let m_{1}, m_{2} be natural numbers with $\left(m_{1}, m_{2}\right)=1$. Consider an m_{2} by m_{1} rectangle having $m_{2} \times m_{1}$ cells. If a ball comes in diagonally from the upper left corner and bounces off the edges as in Figure 2.1, then the ball passes through each cell exactly once and leaves from the lower right corner when m_{1} and m_{2} are odd, from the lower left corner when m_{1} is odd and m_{2} is even, and from the upper right corner when m_{1} is even and m_{2} is odd.

Finally, we explain what we mean by exchanging edges between two 1-factors. Let H_{1} and H_{2} be 1-factors in K_{n}. Assume that $H_{1} \cup H_{2}$ is not hamiltonian and that we have a cycle C in $H_{1} \cup H_{2}$. Then we exchange edges of H_{1} and H_{2} via C to obtain two new 1-factors H_{1}^{\prime} and H_{2}^{\prime} :

$$
\begin{gathered}
H_{1}^{\prime}=\left(H_{1} \backslash C\right) \cup\left(H_{2} \cap C\right), \text { and } \\
H_{2}^{\prime}=\left(H_{2} \backslash C\right) \cup\left(H_{1} \cap C\right) .
\end{gathered}
$$

3 Property (B_{n})

Let $n \geq 4$ be an even number. Put $m=n-1$ and $r=(m-1) / 2$. We denote by $\left(\mathrm{B}_{n}\right)$ the following property of K_{n} :
$\left(\mathrm{B}_{n}\right)$ There exist 1-factors $G_{i}, 1 \leq i \leq 2 r$, in K_{n} such that
(1) $F_{0} \cup G_{i}$ is a Hamilton cycle in $K_{n}(1 \leq i \leq 2 r)$,

Figure 2.1
(2) $\cup_{i=1}^{2 r} G_{i}=E_{n} \backslash F_{0}$,
(3) G_{i} has an edge of length $1(1 \leq i \leq 2 r)$.

In this terminology, if we put $D=\Sigma\left\{F_{0} \cup G_{i} \mid 1 \leq i \leq 2 r\right\}, D$ is a double Dudeney set in K_{n} from Proposition 2.1.

Proposition 3.1 Let $n \geq 4$ be even. If K_{n} satisfies property $\left(\mathrm{B}_{n}\right)$, then there exists a double Dudeney set in K_{n+1}.

Proof. From the assumption, there exist 1-factors $G_{i}, 1 \leq i \leq 2 r$, in K_{n} satisfying (1), (2), (3) of (B_{n}).

Let θ be the vertex permutation:

$$
\theta= \begin{cases}(2-2)(4-4)(6-6) \cdots(r-r) & (\text { if } m \equiv 1(\bmod 4)) \\ (2-2)(4-4)(6-6) \cdots(r-1-(r-1)) & (\text { if } m \equiv 3(\bmod 4))\end{cases}
$$

Then the order of θ is 2 and each edge in F_{0} is fixed by θ, i.e., $\theta e=e$ for $e \in F_{0}$. Put

$$
E^{(1)}=\{\{a, b\} \mid d(a, b)=1\} \backslash\{\{r,-r\}\} ;
$$

then we have $\left|E^{(1)}\right|=2 r$.
Claim 3.1 $\theta E^{(1)}=F_{r} \cup F_{-r} \backslash\{\{\infty, r\},\{\infty,-r\}\}$.
Since the $G_{i}, 1 \leq i \leq 2 r$, satisfy conditions (1) and (2) of $\left(\mathrm{B}_{n}\right)$, the 1-factors θG_{i}, $1 \leq i \leq 2 r$, also satisfy conditions (1) and (2) of $\left(\mathrm{B}_{n}\right)$, that is, we have,

Claim 3.2

(1) $F_{0} \cup \theta G_{i}$ is a Hamilton cycle in $K_{n}(1 \leq i \leq 2 r)$,
(2) $\cup_{i=1}^{2 r} \theta G_{i}=E_{n} \backslash F_{0}$.

Proof. (1) Since $\theta\left(F_{0} \cup G_{i}\right)=\theta F_{0} \cup\left(\theta G_{i}\right)=F_{0} \cup\left(\theta G_{i}\right), F_{0} \cup \theta G_{i}$ is a Hamilton cycle in K_{n}.
(2) Since $\cup G_{i}=E_{n} \backslash F_{0}$, we have $\theta\left(\cup G_{i}\right)=\theta\left(E_{n} \backslash F_{0}\right)=\theta E_{n} \backslash \theta F_{0}=E_{n} \backslash F_{0}$.

