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Abstract

The study of graph labellings has focused on finding classes of graphs
which admit a particular type of labelling. Here we consider variations
of the well-known edge-magic and vertex-magic total labellings for which
all graphs admit such a labelling. In particular, we consider two types
of injections of the vertices and edges of a graph with positive integers:
(1) for every edge the sum of its label and those of its end-vertices is
some magic constant (edge-magic); and (2) for every vertex the sum of
its label and those of the edges incident to it is some magic constant
(vertex-magic). Our aim is to minimise the maximum label or the magic
constant associated with the injection. We present upper bounds on these
parameters for complete graphs, forests and arbitrary graphs, which in a
number of cases are within a constant factor of being optimal. Our results
are based on greedy algorithms for computing an antimagic injection,
which is then extended to a magic total injection. Of independent interest
is our result that every forest has an edge-antimagic vertex labelling.

1 Introduction

The study of graph labellings has focused on finding classes of graphs which admit
a particular type of labelling, the more well-known including graceful, harmonious
and various types of magic labellings (see the survey by Gallian [13]). In this pa-
per we relax the definition of the well-known edge-magic and vertex-magic labelling
schemes by allowing arbitrary positive integer labels. Since every graph admits such
a labelling, our aim is to minimise the maximum label or the associated magic con-
stant.
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All graphs G = (V, E) are finite and simple with n = |V | vertices, m = |E|
edges and maximum degree ∆. It will be convenient to assume G has at least one
edge. The set of edges incident to a vertex v is denoted by E(v). We consider
labellings of the vertices and/or edges of a graph with positive integers such that
distinct graph elements receive distinct labels. More formally, a vertex injection of
a graph G = (V, E) is an injective function λ : V → N; an edge injection of G is
an injective function λ : E → N; and a total injection of G is an injective function
λ : V ∪ E → N. If the image of an injection λ on a set S (= V , E or V ∪ E) is
{1, 2, . . . , |S|} then λ is a labelling.

For some injection of a graph, the edge-sum of an edge vw, denoted by Λ(vw), is
the sum of the labels of the graph elements associated with vw. That is, if λ is an edge
injection then Λ(vw) = λ(vw); if λ is a vertex injection then the Λ(vw) = λ(v)+λ(w);
and if λ is a total injection then the Λ(vw) = λ(vw) + λ(v) + λ(w). Similarly, the
vertex-sum of a vertex v, denoted by Λ(v), is the sum of the labels of the graph
elements associated with v. That is, if λ is a vertex injection then the Λ(v) = λ(v);
if λ is an edge injection then

Λ(v) =
∑

vx∈E(v)

λ(vw) ;

and if λ is a total injection then

Λ(v) = λ(v) +
∑

vx∈E(v)

λ(vw) .

The maximum edge-sum and maximum vertex-sum are denoted by ΛE and ΛV ,
respectively.

An injection of a graph is edge-magic if all edge-sums are some constant and
edge-antimagic if all edge-sums are distinct. Similarly an injection of a graph is
vertex-magic if all vertex-sums are some constant and vertex-antimagic if all vertex-
sums are distinct. The constant associated with an edge-magic or vertex-magic
injection is called the magic constant. For results in magic and antimagic vertex and
edge labellings see the survey by Gallian [13]. Edge-magic [5, 7, 14, 21, 23, 24, 29,
31, 32, 34, 38, 39] and vertex-magic [1, 2, 15, 16, 25, 26, 28, 35] total labellings have
been studied extensively; see the recent monograph by Wallis [37]. A total injection
which is both vertex-magic and edge-magic (possibly with different magic constants)
is totally magic. Totally magic injections have been studied by McSorley [27] and
totally magic labellings have been studied by Exoo et al. [10]. An edge-magic or
vertex-magic total labelling with the extra requirement that the vertices are labelled
{1, 2, . . . , n} (and hence the edges are labelled {n + 1, n + 2, . . . , n + m}) is called
strong. Strong edge-magic total labellings have been studied in [7, 8, 11, 12]

Most results in the papers cited above identify classes of graphs which do or do
not admit types of magic labellings. On the other hand, in this paper we show that
every graph has an edge-magic total injection, and every graph has a vertex-magic
total injection (except for the obvious exception of a graph containing an isolated
edge or two isolated vertices). We consider the problems of minimising the maximum
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label or magic constant in edge-magic or vertex-magic total injections. We conjecture
that each of these problems are NP-hard. Other papers to consider various types of
magic injections include [6, 19, 20].

