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Abstract

In this paper, by using the geometric construction of linear blocking sets
as projections of canonical subgeometries, we determine all the GF (q)-
linear blocking sets of the plane PG(2, q4).

1 Introduction

A blocking set B in the projective plane PG(2, q) is a set of points meeting every
line. B is called trivial if it contains a line, and it is called minimal if no proper
subset of it is a blocking set. We say B is small when its size is less than 3(q + 1)/2
and we call B of Rédei type if there exists a line l such that |B \ l| = q (the line l is
called a Rédei line of B).

A family of small minimal blocking sets in PG(2, qt), called GF (q)-linear blocking
sets, was introduced by G. Lunardon in [3] (for a survey on linear blocking sets see
[8]). Every small minimal blocking set of Rédei type in PG(2, q), q = pn and p �= 2, 3,
is a linear blocking set over some non-trivial subfield of GF (q) (see [1] and [3]), and
the known examples of small minimal blocking sets not of Rédei type are linear ([9]).
Hence, all the presently known small minimal blocking sets are linear.

In the planes PG(2, q2) and PG(2, q3), the GF (q)-linear blocking sets are com-
pletely classified: in PG(2, q2) they are Baer subplanes and in PG(2, q3) they are
isomorphic either to the blocking set obtained from the trace function of GF (q3)
over GF (q) or to the blocking set obtained from the function x �→ xq ([10]).

In this paper, we study the GF (q)-linear blocking sets in PG(2, q4). Our main
result is the following theorem:

Theorem 1.1 Let B be a GF (q)-linear blocking set in PG(2, q4). If B is of Rédei
type with at least two Rédei lines, then either B is a Baer subplane or B has q4+q3+1
points, q + 1 Rédei lines and it is equivalent to the blocking set obtained from the
graph of the trace function of GF (q4) over GF (q). If B is of Rédei type with a unique
Rédei line, then the possible sizes of B are q4 + q3 + 1 and q4 + q3 + q2 + cq + 1 with
c ∈ {−1, 0, 1}. Finally, if B is not of Rédei type, then B has size q4 +q3 +q2 +dq+1
with d ∈ {0, 1}.
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Finally, in the last section we prove that there exists at least one example of GF (q)-
linear blocking set in PG(2, q4) for each possible cardinality.

2 Linear blocking sets in PG(2, q4)

It is possible to define a linear blocking set in three different and equivalent ways. In
this paper we will use the geometric construction of such blocking sets following [4].

Let Σ = PG(t, q), t ≥ 3, be a canonical subgeometry of Σ∗ = PG(t, qt). Let Λ
be a (t− 3)−dimensional subspace of Σ∗ disjoint from Σ, and let π be a plane of Σ∗

disjoint from Λ. Recall that the projection of Σ from the axis Λ to the plane π is the
map pΛ,π,Σ from Σ to π defined by

pΛ,π,Σ(P ) =< P, Λ > ∩π

for each point P of Σ. The set pΛ,π,Σ(Σ) is a GF (q)−linear blocking set of π =
PG(2, qt). Also, any GF (q)−linear blocking set of PG(2, qt) can be constructed as
a projection of a suitable canonical subgeometry of PG(t, qt) (see [5]). Note that,
since Σ is a canonical subgeometry, there is no hyperplane of Σ∗ containing Σ and
hence the GF (q)-linear blocking sets obtained projecting Σ are non-trivial.

Now, suppose that t = 4 and let Σ = PG(4, q) be a canonical subgeometry of
Σ∗ = PG(4, q4). Let σ be the unique semilinear collineation of Σ∗ which fixes Σ
pointwise. Then σ4 = 1 and the set of fixed points of σ2 is a canonical subgeometry
Σ′ = PG(4, q2) of Σ∗ containing Σ. Also, if Si is an i-dimensional subspace of Σ∗,
then Si ∩ Σ (resp. Si ∩ Σ′) is an i-dimensional subspace of Σ (resp. Σ′) if and only
if Sσ

i = Si (resp. Sσ2

i = Si) (see e.g. [4]).
Let π be a plane of Σ∗ and let l be a line disjoint from both π and Σ. Denote by p

the projection pl,π,Σ of Σ from l to the plane π and by Bl the GF (q)-linear blocking set
p(Σ) of the plane π. Notice that if R is a point of Bl, then p−1(R) is an i-dimensional
subspace of Σ with i ∈ {0, 1, 2}, and < p−1(R) > is an i-dimensional subspace of
Σ∗ containing l. Similarly, if r is a line of π, then p−1(r ∩ Bl) is an i-dimensional
subspace of Σ with i ∈ {0, 1, 2, 3}, and < p−1(r ∩Bl) > is an i-dimensional subspace
of Σ∗ containing l.