Therefore we obtain from Proposition 2.1,
Claim 3.3 $\Sigma\left\{F_{0} \cup \theta G_{i} \mid 1 \leq i \leq 2 r\right\}$ is a double Dudeney set in K_{n}.
Insert the vertex λ into all edges in F_{r} and F_{-r} and define F_{r}^{λ} and F_{-r}^{λ} :

$$
F_{r}^{\lambda}=\left\{(a, \lambda, b) \mid\{a, b\} \in F_{r}\right\} \text { and } F_{-r}^{\lambda}=\left\{(a, \lambda, b) \mid\{a, b\} \in F_{-r}\right\},
$$

where (a, λ, b) is a 2-path. Put $\mathcal{D}^{\lambda}=\Sigma\left(\left\{F_{0} \cup F_{r}^{\lambda}, F_{0} \cup F_{-r}^{\lambda}\right\} \cup\left\{F_{0} \cup \theta G_{i} \mid 1 \leq i \leq 2 r\right\}\right)$.
Claim 3.4 \mathcal{D}^{λ} has each 2-path in $K_{n^{\prime}}$ exactly twice.
Proof. From Claim 3.3 and the fact that F_{r} and F_{-r} satisfy A1 and A2, we obtain Claim 3.4 by Proposition 2.3.

We would like to leave λ in the 2-path $(\infty, \lambda, r) \in F_{r}^{\lambda}$ and λ in the 2-path $(\infty, \lambda,-r) \in F_{-r}^{\lambda}$, and scatter the remaining $2 r \lambda s$ in $F_{r}^{\lambda} \cup F_{-r}^{\lambda}$ over $\left\{\theta G_{i} \mid 1 \leq i \leq 2 r\right\}$.

From Claim 3.1, for any $i, 1 \leq i \leq 2 r$, there is exactly one edge $e_{i}=\left\{a_{i}, b_{i}\right\}$ $\left(a_{i}, b_{i} \neq \infty\right)$ that is in both θG_{i} and $F_{r} \cup F_{-r}$. Denote by θG_{i}^{\prime} the set of edges and the 2-path obtained from θG_{i} by inserting λ into the edge e_{i}, i.e.,

$$
\theta G_{i}^{\prime}=\theta G_{i} \backslash\left\{\left\{a_{i}, b_{i}\right\}\right\} \cup\left\{\left(a_{i}, \lambda, b_{i}\right)\right\} .
$$

Define

$$
\begin{gathered}
F_{r}^{\prime}=F_{r} \backslash\{\{\infty, r\}\} \cup\{(\infty, \lambda, r)\} \text { and } \\
F_{-r}^{\prime}=F_{-r} \backslash\{\{\infty,-r\}\} \cup\{(\infty, \lambda,-r)\},
\end{gathered}
$$

where (∞, λ, r) and $(\infty, \lambda,-r)$ are 2-paths. Put

$$
\mathcal{D}=\Sigma\left(\left\{F_{0} \cup F_{r}^{\prime}, F_{0} \cup F_{-r}^{\prime}\right\} \cup\left\{F_{0} \cup \theta G_{i}^{\prime} \mid 1 \leq i \leq 2 r\right\}\right) .
$$

Then we have
Claim 3.5 \mathcal{D} is a double Dudeney set in $K_{n^{\prime}}$.
Proof. Each element of \mathcal{D} is clearly a Hamilton cycle in $K_{n^{\prime}}$. The set of all 2-paths in \mathcal{D} and the set of all 2-paths in \mathcal{D}^{λ} are the same. Hence \mathcal{D} has each 2-path in $K_{n^{\prime}}$ exactly twice by Claim 3.4. Therefore \mathcal{D} is a double Dudeney set in K_{n}.

This completes the proof of Proposition 3.1.
Proposition $3.2 K_{p+1}$ satisfies property $\left(\mathrm{B}_{p+1}\right)$, where p is an odd prime number.
Proof. Put $G_{i}=F_{i}, 1 \leq i \leq p-1$, then the $G_{i}, 1 \leq i \leq p-1$, satisfy (1), (2), (3) of property $\left(\mathrm{B}_{p+1}\right)$.

From Propositions 3.1 and 3.2, we obtain,
Proposition 3.3 There exists a double Dudeney set in K_{p+2} where p is an odd prime number.

4 A proof of Theorem 1.1

To prove Theorem 1.1, we only have to prove Proposition 4.1 from Proposition 3.1.
Proposition $4.1 K_{n}$ satisfies property $\left(\mathrm{B}_{n}\right)$ when $n=p_{1} p_{2} \cdots p_{s}+1$, where p_{1}, p_{2}, \ldots, p_{s} are different odd prime numbers and s is a natural number.

Proof. We will prove the proposition by induction on s. When $s=1$, the proposition holds from Proposition 3.2. Assume $s \geq 2$. We can assume $p_{1}<p_{2}<\ldots<p_{s}$ without loss of generality. Put $m_{1}=p_{1}, m_{2}=p_{2} p_{3} \cdots p_{s}$ and $m=m_{1} m_{2}$. Put $n_{l}=m_{l}+1(l=1,2)$ and $n=m+1$. Note that $K_{n_{1}}$ satisfies property $\left(\mathrm{B}_{n_{1}}\right)$ from Proposition 3.2, and $K_{n_{2}}$ satisfies property ($\mathrm{B}_{n_{2}}$) from the hypothesis of the induction. Now we will show that K_{n} satisfies property $\left(\mathrm{B}_{n}\right)$.