This paper is organised as follows. Section 2 generalises some known results
on edge-magic and vertex-magic total labellings to the setting of edge-magic and
vertex-magic total injections. In particular, we show that antimagic injections can
be used as a first step to producing magic injections, thus establishing the basis for
the methods to follow. Section 3 describes lower bounds for the magic constant in
edge-magic and vertex-magic total injections. We use these lower bounds to prove
that the constructions in the latter sections are often within a constant factor of
optimal. In Section 4 we establish a parallel between edge-antimagic vertex injections
of complete graphs and the so-called Sidon sequences; we derive edge-magic total
injections of complete graphs whose magic constant is within a constant factor of
being optimal. In Section 5 we present the first known algorithm for constructing an
edge-antimagic vertex labelling of a forest, and we give an algorithm for determining a
vertex-antimagic edge injection of a forest. Section 6 describes greedy algorithms for
determining edge-antimagic vertex injections and vertex-antimagic edge injections of
arbitrary graphs and with polynomial-sized labels. The previously best known result,
due to Bodendiek and Walther [2], produced vertex-antimagic edge injections with
exponential-sized labels. We obtain edge-magic and vertex-magic total injections of
an arbitrary graph also with polynomial-sized labels. Our upper bound on the magic
constant in the case of vertex-magic total injections is within a constant factor of
being optimal.

2 Basic Results

We now review some concepts from the literature on edge-magic and vertex-magic
total labellings which can easily be generalised to edge-magic and vertex-magic total
injections. First we consider the duality structure for edge-magic [38] and vertex-
magic [25] total labellings. If an edge-magic total injection does not have a vertex or
edge labelled 1 then reducing each label by one less than the minimum label produces
an edge-magic total injection. An edge-magic total injection with a vertex or edge
labelled 1 is called minimal. Given a total injection λ of a graph G = (V, E), let λ̂
be the maximum label assigned to a vertex or edge of G. The dual labelling λ′ is
given by λ′(x) = 1 + λ̂ − λ(x) for all vertices and edges x ∈ V ∪ E. The next result
easily follows; see [38].

Observation 1. Let λ be a minimal edge-magic total injection of a graph G with
magic constant κ. Then λ′ is also a minimal edge-magic total injection of G, and
λ̂ = λ̂′. If κ′ is the magic constant of λ′ then min {κ, κ′} ≤ 3

2
(λ̂ + 1).

There is a similar notion of minimality and duality for vertex-magic total injec-
tions of regular graphs. If a vertex-magic total injection of a regular graph does not
have an edge or vertex labelled 1 then reducing each label by one less than the mini-
mum label produces a vertex-magic total injection. A vertex-magic total injection of
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a regular graph with an edge or vertex labelled 1 is called minimal. The next result
easily follows; see [25].

Observation 2. Let λ be a minimal vertex-magic total injection of a ∆-regular graph
G with magic constant κ. Then λ′ is also a minimal vertex-magic total injection of
G, and λ̂ = λ̂′. If κ′ is the magic constant of λ′ then min {κ, κ′} ≤ 1

2
(∆ + 1)(λ̂ + 1).

There are important relationships between magic total labellings and antimagic
labellings (see for example [11, 38]) which we now extend to magic total injections.
Since the edge-sums in an edge-magic total injection are equal and edge labels are dis-
tinct, the edge-sums in the induced vertex injection are distinct; that is, the induced
vertex injection is edge-antimagic. Moreover, an edge-antimagic vertex injection can
be extended to produce an edge-magic total injection as follows.

Lemma 1. An edge-antimagic vertex injection λ of a graph G = (V, E) with max-
imum label λ̂ and maximum edge-sum ΛE can be extended to an edge-magic total
injection of G with maximum label at most max{λ̂, ΛE + λ̂− 2} ≤ max{λ̂, 3(λ̂− 1)}
and magic constant at most ΛE + λ̂ + 1 ≤ 3λ̂.