Proposition 2.1 Bl is of Rédei type if and only if l is contained in a 3-dimensional
subspace of Σ∗ fixed by σ.

Proof. Suppose that there exists a 3-dimensional subspace S3 of Σ∗ containing l
and fixed by σ. Then S3∩Σ is a 3-dimensional subspace of Σ projected from l to the
line r = π ∩S3, i.e. p−1(r∩Bl) = S3 ∩Σ. Let R be a point of Bl \ r. Since p−1(R) is
a subspace of Σ disjoint from p−1(r ∩ Bl), p−1(R) is a point of Σ. This implies that
|Bl \ r| = |Σ \ S3| = q4, i.e. r is a Rédei line of Bl.

Now, suppose that Bl is of Rédei type and let r be a Rédei line of Bl. Since Bl is
non-trivial, it contains at least q4 + q2 + 1 points (see [2]) and |Bl ∩ r| ≥ q2 + 1. This
implies that p−1(r ∩Bl) is either a 2 or a 3-dimensional subspace of Σ. In the latter
case, < p−1(r ∩Bl) > is a 3-dimensional subspace of Σ∗ containing l and fixed by σ.
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In the former case, the q4 + q3 points of Σ\p−1(r∩Bl) are projected to the q4 points
of Bl \ r. Hence, there exist at least two points R and T of Bl \ r such that p−1(R)
and p−1(T ) contain some line of Σ. Let n and t be lines of Σ∗ such that Σ ∩ n is a
line of p−1(R) and Σ ∩ t is a line of p−1(T ). Then n ∩ t = ∅, n ∩ l �= ∅ and t ∩ l �= ∅.
Hence S3 =< n, t > is a 3-dimensional subspace of Σ∗ containing l fixed by σ.

�
Corollary 2.2 Bl is of Rédei type if and only if dim < l, lσ, lσ

2
, lσ

3
>≤ 3. Also,

if Bl is not a Baer subplane, then it has a unique Rédei line if and only if dim <
l, lσ, lσ

2
, lσ

3
>= 3.

Proof. By Proposition 2.1, if Bl is of Rédei type, then l is contained in some 3-
dimensional subspace, say S3, of Σ∗ fixed by σ. This implies that l, lσ, lσ

2
, and lσ

3

are contained in S3 and hence dim < l, lσ, lσ
2
, lσ

3
>≤ 3. Conversely, suppose that

dim < l, lσ, lσ
2
, lσ

3
>≤ 3. If dim < l, lσ, lσ

2
, lσ

3
>= 3, then S3 =< l, lσ, lσ

2
, lσ

3
>

is a 3-dimensional subspace of Σ∗ containing l and fixed by σ, hence Bl is of Rédei
type. If dim < l, lσ, lσ

2
, lσ

3
>= 2, for any point P ∈ Σ\ < l, lσ, lσ

2
, lσ

3
>, it is easy

to check that < P, l, lσ, lσ
2
, lσ

3
> is a 3-dimensional subspace fixed by σ, so Bl is of

Rédei type. Finally, suppose that Bl is of Rédei type, but it is not a Baer subplane.
In this case |Bl| ≥ q4 + q3 + 1 (see [1]) and hence, if r is a Rédei line of Bl, then
|Bl ∩ r| ≥ q3 + 1. This implies that p−1(r ∩ Bl) is a 3-dimensional subspace of Σ,
hence < p−1(r ∩ Bl) > is a 3-dimensional subspace of Σ∗ containing l fixed by σ.
Then < l, lσ, lσ

2
, lσ

3
>⊂< p−1(r∩Bl) >. Thus r is the unique Rédei line of Bl if and

only if < l, lσ, lσ
2
, lσ

3
>=< p−1(r ∩Bl) >, i.e. if and only if dim < l, lσ, lσ

2
, lσ

3
>= 3.

�
Proposition 2.3 With the previous notation, the following are equivalent:
1) B has maximum size q4 + q3 + q2 + q + 1.
2) There is no line of Σ projected from l to a point of π.
3) There is no line of Σ∗ fixed by σ incident with l.