For $l=1,2$, put $r_{l}=\left(m_{l}-1\right) / 2$ and consider the complete graph $K_{n_{l}}=\left(V_{n_{l}}, E_{n_{l}}\right)$, where $V_{n_{l}}=\left\{\infty_{l}\right\} \cup Z_{m_{l}}=\left\{\infty_{l}\right\} \cup\left\{0,1,2, \cdots, m_{l}-1\right\}$. Vertices (other than ∞_{l}) are considered modulo m_{l}.

Put $r=(m-1) / 2$ and consider the complete graph $K_{n}=\left(V_{n}, E_{n}\right)$, where $V_{n}=\{\infty\} \cup Z_{m}=\{\infty\} \cup\{0,1,2, \cdots, m-1\}$.

Since $\left(m_{1}, m_{2}\right)=1, Z_{m}$ is isomorphic to $Z_{m_{1}} \times Z_{m_{2}}$ as additive groups, where \times means a direct product. The isomorphism from Z_{m} to $Z_{m_{1}} \times Z_{m_{2}}$ is given by

$$
f: a(\bmod m) \mapsto\left(a\left(\bmod m_{1}\right), a\left(\bmod m_{2}\right)\right) .
$$

We identify Z_{m} and $Z_{m_{1}} \times Z_{m_{2}}$ through this mapping. Then we can represent V_{n} as

$$
V_{n}=\{\infty\} \cup\left\{\left(a_{1}, a_{2}\right) \mid a_{1} \in Z_{m_{1}}, a_{2} \in Z_{m_{2}}\right\} .
$$

For any edge $\{\alpha, \beta\}$ in K_{n}, the length $d(\alpha, \beta)$ is defined as an element of Z_{m} in Section 2. Since $Z_{m} \cong Z_{m_{1}} \times Z_{m_{2}}$, the length $d(\alpha, \beta)$ is also represented as an element of $Z_{m_{1}} \times Z_{m_{2}}$:

$$
d(\alpha, \beta)= \begin{cases}\left(\left(b_{1}-a_{1}\right)\left(\bmod m_{1}\right),\left(b_{2}-a_{2}\right)\left(\bmod m_{2}\right)\right) & (\alpha, \beta \neq \infty) \\ \infty & \text { (otherwise) }\end{cases}
$$

where we put $\alpha=\left(a_{1}, a_{2}\right), \beta=\left(b_{1}, b_{2}\right)$ when $\alpha, \beta \neq \infty$. And any two lengths $d_{1}, d_{2}(\neq \infty)$ are equal when $d_{1}=d_{2}$ or $d_{1}=-d_{2}$ in $Z_{m_{1}} \times Z_{m_{2}}$, for example, lengths $(1,1)$ and $(-1,-1)$ are equal; $(1,-1)$ and $(-1,1)$ are equal.

Let $\sigma_{l}=\left(\infty_{l}\right)\left(\begin{array}{llll}0 & 1 & \cdots & \left.m_{l}-1\right)\end{array}\right)$ be a permutation on $V_{n_{l}}$, and put $\Sigma^{(l)}=\left\langle\sigma_{l}\right\rangle$ $(l=1,2)$. Put $\sigma=(\infty)(012 \cdots m-1)$ and $\Sigma=\langle\sigma\rangle$. Then σ can be written as $\sigma=\left(\sigma_{1}, \sigma_{2}\right)$ and it is trivial that $\Sigma \cong \Sigma^{(1)} \times \Sigma^{(2)}$. For $l=1,2$, we denote F_{0} in $K_{n_{l}}$ by $F_{0}^{(l)}$, and we denote F_{0} in K_{n} by $F_{(0,0)}$:

$$
\begin{aligned}
F_{(0,0)}= & \{\{\infty, 0\}\} \cup\left\{\{\alpha, \beta\} \in E_{n} \mid \alpha, \beta \neq \infty, \alpha+\beta \equiv 0(\bmod m)\right\} \\
= & \{\{\infty,(0,0)\}\} \\
& \cup\left\{\left\{\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right\} \in E_{n} \mid a_{l}, b_{l} \neq \infty_{l}, a_{l}+b_{l} \equiv 0\left(\bmod m_{l}\right)(l=1,2)\right\} .
\end{aligned}
$$

From our assumption, for $l=1,2$, there are 1-factors $G_{1}^{(l)}, G_{2}^{(l)}, \ldots, G_{2 r_{l}}^{(l)}$ in $K_{n_{l}}$ satisfying
(1) $F_{0}^{(l)} \cup \theta G_{i}^{(l)}$ is a Hamilton cycle in $K_{n_{l}}\left(1 \leq i \leq 2 r_{l}\right)$,
(2) $\cup_{i=1}^{2 r_{l}} G_{i}^{(l)}=E_{n_{l}} \backslash F_{0}^{(l)}$,
(3) $G_{i}^{(l)}$ has an edge of length $1\left(1 \leq i \leq 2 r_{l}\right)$.