Proof. Let κ be the minimum i ∈ N such that i ≥ ΛE +1 and i �= λ(x)+λ(v)+λ(w)
for all vertices x ∈ V and edges vw ∈ E. Clearly κ ≤ ΛE + λ̂ + 1. Since vertex
labels are distinct, ΛE ≤ 2λ̂ − 1 and thus κ ≤ 3λ̂. For each edge vw ∈ E, let
λ(vw) = κ− (λ(v)+λ(w)). Since κ ≥ ΛE +1 and edge-sums are distinct in an edge-
antimagic vertex injection, the produced edge labels are positive and distinct. Now,
κ is chosen so that κ− (λ(v)+λ(w)) �= λ(x) for all edges vw ∈ E and for all vertices
x ∈ V . Thus λ(vw) �= λ(x), and hence all labels are distinct. For each edge vw ∈ E,
λ(v) + λ(vw) + λ(w) = κ. Hence λ is an edge-magic total injection with magic
number κ. The maximum label is at most max{λ̂, κ − 3} ≤ max{λ̂, ΛE + λ̂ − 2} ≤
max{λ̂, 3(λ̂ − 1)}.

Analogous to the edge-antimagic case, in a vertex-magic total injection the in-
duced edge injection is vertex-antimagic, and a vertex-antimagic edge injection can
be extended to a vertex-magic total injection.

Lemma 2. Let G = (V, E) be a graph with no isolated edges, at most one isolated
vertex, and maximum degree ∆. A vertex-antimagic edge injection λ of G with
maximum edge label λ̂ can be extended to a vertex-magic total injection of G with
maximum label and magic constant at most (∆ + 1)λ̂.

Proof. Let κ be the minimum i ∈ N such that i ≥ ΛV + 1 and i �= λ(vw) + Λ(x) for
all vertices x ∈ V and edges vw ∈ E. Clearly κ ≤ λ̂ + ΛV + 1. Let u be the vertex
with maximum vertex-sum. Clearly deg(u) ≥ 1. If deg(u) = 1 then ΛV = λ̂ and
κ ≤ 2λ̂ + 1 ≤ 3λ̂ ≤ (∆ + 1)λ̂ since G has no isolated edges. If deg(u) ≥ 2 then

ΛV = Λ(u) ≤
deg(u)∑

i=1

(λ̂ − i + 1) ≤ ∆λ̂ − 1 .
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Therefore κ ≤ (∆ + 1)λ̂. For each vertex v ∈ V , let λ(v) = κ − Λ(v). (In what
follows Λ(v) still refers to the vertex-sum of v in the given edge injection.) Since
κ ≥ ΛV + 1 and vertex-sums are distinct the produced vertex labels are positive and
distinct. Now, κ is chosen so that κ − Λ(x) �= λ(vw) for all vertices x ∈ V and
for all edges vw ∈ E. Thus vertex labels are distinct from edge labels, and hence
all labels are distinct. The new vertex-sum of each vertex v is λ(v) + Λ(v) = κ.
Therefore λ is a vertex-magic total injection of G. The maximum label is at most
max{λ̂, κ} ≤ (∆ + 1)λ̂.

Note that it is easily seen that of all the edge-magic total injections which extend a
given edge-antimagic vertex injection, the one produced by the algorithm described
in the proof of Lemma 1 has the minimum magic constant, and similarly for the
vertex-magic total injections of Lemma 2.

3 Lower Bounds for the Magic Constant

The following lower bounds for the magic constant in edge-magic and vertex-magic
total injections are proved using a double-counting argument.

Lemma 3. Let G = (V, E) be an n-vertex m-edge graph with maximum degree ∆
and no isolated vertices. Let ni be the number of vertices with degree i, and let Ni be
the number of vertices with degree at least i. The magic constant κ in an edge-magic
total injection λ of G is at least

n +
1

2
(m + 1) +

1

m

∆∑
i=1

nii

(
Ni+1 +

1

2
(ni + 1)

)
.