Proof. Bl has maximum size if and only if the map p is a bijection, hence if and
only if p−1(R) is a point of Σ for every point R ∈ Bl (see also [4]). Finally, Bl has
not maximum size if and only if there exists a line t of Σ projected from l to a point
of Bl. In this case, if t′ is the line of Σ∗ containing t, then t′ is incident with l and
t′σ = t′. �

3 Proof of Theorem 1.1

The structure of Bl depends on the position of l with respect to the subgeometries Σ
and Σ′. In order to determine the different possibilities for Bl, we have to distinguish
between the following cases:

(A) l = lσ
2 ⇐⇒ l intersects Σ′ in a line;

(B) l ∩ lσ
2

is a point ⇐⇒ l intersects Σ′ in a point;

(C) l ∩ lσ
2

= ∅ ⇐⇒ l is disjoint from Σ′.
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Case A

It is easy to check that in this case l∩ lσ = ∅, hence S3 =< l, lσ > is a 3-dimensional
subspace of Σ∗. Since S3 is fixed by σ, by Proposition 2.1, Bl is of Rédei type and
r = S3 ∩ π is a Rédei line of Bl. Also, if P ∈ l ∩ Σ′ the line < P, P σ > is fixed by
σ and hence < P, P σ > ∩Σ is a line of Σ. So < P, P σ > ∩Σ is projected from l to
a point of r ∩ Bl, for every point P ∈ l ∩ Σ′. This implies that the size of Bl ∩ r is
q2 + 1, and hence |Bl| = q4 + q2 + 1, i.e. Bl is a Baer subplane of π ([2]).

Case B

Put l ∩ lσ
2

= {P}. Note that the line < P, P σ > is fixed by σ, hence < P, P σ >
intersects Σ in a line.

(B1) l ∩ lσ �= ∅
In this case, we have lσ ∩ lσ

2 �= ∅, lσ
2 ∩ lσ

3 �= ∅, and lσ
3 ∩ l �= ∅, i.e. π =<

l, lσ, lσ
2
, lσ

3
> is a plane of Σ∗ fixed by σ. Hence π ∩ Σ is projected from l to

a point R of Bl. Also, every 3-dimensional subspace obtained joining π to a
point of Σ\π intersects Σ in a 3-dimensional subspace. Then, through R there
pass q +1 Rédei lines and |Bl| = q4 + q3 +1. This implies that Bl is equivalent
to the blocking set obtained from the graph of the trace function of GF (q4)
over GF (q) (see [6]).

(B2) l ∩ lσ = ∅ and dim < l, lσ, lσ
2
, lσ

3
>= 3

Let S3 =< l, lσ, lσ
2
, lσ

3
>. By Corollary 2.2 and Proposition 2.1, Bl is of Rédei

type and S3 ∩ π is a Rédei line of Bl. Note that both lines < P, P σ > and
l′ =< l, lσ

2
> ∩ < lσ, lσ

3
> are fixed by σ, so they intersect Σ in a line. Also,

any line of Σ∗ fixed by σ and incident with l is incident with lσ, lσ
2

and lσ
3
.

This implies that < P, P σ > and l′ are the unique lines of Σ∗ fixed by σ and
incident with l.

(B21) If < P, P σ >= l′, then exactly one line of Σ is projected from l to a point
of Bl, so Bl has size q4 + q3 + q2 + 1.

(B22) If < P, P σ >�= l′, then exactly two lines of Σ are projected from l to a
point of Bl, so Bl has size q4 + q3 + q2 − q + 1.

Since the blocking sets Bl obtained in Cases B21 and B22 are not Baer sub-
planes, S3 ∩ π is the unique Rédei line of Bl (Corollary 2.2).

(B3) l ∩ lσ = ∅ and dim < l, lσ, lσ
2
, lσ

3
>= 4

Since the subspace joining l, lσ, lσ
2
, and lσ

3
has dimension four, Bl is not of

Rédei type (Corollary 2.2). If m is a line fixed by σ and incident with l, then
m =< P, P σ >. Thus, Bl has size q4 + q3 + q2 + 1.
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Case C

(C1) dim < l, lσ, lσ
2
, lσ

3
>= 3

Let S3 =< l, lσ, lσ
2
, lσ

3
>. In this case Bl is of Rédei type and r = S3 ∩ π a

Rédei line of Bl (Corollary 2.2).

(C11) Suppose that l ∩ lσ �= ∅ and let {P} = l ∩ lσ. This implies that l =<
P, P σ3

>. Hence the unique lines intersecting l, lσ, lσ
2

and lσ
3

are <
P σ2

, P > and < P σ3
, P σ >. Since such lines are not fixed by σ, there is

no line of Σ∗ projected from l to a point of Bl, i.e. Bl has maximum size
(Proposition 2.3).