We denote by v_{i} and w_{j} the vertices such that $\left(\infty_{1}, v_{i}\right) \in G_{i}^{(1)}\left(1 \leq i \leq 2 r_{1}\right)$, and $\left(\infty_{2}, w_{j}\right) \in G_{j}^{(2)}\left(1 \leq j \leq 2 r_{2}\right)$.

Now we define 1-factors in K_{n} from 1-factors $G_{i}^{(1)}, 1 \leq i \leq 2 r_{1}$, and $G_{j}^{(2)}, 1 \leq$ $j \leq 2 r_{2}$, as follows:
(1) For $i\left(1 \leq i \leq 2 r_{1}\right)$ and $j\left(1 \leq j \leq 2 r_{2}\right)$,

$$
\begin{aligned}
G_{(i, j)}= & \left\{\left\{\infty,\left(v_{i}, w_{j}\right)\right\}\right\} \\
& \cup\left\{\left\{\left(v_{i}, a\right),\left(v_{i}, b\right)\right\} \mid a, b \neq \infty_{2},\{a, b\} \in G_{j}^{(2)}\right\} \\
& \cup\left\{\left\{\left(a, w_{j}\right),\left(b, w_{j}\right)\right\} \mid a, b \neq \infty_{1},\{a, b\} \in G_{i}^{(1)}\right\} \\
& \cup\left\{\left\{\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right\} \mid a_{l}, b_{l} \neq \infty_{l}(l=1,2),\right. \\
& \left.\left\{a_{1}, b_{1}\right\} \in G_{i}^{(1)},\left\{a_{2}, b_{2}\right\} \in G_{j}^{(2)}\right\} .
\end{aligned}
$$

(2) For $i\left(1 \leq i \leq 2 r_{1}\right)$,

$$
\begin{aligned}
G_{(i, 0)}= & \left\{\left\{\infty,\left(v_{i}, 0\right)\right\}\right\} \\
& \left.\cup\left\{\left\{v_{i}, a\right),\left(v_{i}, b\right)\right\} \mid a, b \neq \infty_{2},\{a, b\} \in F_{0}^{(2)}\right\} \\
& \cup\left\{\left\{\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right\} \mid a_{l}, b_{l} \neq \infty_{l}(l=1,2),\left\{a_{1}, b_{1}\right\} \in G_{i}^{(1)},\right. \\
& \left.a_{2}+b_{2} \equiv 0\left(\bmod m_{2}\right)\right\} .
\end{aligned}
$$

(3) For $j\left(1 \leq j \leq 2 r_{2}\right)$,

$$
\begin{aligned}
G_{(0, j)}= & \left\{\left\{\infty,\left(0, w_{j}\right)\right\}\right\} \\
& \cup\left\{\left\{\left(a, w_{j}\right),\left(b, w_{j}\right)\right\} \mid a, b \neq \infty_{1},\{a, b\} \in F_{0}^{(1)}\right\} \\
& \cup\left\{\left\{\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right\} \mid a_{l}, b_{l} \neq \infty_{l}(l=1,2), a_{1}+b_{1} \equiv 0\left(\bmod m_{1}\right),\right. \\
& \left.\left\{a_{2}, b_{2}\right\} \in G_{j}^{(2)}\right\} .
\end{aligned}
$$

It is trivial that these are 1-factors in K_{n} and any two of these 1-factors have no common edges.

We can represent these 1-factors in K_{n} geometrically. Since $F_{0}^{(1)} \cup G_{i}^{(1)}(1 \leq i \leq$ $2 r_{1}$) is a Hamilton cycle in $K_{n_{1}}$, put

$$
F_{0}^{(1)} \cup G_{i}^{(1)}=\left(\infty_{1}, x_{1 i}=0, x_{2 i}, x_{3 i}, \ldots, x_{n_{1}-1, i}=v_{i}\right),
$$

where $x_{s i} \in V_{n_{1}}\left(1 \leq s \leq n_{1}-1\right)$, and

$$
\begin{gathered}
\left\{\infty_{1}, x_{1 i}\right\} \in F_{0}^{(1)},\left\{x_{1 i}, x_{2 i}\right\} \in G_{i}^{(1)},\left\{x_{2 i}, x_{3 i}\right\} \in F_{0}^{(1)}, \ldots, \\
\left\{x_{n_{1}-2, i}, x_{n_{1}-1, i}\right\} \in F_{0}^{(1)},\left\{x_{n_{1}-1, i}, \infty_{1}\right\} \in G_{i}^{(1)} .
\end{gathered}
$$