Proof. For every edge vw ∈ E, λ(v) + λ(vw) + λ(w) = κ. Hence,

κ · m =
∑

vw∈E

λ(v) + λ(vw) + λ(w) =
∑

vw∈E

λ(vw) +
∑
v∈V

deg(v) · λ(v) . (1)

Since deg(v) ≥ 1 for all vertices v, (1) is minimised when edges are labelled {n +
1, n+2, . . . , n+m} and vertices are labelled {1, 2, . . . , n}, with small labels applied to
vertices of high degree and high labels applied to vertices of low degree. That is, the
vertices of degree i, 1 ≤ i ≤ ∆, are labelled {Ni+1 +1, Ni+1 +2, . . . , Ni+1 +ni(= Ni)}.
Thus,

κ · m ≥
m∑

j=1

(n + j) +

∆∑
i=1

i

ni∑
k=1

(Ni+1 + k)

κ · m ≥ nm +
1

2
m(m + 1) +

∆∑
i=1

i

(
Ni+1 · ni +

1

2
ni(ni + 1)

)

κ ≥ n +
1

2
(m + 1) +

1

m

∆∑
i=1

nii

(
Ni+1 +

1

2
(ni + 1)

)
.
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Corollary 1. The magic constant κ in an edge-magic total injection of an n-vertex
m-edge ∆-regular graph (∆ ≥ 1) is at least 1

2
(m + 3) + 2n.

Proof. By Lemma 3, κ ≥ n+ 1
2
(m+1)+ n∆

m

(
0 + 1

2
(n + 1)

)
= n+ 1

2
(m+1)+(n+1) =

1
2
(m + 3) + 2n.

We now establish a lower bound for the magic constant in vertex-magic total
injections.

Lemma 4. The magic constant κ in a vertex-magic total injection λ of an n-vertex
m-edge graph G = (V, E) is at least m

n
(m + 1) + m + 1

2
(n + 1).

Proof. For all vertices v ∈ V ,

λ(v) +
∑

vx∈E(v)

λ(vx) = κ .

Hence,

κ · n =
∑
v∈V


λ(v) +

∑
vx∈E(v)

λ(vx)


 = 2

∑
vw∈E

λ(vw) +
∑
v∈V

λ(v) . (2)

(2) is minimised if edges are assigned small labels and vertices are assigned large
labels. Since all labels are distinct positive integers,

κ · n ≥ 2
m∑

i=1

i +
n∑

i=1

(m + i) = m(m + 1) + nm +
1

2
n(n + 1)

κ ≥ m(m + 1)

n
+ m +

1

2
(n + 1) .

Corollary 2. The magic constant κ in a vertex-magic total injection of an n-vertex
m-edge ∆-regular graph is at least (1

2
∆ + 1)m + 1

2
(n + 1 + ∆).

Proof. By Lemma 4, κ ≥ m
n
(m + 1) + m + 1

2
(n + 1) = 1

2
∆(m + 1) + m + 1

2
(n + 1) =

(1
2
∆ + 1)m + 1

2
(n + 1 + ∆).

4 Edge-Magic Total Injections of Complete

Graphs

In this section we show that edge-magic total injections of complete graphs are closely
related to the so-called Sidon sequences [33, 36], which have been rediscovered under
the guise of well-spread sequences [22, 24, 30]. The positive integers a1, a2, . . . , an

are called a Sidon sequence (or a B2 sequence1) if ai + aj �= ak + al for all i, j, k, l ∈
{1, 2, . . . , n}; see Halberstam and Roth [17] for an overview. The next result follows
immediately from the definitions of a Sidon sequence and an edge-antimagic vertex
injection.

1(a1, a2, . . . , an) is a Bh sequence (h ≥ 2) if every integer x has at most one representation of
the form x = b1 + b2 + · · · + bh (bi ∈ {a1, a2, . . . , an}) with b1 ≤ b2 ≤ · · · ≤ bh.
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Observation 3. There exists an edge-antimagic vertex injection of the complete
graph Kn with maximum label M if and only if there exists a Sidon sequence a1 <
a2 < · · · < an = M .

Theorem 1. For all n, the complete graph Kn has an edge-magic total injection with
maximum label and magic constant at most 3n2 + o(n2).