(C12) Suppose that l ∩ lσ = ∅ and that l, lσ, lσ
2

and lσ
3

belong to the same
regulus R of S3. Since R is fixed by σ, R∩Σ is a regulus of S3 ∩Σ. This
implies that each transversal line to R∩ Σ is projected from l to a point
of r ∩ Bl. Since the transversal lines to R ∩ Σ number q + 1, the size of
r ∩ Bl is q3 + 1, and |Bl| = q4 + q3 + 1 (see also [6]).

Now, suppose that l ∩ lσ = ∅ and that l, lσ, lσ
2

and lσ
3

do not belong to the
same regulus of S3. Let R be the regulus determined by l, lσ, and lσ

2
and let

R be the opposite regulus to R. A line l′ fixed by σ and incident with l, is
incident with lσ, lσ

2
and lσ

3
and hence it is a transversal line to R, Rσ, Rσ2

and Rσ3
, i.e. l′ ∈ R∩Rσ ∩Rσ2 ∩Rσ3

. Note that two distinct reguli can have
at most two transversal lines in common and that the intersection of R, Rσ

,

Rσ2

and Rσ3

is fixed by σ.

(C13) R, Rσ, Rσ2
and Rσ3

have two transversal lines in common, both fixed by
σ. Then Bl has size q4 + q3 + q2 − q + 1.

(C14) R, Rσ, Rσ2
and Rσ3

have two transversal lines in common, each one not
fixed by σ. Then Bl has maximum size.

(C15) R, Rσ, Rσ2
and Rσ3

have a unique transversal line in common. Such
transversal is fixed by σ, so Bl has size q4 + q3 + q2 + 1.

(C16) R, Rσ, Rσ2
and Rσ3

have no transversal line in common. Then Bl has
maximum size.

Since the blocking sets Bl obtained in Cases (C1i), for i = 1, . . . , 6, are not
Baer subplanes, r = S3 ∩ π is the unique Rédei line of Bl (Corollary 2.2).

(C2) dim < l, lσ, lσ
2
, lσ

3
>= 4

By Corollary 2.2, Bl is not of Rédei type. Also, l, lσ, lσ
2

and lσ
3

are pairwise
disjoint. Let S3 =< l, lσ > and let L = S3 ∩ Sσ

3 ∩ Sσ2

3 ∩ Sσ3

3 . Note that
L is fixed by σ and, since Sσ

3 �= S3, dim L ∈ {0, 1, 2}. If dimL = 2, then
S3 ∩ Sσ

3 = Sσ2

3 ∩ Sσ3

3 . Hence lσ and lσ
3

are contained in the plane S3 ∩ Sσ
3 , a

contradiction. So, 0 ≤ dimL ≤ 1. If l′ is a line fixed by σ and incident with l,
then l′ is contained in L.
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(C21) Suppose that dimL = 1. Then L is the unique line of Σ projected from l
to a point of Bl. So |Bl| = q4 + q3 + q2 + 1.

(C22) Suppose that dim L = 0. In this case there is no line of Σ projected from
l to a point of Bl. Hence Bl has maximum size.

This completes the proof of Theorem 1.1. �

4 Examples

In this section we show that all the cases discussed in the proof of Theorem 1.1, but
Case (C16), effectively occur.

Let σ be the semilinear collineation of Σ∗ = PG(4, q4) defined by

σ : (x0, x1, x2, x3, x4) �−→ (xq
0, x

q
4, x

q
1, x

q
2, x

q
3).

Then the set Σ = {(α, x, xq, xq2
, xq3

) : α ∈ GF (q), x ∈ GF (q4)} of fixed points of σ
is a 4-dimensional canonical subgeometry of Σ∗. Let l be the line with equations

x0 = 0, x1 = βx3, x2 = ax3 + bx4,

where β, a, b ∈ GF (q4). The lines l, lσ, lσ
2

and lσ
3

are contained in the 3-dimensional
subspace with equation x0 = 0. Hence, if l ∩ Σ = ∅, projecting Σ from l to a plane
π disjoint from l, we obtain a GF (q)-linear blocking set of Rédei type of π. By
different choices of the coefficients β, a and b we get all the GF (q)-linear blocking
sets of Rédei type listed in Theorem 1.1, but Case (C16):

• If β = 1, a = 0, bq2+1 = 1 and b �= 1, then l ∩ Σ = ∅, l = lσ
2

and hence Case
(A) occurs.