Similarly, since $F_{0}^{(2)} \cup G_{j}^{(2)}\left(1 \leq j \leq 2 r_{2}\right)$ is a Hamilton cycle in $K_{n_{2}}$, put

$$
F_{0}^{(2)} \cup G_{j}^{(2)}=\left(\infty_{2}, y_{1 j}=0, y_{2 j}, y_{3 j}, \ldots, y_{n_{2}-1, j}=w_{j}\right),
$$

Figure 4.1: $G_{(i, j)}$
where $y_{t j} \in V_{n_{2}}\left(1 \leq t \leq n_{2}-1\right)$, and

$$
\begin{aligned}
\left\{\infty_{2}, y_{1 j}\right\} \in F_{0}^{(2)},\left\{y_{1 j}, y_{2 j}\right\} \in G_{j}^{(2)},\left\{y_{2 j}, y_{3 j}\right\} & \in F_{0}^{(2)}, \ldots, \\
\left\{y_{n_{2}-2, j}, y_{n_{2}-1, j}\right\} & \in F_{0}^{(2)},\left\{y_{n_{2}-1, j}, \infty_{2}\right\} \in G_{j}^{(2)} .
\end{aligned}
$$

The 1-factor $G_{(i, j)}\left(1 \leq i \leq 2 r_{1}, 1 \leq j \leq 2 r_{2}\right)$ is represented in Figure 4.1.
In the figures each cell represents a vertex $(\neq \infty)$ in K_{n} : the cell $\left(x_{s i}, y_{t j}\right)$ represents the vertex $\left(x_{s i}, y_{t j}\right)$. The 1-factor $G_{(i, 0)}\left(1 \leq i \leq 2 r_{1}\right)$ is represented in Figure 4.2, where we can take any $G_{j}^{(2)}\left(1 \leq j \leq 2 r_{2}\right)$.

The 1-factor $G_{(0, j)}\left(1 \leq j \leq 2 r_{2}\right)$ is represented in Figure 4.3, where we can take any $G_{i}^{(1)}\left(1 \leq i \leq 2 r_{1}\right)$.

The 1-factor $F_{(0,0)}$ is represented in Figure 4.4, where we can take any $G_{i}^{(1)}$ and $G_{j}^{(2)}\left(1 \leq i \leq 2 r_{1}, 1 \leq j \leq 2 r_{2}\right)$.

Put

$$
\begin{aligned}
\mathcal{G}_{1} & =\left\{G_{(i, j)} \mid 1 \leq i \leq 2 r_{1}, 1 \leq j \leq 2 r_{2}\right\}, \\
\mathcal{G}_{2} & =\left\{G_{(i, 0)} \mid 1 \leq i \leq 2 r_{1}\right\}, \\
\mathcal{G}_{3} & =\left\{G_{(0, j)} \mid 1 \leq j \leq 2 r_{2}\right\}, \text { and } \\
\mathcal{G} & =\mathcal{G}_{1} \cup \mathcal{G}_{2} \cup \mathcal{G}_{3} .
\end{aligned}
$$

Claim 4.1

(1) $F_{(0,0)} \cup G_{(i, j)}$ is a Hamilton cycle $\left(1 \leq i \leq 2 r_{1}, 1 \leq j \leq 2 r_{2}\right)$.
(2) $F_{(0,0)} \cup G_{(i, 0)}$ is not a Hamilton cycle $\left(1 \leq i \leq 2 r_{1}\right)$.
(3) $F_{(0,0)} \cup G_{(0, j)}$ is not a Hamilton cycle $\left(1 \leq j \leq 2 r_{2}\right)$.

Figure 4.2: $G_{(i, 0)}$

Figure 4.3: $G_{(0, j)}$

Figure 4.4: $F_{(0,0)}$

Proof.
(1) Combining Figures 4.1 and 4.4, we obtain Figure 4.5.

Then we see $F_{(0,0)} \cup G_{(i, j)}$ is a Hamilton cycle from Proposition 2.4.
(2) Combining Figures 4.2 and 4.4, we obtain Figure 4.6.

Then we see $F_{(0,0)} \cup G_{(i, 0)}$ is the union of one cycle of length $m_{1}+1$ and r_{2} cycles of length $2 m_{1}$.
(3) Combining Figures 4.3 and 4.4, we obtain Figure 4.7.

Then we see $F_{(0,0)} \cup G_{(0, j)}$ is the union of one cycle of length $m_{2}+1$ and r_{1} cycles of length $2 m_{2}$.

Claim 4.2 \mathcal{G} satisfies conditions (2) and (3) of property $\left(\mathrm{B}_{n}\right)$, that is,

$$
\cup_{G \in \mathcal{G}} G=E_{n} \backslash F_{(0,0)}
$$

and $G(G \in \mathcal{G})$ has an edge of length $1=(1,1)$.
Proof. Since $\left|\cup_{G \in \mathcal{G}} G\right|=n(n-2) / 2$ and $\left(\cup_{G \in \mathcal{G}} G\right) \cap F_{(0,0)}=\emptyset$, we have $\cup_{G \in \mathcal{G}} G=$ $E_{n} \backslash F_{(0,0)}$.