Proof. Define f(x) to be the maximum number of elements from {1, 2, . . . . , x} which
form a Sidon sequence, and g(n) to be the minimum maximum element taken over all
Sidon sequences of length n; that is, g is the inverse function of f , and a lower bound
for f or an upper bound for g corresponds to the construction of a Sidon sequence. An
elementary result of Sidon [33] is that f(x) = Ω(x1/4). A much stronger result is that
f(x) =

√
x + o(

√
x) (see Halberstam and Roth [17, Theorem 7]; in particular, Erdös

and Turán [9] show that f(x) <
√

x + O(x1/4) and Bose and Chowla [3] show that
f(x) >

√
x−O(x5/16)). Since f and g are inverse functions, g(n) = n2+o(n2); that is,

there exists a Sidon sequence of length n with a maximum element of n2 + o(n2). By
Observation 3 there exists an edge-antimagic vertex injection of Kn with a maximum
label of n2 + o(n2). Thus, by Lemma 1, Kn has an edge-magic total injection with
maximum label and magic constant at most 3n2 + o(n2).

By the lower bound in Corollary 1, the above upper bound for the magic constant
in an edge-magic total injection of a complete graph is within a constant factor of
being optimal. Note that for each n-vertex graph G, by deleting the appropriate
edges from Kn, we obtain an edge-magic total injection with magic constant at most
3n2 + o(n2).

5 Antimagic Injections of Forests

In this section we present algorithms for constructing edge-antimagic vertex labellings
and vertex-antimagic edge injections of a forest. Given a tree T = (V, E), let
dist(v, w) be the graph-theoretic distance between vertices v, w ∈ V . For some
root vertex r ∈ V and edge vw ∈ E, let dist(vw, r) = min{dist(v, r), dist(w, r)},
and for each vertex v �= r, let parent(v) be the unique vertex adjacent to v with
dist(parent(v), r) = dist(v, r) − 1.

Theorem 2. Every n-vertex forest F has an edge-antimagic vertex labelling.

Proof. Initially assume F is a (connected) tree T . Let r be a vertex of T . For each
i ≥ 0 define Vi = {v ∈ V : dist(v, r) = i}, and let

ni = |Vi| and Si =
∑

0≤j≤i

nj .

The labels {1, 2, . . . , n} are assigned in this order to vertices via a breadth-first
search from r. That is, set λ(r) = 1, then assign the labels {2, 3, . . . , S1} to the
vertices in V1, then assign the labels {1 + S1, . . . , S2} to the vertices in V2, and so on
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with the vertices in Vi receiving the labels {1 + Si−1, . . . , Si}. The particular label
assigned to a vertex in Vi depends on the label assigned to its parent (in Vi−1). In
particular, let Vi be ordered (vi,1, vi,2, . . . , vi,ni

) by increasing λ(parent(vi,j)), and let
λ(vi,j) = Si−1 + j, 1 ≤ j ≤ ni. Clearly the vertices are labelled {1, 2, . . . , n}.

We now show that the edge-sums are distinct. Consider edges vw, xy ∈ E with
v = parent(w) and x = parent(y). Suppose v ∈ Vi and x ∈ Vj. Thus w ∈ Vi+1 and
y ∈ Vj+1.

Consider the case that i = j. If v = x then λ(v)+λ(w) �= λ(x)+λ(y) since w and
y receive different labels. Otherwise v �= x. Assume without loss of generality that
λ(v) < λ(x). Then by the choice of labels for vertices in Vi+1, we have λ(w) < λ(y).
Hence λ(v) + λ(w) < λ(x) + λ(y).

Now suppose that i �= j and assume without loss of generality that i < j. Then
λ(v) + λ(w) ≤ Si + Si+1 and Sj−1 + Sj + 2 ≤ λ(x) + λ(y). Clearly Si ≤ Sj−1 and
Si+1 ≤ Sj. Hence λ(v) + λ(w) + 2 ≤ λ(x) + λ(y). Therefore the edge-sums are
distinct, and thus λ is an edge-antimagic vertex labelling of T .

Now suppose F consists of trees T1, T2, . . . , Tk. By running the above algorithm
for each Ti and adding

∑i−1
j=1 |Tj | to each label, where |Tj | is the number of vertices

in Tj , we obtain an edge-antimagic vertex labelling of F .