• If β = 0 and bq2+1 = 1, then l∩Σ = ∅ and l∩ lσ
2

= {P} with P = (0, 0, b, 0, 1).
In this case, if a = b = −1, since l ∩ lσ �= ∅, we get Case (B1). If a = 1 and
b �= −1, since l∩ lσ = ∅ and P σ ∈< l, lσ

2
>, we get Case (B21). Finally, if b = 1

and a �∈ GF (q2), since l ∩ lσ = ∅ and P σ �∈< l, lσ
2
>, we get Case (B22).

• If β = a = b = 0, then l ∩ Σ = ∅, l ∩ lσ
2

= ∅ and l ∩ lσ �= ∅. So Case (C11)
occurs.

• If β = a = 0 and bq2+1 �= 1 with b �= 0, then l∩Σ = ∅, l, lσ and lσ
2

are mutually
disjoint and determine a regulus R of the quadric with equations

x0 = 0, bq2+q+1x1x2 − bq+1x1x4 − x2x3 + bx3x4 = 0.

If bq3+q2+q+1 = 1, then lσ
3 ∈ R (Case (C12)). If bq3+q2+q+1 �= 1 then R, Rσ, Rσ2

and Rσ3
have in common the transversal lines with equations x0 = x4 = x2 = 0

and x0 = x3 = x1 = 0, each one not fixed by σ (Case (C14)).
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• If β = b = 0 and a �= 0, then l ∩ Σ = ∅, l, lσ and lσ
2

are mutually disjoint and
determine a regulus R of the quadric with equations

x0 = 0, ax2
3 − aq2+qx1x2 + aqx2x4 − x2x3 − aq+1x3x4 = 0.

By direct calculations it is possible to prove that if either q is even or q is odd
and 1 + 4aq3+q2+q+1 is a non square in G(q), then the reguli R, Rσ, Rσ2

and
Rσ3

have two transversal lines in common, both fixed by σ (Case (C13)). Also,
if q is odd and aq3+q2+q+1 = −1/4, then the reguli R, Rσ, Rσ2

and Rσ3
have a

unique transversal line in common (Case (C15)).

In order to obtain the GF (q)-linear blocking sets not of Rédei type consider the
following lines:

• Let l be the line of Σ∗ with equations x0 = x4, x1 = x3, x2 = 0. Since l∩Σ = ∅,
l ∩ lσ

2
= {P} with P = (0, 1, 0, 1, 0), l ∩ lσ = ∅ and dim < l, lσ, lσ

2
, lσ

3
>= 4,

projecting Σ from l to a plane π disjoint from l, we obtain a GF (q)-linear
blocking set of π as discussed in Case (B3).

• Let l be the line of Σ∗ with equations x0 = x4, x1 = 0, x2 = 0 and let
S3 =< l, lσ >. Since l ∩ Σ = ∅, l ∩ lσ

2
= ∅, dim < l, lσ, lσ

2
, lσ

3
>= 4 and

dim(S3 ∩ Sσ
3 ∩ Sσ2

3 ∩ Sσ3

3 ) = 0, projecting Σ from l to a plane disjoint from l,
we get Case (C22).

• Finally, let l be the line with equations x1 = ax0, x1 = x2 and x2 = x3

with a �∈ GF (q2) and let S3 =< l, lσ >. Since l ∩ lσ
2

= ∅, l ∩ lσ = ∅ and
L = S3 ∩ Sσ

3 ∩ Sσ2

3 ∩ Sσ3

3 is the line with equations x1 = x2, x2 = x3 and
x3 = x4, Case (C21) occurs.

We close this section by noting that different positions of the axis of the projection
with respect to Σ and Σ′ can produce non-equivalent linear blocking sets of the same
type and of the same size. Indeed, projecting Σ to the plane π with equations
x3 = x4 = 0 from the line la,b with equations x0 = 0, x1 = 0, x2 = ax3 + bx4, we get
the following GF (q)-linear blocking set of π

Bla,b
= {(α, x, xq − axq2 − bxq3

) : α ∈ GF (q), x ∈ GF (q4)}.

As previously noted, if a = b = 0, then Bl0,0 is a GF (q)-linear blocking set of Rédei

type of maximum size of Case (C11) and, if a = 0 and bq3+q2+q+1 �= 1, Bl0,b
is a GF (q)-

linear blocking set of Rédei type of maximum size of Case (C14). It is possible to
prove (see [7]) that Bl0,0 and Bl0,b

with bq3+q2+q+1 �= 1 are not isomorphic if q > 3.
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