From our assumption, there exists an edge $\{a, b\}$ of length 1 in $G_{i}^{(1)}$ and there exists an edge $\{c, d\}$ of length 1 in $G_{j}^{(2)}$. The edges $\{(a, c),(b, d)\}$ and $\{(a, d),(b, c)\}$ are in $G_{(i, j)}$ and their lengths are $1=(1,1)$ and $(1,-1)$. So, there exists an edge of length 1 in $G_{(i, j)}$.

As there exists an edge of length 1 in F_{0}, proofs about $G_{(i, 0)}$ and $G_{(0, j)}$ are similar.

For any $G \in \mathcal{G}_{2} \cup \mathcal{G}_{3}, F_{(0,0)} \cup G$ is not a Hamilton cycle from Claim 4.1, so we will

Figure 4.5: $F_{(0,0)} \cup G_{(i, j)}$

Figure 4.6: $F_{(0,0)} \cup G_{(i, 0)}$

Figure 4.7: $F_{(0,0)} \cup G_{(0, j)}$
exchange edges of 1-factors in $\mathcal{G}_{2} \cup \mathcal{G}_{3}$ and 1-factors in \mathcal{G}_{1}.
Let $G_{(i, 0)} \in \mathcal{G}_{2}$. Consider the union of $G_{(i, 0)}$ and $G_{(i, j)}\left(1 \leq i \leq 2 r_{1}, 1 \leq j \leq 2 r_{2}\right)$ (Figure 4.8).

It contains $r_{1} 2 m_{2}$-cycles and one ($m_{2}+1$)-cycle. Let C_{1} be the $\left(m_{2}+1\right)$-cycle. Exchange their edges via C_{1}. Then we obtain (Figures 4.9, 4.10)

$$
\begin{gathered}
G_{(i, 0)(i, j)}=\left(G_{(i, 0)} \backslash C_{1}\right) \cup\left(G_{(i, j)} \cap C_{1}\right) ; \text { and } \\
G_{(i, j)(i, 0)}^{*}=\left(G_{(i, j)} \backslash C_{1}\right) \cup\left(G_{(i, 0)} \cap C_{1}\right) .
\end{gathered}
$$

Claim 4.3

(1) $F_{(0,0)} \cup G_{(i, 0)(i, j)}$ is a Hamilton cycle $\left(1 \leq i \leq 2 r_{1}, 1 \leq j \leq 2 r_{2}\right)$.
(2) $F_{(0,0)} \cup G_{(i, j)(i, 0)}^{*}$ is a Hamilton cycle $\left(1 \leq i \leq 2 r_{1}, 1 \leq j \leq 2 r_{2}\right)$.
(3) Both $G_{(i, 0)(i, j)}$ and $G_{(i, j)(i, 0)}^{*}$ have an edge of length $1\left(1 \leq i \leq 2 r_{1}, 1 \leq j \leq\right.$ $2 r_{2}$).
Proof.
(1) $F_{(0,0)} \cup G_{(i, 0)(i, j)}$ is shown in Figure 4.11, so (1) is trivial.
(2) $F_{(0,0)} \cup G_{(i, j)(i, 0)}^{*}$ is shown in Figure 4.12. We have $\left(m_{1}-1, m_{2}\right)=1$ from minimality of p_{1}. So, (2) holds from Proposition 2.4.
(3) Both $G_{(i, 0)}$ and $G_{(i, j)}$ have an edge of length 1 from Claim 4.2. The cycle C_{1} doesn't have edges of length 1 because the length of any edge in C_{1} is of type $(0, a)$ or ∞. So, after the exchange of edges, both $G_{(i, 0)(i, j)}$ and $G_{(i, j)(i, 0)}^{*}$ still have an edge of length 1 .

Figure 4.8: $G_{(i, 0)} \cup G_{(i, j)}$

Figure 4.9: $G_{(i, 0)(i, j)}$

Figure 4.10: $G_{(i, j)(i, 0)}^{*}$

Figure 4.11: $F_{(0,0)} \cup G_{(i, 0)(i, j)}$

Figure 4.12: $F_{(0,0)} \cup G_{(i, j)(i, 0)}^{*}$

Next, let $G_{(0, j)} \in \mathcal{G}_{3}$. Consider the union of $G_{(0, j)}$ and $G_{(i, j)}\left(1 \leq i \leq 2 r_{1}, 1 \leq\right.$ $j \leq 2 r_{2}$) (Figure 4.13). It contains $r_{2} 2 m_{1}$-cycles and one ($m_{1}+1$)-cycle. Let C_{1} be the ($m_{1}+1$)-cycle and C_{2} the uppermost $2 m_{1}$-cycle.