By Lemma 1 and Theorem 2 we have the following.

Corollary 3. Every n-vertex forest has an edge-magic total injection with maximum
label at most 3(n − 1) and magic constant at most 3n.

Note that for trees, in an edge-magic total injection determined by Corollary 3
the vertices are labelled {1, 2, . . . , n} and the edges are labelled from {n + 1, n +
2, ..., n + 2m}, thus providing a result closely related to the conjecture of Enomoto
et al. [7] that every tree has a strong edge-magic total labelling (with vertex labels
{1, 2, . . . , n} and edge labels {n+1, n+2, ..., n+m}). Our upper bounds in Corollary 3
can be improved in the case of complete d-ary trees to a little more than n + m.

Lemma 5. Every n-vertex m-edge complete d-ary tree (d ≥ 2) has an edge-magic
total injection with maximum label and magic constant at most n + d+1

d
m + O(1).

Proof. Let T be the complete d-ary tree of height h for some d ≥ 2 and h ≥ 1. It
is well-known that T has n = 1

d−1
(dh+1 − 1) vertices. Let r be the root-vertex of

T , and apply the algorithm described in Theorem 2 to determine an edge-antimagic
vertex labelling of T . Let vi,j be the jth vertex at depth i (0 ≤ i ≤ h, 1 ≤ j ≤ di),
where vertices within depth i are ordered by increasing label. The label of vi,j is
λ(vi,j) = 1

d−1
(di − 1) + j. Clearly the edge from vh,dh to vh−1,dh−1 has the maximum
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edge-sum. Hence the maximum edge-sum

ΛE = max{λ(x) + λ(y) : xy ∈ E} = λ(vh,dh) + λ(vh−1,dh−1)

=
dh − 1

d − 1
+ dh +

dh−1 − 1

d − 1
+ dh−1

=
dh+1 − 1 + dh − 1

d − 1

=
dh+2 − d + dh+1 − d

d(d − 1)

=
(d + 1)(dh+1 − 1) − (d − 1)

d(d − 1)

=
(d + 1)n − 1

d
.

Applying Lemma 1 we obtain an edge-magic total injection with magic constant
and maximum label at most n+ΛE+O(1) = n+ d+1

d
n+O(1) = n+ d+1

d
m+O(1).

We now evaluate the lower bound in Lemma 3 for the magic constant in an
edge-magic total injection of a complete d-ary tree.

Lemma 6. In an edge-magic total injection of a complete d-ary tree (d ≥ 2) the
magic constant κ ≥ 4d+1

2d
n − O( n

d2 ).

Proof. Let T be the complete d-ary tree of height h. T has n = 1
d−1

(dh+1 − 1)

vertices, of which one has degree d, dh = dh+1−1+1
d

= (d−1)n+1
d

have degree one, and
the remainder have degree d + 1; that is n − dh − 1 = n − 1

d
((d − 1)n + 1) − 1 =

1
d
(nd − (d − 1)n − 1 − d) = 1

d
(n − 1 − d) vertices. By Lemma 3 (with i = 1 and

i = ∆ = d + 1 only),

κ ≥ n +
1

2
(m + 1) +

1

m
· (d − 1)n + 1

d

((
n − d − 1

d
+ 1

)
+

1

2

(
(d − 1)n + 1

d
+ 1

))

+
1

m
· n − d − 1

d
· (d + 1)

(
0 +

1

2

(
n − d − 1

d
+ 1

))

≥ 3n

2
+

1

n − 1
· (d − 1)n

d

(
n − 1

d
+

dn − n + d + 1

2d

)
+

n − (d + 1)

n − 1
· n − 1

2d

≥ 3n

2
+

1

n − 1
· (d − 1)n

d
· (d + 1)n

2d
+

n − (d + 1)

2d

≥ 3n

2
+

(d2 − 1)(n + 1)

2d2
+

n − (d + 1)

2d

≥ 3d2n + d2n + d2 − n − 1 + dn − d2 − d

2d2

≥ (4d + 1)n

2d
− O

( n

d2

)
.
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It follows from Lemma 5 and Lemma 6 that the ratio between our lower and
upper bounds for the magic constant in an edge-magic total injection of a complete
d-ary tree is 1 + O( 1

d
), and similarly for the maximum label.