If $\left(m_{1}, m_{2}-1\right)=1$, then exchange edges of $G_{(0, j)}$ and $G_{(i, j)}$ via C_{1}. If $\left(m_{1}, m_{2}-\right.$ 1) $\neq 1$, then exchange edges of $G_{(0, j)}$ and $G_{(i, j)}$ via C_{2}. Then we obtain (Figures 4.14, 4.15, 4.16, 4.17)

$$
\begin{gathered}
G_{(0, j)(i, j)}=\left(G_{(0, j)} \backslash C\right) \cup\left(G_{(i, j)} \cap C\right) ; \text { and } \\
G_{(i, j)(0, j)}^{*}=\left(G_{(i, j)} \backslash C\right) \cup\left(G_{(0, j)} \cap C\right),
\end{gathered}
$$

where $C=C_{1}$ if $\left(m_{1}, m_{2}-1\right)=1 ; C=C_{2}$ if $\left(m_{1}, m_{2}-1\right) \neq 1$.

Claim 4.4

(1) $F_{(0,0)} \cup G_{(0, j)(i, j)}$ is a Hamilton cycle $\left(1 \leq i \leq 2 r_{1}, 1 \leq j \leq 2 r_{2}\right)$.
(2) $F_{(0,0)} \cup G_{(i, j)(0, j)}^{*}$ is a Hamilton cycle $\left(1 \leq i \leq 2 r_{1}, 1 \leq j \leq 2 r_{2}\right)$.
(3) Both $G_{(0, j)(i, j)}$ and $G_{(i, j)(0, j)}^{*}$ have an edge of length $1\left(1 \leq i \leq 2 r_{1}, 1 \leq j \leq 2 r_{2}\right)$.

Proof. If $\left(m_{1}, m_{2}-1\right)=1$, then we exchange edges via C_{1}. In this case, proofs of (1), (2), (3) are similar to the proof of Claim 4.3. So, we will omit them.

Assume $\left(m_{1}, m_{2}-1\right) \neq 1$. Then we have $\left(m_{1}, m_{2}-2\right)=1$ because m_{1} is prime. Since $\left(m_{1}, 2\right)=1$, (1) holds from Proposition 2.4. Since $\left(m_{1}, m_{2}-2\right)=1$, (2) holds from Proposition 2.4.

Next we will prove (3). Both $G_{(0, j)}$ and $G_{(i, j)}$ have an edge of length 1 from Claim 4.2. If C_{2} has no edges of length $1, G_{(0, j)(i, j)}$ and $G_{(i, j)(0, j)}^{*}$ still have an edge of length 1 trivially.

Assume $G_{(0, j)} \cap C_{2}$ has an edge of length 1. Let $\{(a, 0),(b, c)\}$ be the edge in

Figure 4.13: $G_{(0, j)} \cup G_{(i, j)}$

Figure 4.14: $G_{(0, j)(i, j)}$ (the case $\left.\left(m_{1}, m_{2}-1\right)=1\right)$

Figure 4.15: $G_{(i, j)(0, j)}^{*}\left(\right.$ the case $\left.\left(m_{1}, m_{2}-1\right)=1\right)$

Figure 4.16: $G_{(0, j)(i, j)}$ (the case $\left(m_{1}, m_{2}-1\right) \neq 1$

Figure 4.17: $G_{(i, j)(0, j)}^{*}\left(\right.$ the case $\left.\left(m_{1}, m_{2}-1\right) \neq 1\right)$
$G_{(0, j)} \cap C_{2}$ of length $1=(1,1)$. Then $(b-a, c)$ or $(a-b,-c)$ is $(1,1)$. There exists an edge $\{e, f\} \in G_{i}^{(1)}$ of length 1 . Then the edges $\{(e, 0),(f, c)\}$ and $\{(f, 0),(e, c)\}$ belong to $G_{(i, j)} \cap C_{2}$. One of these edges is of length $1=(1,1)$. (The other edge is of length $(1,-1)$.) Therefore, after exchanging edges, both $G_{(0, j)(i, j)}$ and $G_{(i, j)(0, j)}^{*}$ have an edge of length 1 .

Assume $G_{(i, j)} \cap C_{2}$ has an edge of length 1 . Then $G_{(0, j)} \cap C_{2}$ has an edge of length 1.

Therefore we have completed the proof.
Now we specify 1-factors $G_{(i, j)} \in \mathcal{G}_{1}$ for exchanging edges of $G_{(i, 0)} \in \mathcal{G}_{2}$ and $G_{(0, j)} \in \mathcal{G}_{3}$. For $G_{(i, 0)} \in \mathcal{G}_{2}$, we exchange edges of $G_{(i, 0)}$ and $G_{(i,-1)}$ when $1 \leq i \leq r_{1}$; $G_{(i, 0)}$ and $G_{(i, 1)}$ when $r_{1}+1 \leq i \leq 2 r_{1}$. For $G_{(0, j)} \in \mathcal{G}_{3}$, we exchange edges of $G_{(0, j)}$ and $G_{(1, j)}$ when $1 \leq j \leq r_{2} ; G_{(0, j)}$ and $G_{(-1, j)}$ when $r_{2}+1 \leq j \leq 2 r_{2}$. Put

$$
\begin{aligned}
& \mathcal{G}_{1}^{\prime}=\left\{G_{(i,-1)(i, 0)}^{*} \mid 1 \leq i \leq r_{1}\right\} \cup\left\{G_{(i, 1)(i, 0)}^{*} \mid r_{1}+1 \leq i \leq 2 r_{1}\right\} \\
& \cup\left\{G_{(1, j)(0, j)}^{*} \mid 1 \leq j \leq r_{2}\right\} \cup\left\{G_{(-1, j)(0, j)}^{*} \mid r_{2}+1 \leq j \leq 2 r_{2}\right\} \\
& \cup\left(\mathcal{G}_{1} \backslash\left\{G_{(i,-1)} \mid 1 \leq i \leq r_{1}\right\} \backslash\left\{G_{(i, 1)} \mid r_{1}+1 \leq i \leq 2 r_{1}\right\}\right. \\
&\left.\backslash\left\{G_{(1, j)} \mid 1 \leq j \leq r_{2}\right\} \backslash\left\{G_{(-1, j)} \mid r_{2}+1 \leq j \leq 2 r_{2}\right\}\right), \\
& \mathcal{G}_{2}^{\prime}=\left\{G_{(i, 0)(i,-1)} \mid 1 \leq i \leq r_{1}\right\} \cup\left\{G_{(i, 0)(i, 1)} \mid r_{1}+1 \leq i \leq 2 r_{1}\right\}, \\
& \mathcal{G}_{3}^{\prime}=\left\{G_{(0, j)(1, j)} \mid 1 \leq j \leq r_{2}\right\} \cup\left\{G_{(0, j)(-1, j)} \mid r_{2}+1 \leq j \leq 2 r_{2}\right\}, \text { and } \\
& \mathcal{G}^{\prime}= \mathcal{G}_{1}^{\prime} \cup \mathcal{G}_{2}^{\prime} \cup \mathcal{G}_{3}^{\prime} .
\end{aligned}
$$

Claim 4.5 The 1-factors $G \in \mathcal{G}^{\prime}$ satisfy (1), (2), (3) of property $\left(\mathrm{B}_{n}\right)$, that is, (1) $F_{(0,0)} \cup G$ is a Hamilton cycle in $K_{n}\left(G \in \mathcal{G}^{\prime}\right)$,
(2) $\cup_{G \in \mathcal{G}^{\prime}} G=E_{n} \backslash F_{(0,0)}$,
(3) G has an edge of length $1\left(G \in \mathcal{G}^{\prime}\right)$.

Proof. Condition (1) holds from Claims 4.1, 4.3 and 4.4. Since \mathcal{G}^{\prime} is obtained by exchanging edges in \mathcal{G}, we have $\cup_{G \in \mathcal{G}} G=\cup_{G \in \mathcal{G}^{\prime}} G$. So (2) holds from Claim 4.2. Condition (3) holds from Claims 4.2, 4.3 and 4.4.

Hence K_{n} satisfies property $\left(\mathrm{B}_{n}\right)$. This completes the proof of Proposition 4.1.

Therefore we complete the proof of Theorem 1.1.

Acknowledgments

The authors would like to express their thanks to the referee for helpful comments.

References

[1] K. Heinrich, M. Kobayashi and G. Nakamura, Dudeney's Round Table Problem, Annals of Discrete Math. 92 (1991), 107-125.
[2] K. Heinrich, D. Langdeau and H. Verrall, Covering 2-paths uniformly, J. Combin. Des. 8 (2000), 100-121.
[3] M. Kobayashi, J. Akiyama and G. Nakamura, On Dudeney's round table problem for $p+2$, Ars Combinatoria, to appear.
[4] M. Kobayashi, Kiyasu-Z. and G. Nakamura, A solution of Dudeney's round table problem for an even number of people, J. Combinatorial Theory (A) 62 (1993), 26-42.
[5] M. Kobayashi, N. Mutoh, Kiyasu-Z. and G. Nakamura, New Series of Dudeney Sets for $p+2$ Vertices, Ars Combinatoria, to appear.
[6] G. Nakamura, Kiyasu-Z. and N. Ikeno, Solution of the round table problem for the case of $p^{k}+1$ persons, Commentarii Mathematici Universitatis Sancti Pauli 29 (1980), 7-20.
[7] H. Verrall, Pairwise Compatible Hamilton Decompositions of K_{n}, J. Combinatorial Theory (A) 79 (1997) 209-222.

[^0]: * This research was supported in part by Grant-in-Aid for Scientific Research (C) Japan.