We now consider the problem of determining a vertex-antimagic edge injection
of a forest. The following result will be used in Theorem 5 to determine a vertex-
antimagic edge injection of an arbitrary graph.

Theorem 3. Every n-vertex m-edge forest F with no isolated edges and at most one
isolated vertex has a vertex-antimagic edge injection with maximum label at most
m + 2(n − 2).

Proof. Let T = (V, E) be a connected component (tree) of F with E �= ∅. Let r be
a vertex of T with deg(r) ≥ 2. Since T �= K2 such a vertex exists. The following
algorithm, which proceeds via a breadth-first search from r, sequentially chooses the
minimum possible label for each edge of T . More formally, label the edges of T in
non-decreasing order of dist(vw, r), assigning to each edge vw with v = parent(w)
the minimum positive integer λ(vw) such that (1) λ(vw) �= λ(xy) for all labelled
edges xy ∈ E, and (2) λ(vw) �= Λ(x) − Λ(v) and λ(vw) �= Λ(x) for all vertices
x ∈ V \ {v, w} (only counting labelled edges in each vertex-sum).

Suppose rx and ry are the first and second edges to be labelled by the above
algorithm. Then Λ(r) = λ(rx) + λ(ry), Λ(x) = λ(rx) and Λ(y) = λ(ry). Thus Λ(r),
Λ(x) and Λ(y) are pairwise distinct. All other vertices v have Λ(v) = 0. We shall
prove that the the following property is maintained, which as we have just shown
holds after two edges are labelled:

For all distinct vertices v, w ∈ V , if Λ(v) = Λ(w) then Λ(v) = 0 = Λ(w). (3)

Consider when the edge vw is labelled. Since v = parent(w), all other edges
incident to w are unlabelled, and hence Λ(w) = 0. By (3), Λ(v) > 0. The new
vertex-sum Λ′(v) of v is Λ(v) + λ(vw), the new vertex-sum Λ′(w) of w is λ(vw),
and Λ(x) does not change for any other vertex x. Since Λ(v) > 0, we have Λ′(v) =
Λ(v) + λ(vw) �= λ(vw) = Λ′(w). For all vertices x ∈ V \ {v, w}, by the choice of
λ(vw), we have Λ′(v) = Λ(v) + λ(vw) �= Λ(x) and Λ′(w) = λ(vw) �= Λ(x). Hence (3)
holds after labelling vw. Therefore (3) holds after all edges are labelled, in which case
Λ(v) > 0 for all vertices v; that is, for all distinct vertices v, w ∈ V , Λ(v) �= Λ(w).
Hence λ is a vertex-antimagic edge injection of T .

By running the above algorithm for each connected component T of F we obtain
a vertex-antimagic edge injection of F . For each edge vw, there are at most (m −
1)+2(n−2) values which the label λ(vw) cannot take on. Hence the maximum label
is at most m + 2(n − 2).

It is expected that better upper bounds are achievable for the maximum label in
a vertex-antimagic edge injection. In fact, Ringel and Llado [31] (see also Hartsfield
and Ringel [18]) conjecture that every graph has a vertex-antimagic edge labelling
(with labels {1, 2, . . . , m}).
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6 Greedy Algorithms for Arbitrary Graphs

We now present methods for producing edge-antimagic and vertex-antimagic injec-
tions of arbitrary graphs, which we then extend to edge-magic and vertex-magic
injections. These greedy algorithms sequentially choose the minimum possible label
for the vertices or edges of the given graph.

Theorem 4. Every n-vertex m-edge graph G with maximum degree ∆ has an edge-
antimagic vertex labelling with maximum label at most ∆(m − ∆) + n.

Proof. Consider the following algorithm. Order the vertices (v1, v2, . . . , vn) by non-
decreasing degree. For i = 1, 2, . . . , n, set λ(vi) to be the minimum l ∈ N such that
(1) l �= λ(vj) for all j < i, and (2) l �= λ(vp)+λ(vq)−λ(vj) for all edges vivj, vpvq ∈ E
with j, p, q < i and p �= j �= q.

At each step of the algorithm, by the choice of λ(vi), for all edges xy with both
end-vertices labelled, the sum λ(x)+λ(y) is unique. Thus at the end of the algorithm,
λ is an edge-antimagic vertex injection of G. When choosing λ(vi), there are at most
(i−1)+pred(vi)·mi positive integers which λ(vi) cannot become, where pred(vi) is the
number of edges vivj with j < i, and mi is the number of edges vpvq ∈ E with p, q < i.
Hence λ(vi) ≤ i + pred(vi) · mi. Now pred(vi) ≤ ∆ and mi ≤ m − deg(vn) = m − ∆
since vertices are ordered by non-decreasing degree. Hence the maximum label is at
most n + ∆(m − ∆).

By Lemma 1 and Theorem 4 we have the following result.

Corollary 4. Every n-vertex m-edge graph with maximum degree ∆ has an edge-
magic total injection with maximum label at most 3(∆(m − ∆) + n) − 2 and magic
constant at most 3(∆(m − ∆) + n).

Theorem 5. Every n-vertex m-edge graph G = (V, E) with no isolated edge and at
most one isolated vertex has a vertex-antimagic edge injection with maximum label
at most m + 2(n − 2).

Proof. Consider the following two-step algorithm. First, let T = (V, E ′) be a span-
ning forest of G, and apply Theorem 3 to T to obtain a vertex-antimagic edge
injection λ. In the second step, for each edge vw ∈ E \ E ′ in turn, let λ(vw) to be
the minimum l ∈ N such that (1) l �= λ(xy) for all labelled edges xy ∈ E, and (2)
l �= Λ(x) − Λ(v) and l �= Λ(x) − Λ(w) for all vertices x ∈ V \ {v, w} (only counting
labelled edges in each vertex-sum).

After the first step (since T is a spanning forest and λ is vertex-antimagic) for all
distinct vertices v, w ∈ V , Λ(v) �= Λ(w). Suppose, at some point during the second
step, λ is still vertex-antimagic on the set of labelled edges, and the label l is chosen
for some edge vw. The new vertex-sum Λ′(v) of v is Λ(v) + l, the new vertex-sum
Λ′(w) of w is Λ(w) + l, and Λ(x) does not change for any other vertex x. Since λ
is vertex-antimagic, Λ(v) �= Λ(w), and hence Λ′(v) = Λ(v) + l �= Λ(w) + l = Λ′(w).
By the choice of l, for all other vertices x ∈ V , Λ′(v) = Λ(v) + l �= Λ(x) and
Λ′(w) = Λ(w) + l �= Λ(x). Hence λ remains vertex-antimagic throughout the second
step.
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By Theorem 3 the maximum label in T is |E ′|+2(n−2). For each edge vw ∈ E\E ′,
there are at most (m−1)+2(n−2) values which the label λ(vw) cannot take on. Hence
the maximum label is at most max{|E ′|+2(n−2), m+2(n−2)} = m+2(n−2).

By Lemma 2 and Theorem 5 we have the following result.

Corollary 5. Every n-vertex m-edge graph with maximum degree ∆ has a vertex-
magic total injection with maximum label and magic constant at most (∆ + 1)(m +
2(n − 2)).

By Corollary 2 the above upper bound on the magic constant is within a constant
factor of being optimal for regular graphs.

7 Conclusion

In this paper we have studied edge-magic and vertex-magic total injections of graphs.
These variations of the well-known edge-magic and vertex-magic total labellings allow
labels to be arbitrary positive integers. All graphs admit such magic injections
(except for some trivial exceptions). We have presented lower and upper bounds
on the magic constant for complete graphs, trees and arbitrary graphs, which in a
number of cases are within a constant factor. We expect that better upper bounds
are possible for the magic constant in edge-magic total injections. In particular, we
conjecture that every n-vertex m-edge graph has an edge-magic total injection with
magic constant O(m + n). This conjecture has been verified in the case of complete
graphs, complete bipartite graphs, trees and cycles.
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[33] S. Sidon, Ein Satz űber trigonometrische Polynome und seine Anwendung in
der Theorie der Fourier-Reihen. Math. Ann., 106:536–539, 1932.
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