Linear blocking sets in $P G\left(2, q^{4}\right)$

P. Polito and O. Polverino

Dipartimento di Matematica
Via Vivaldi, 81100 Caserta

ITALY
opolveri@unina.it

Abstract

In this paper, by using the geometric construction of linear blocking sets as projections of canonical subgeometries, we determine all the $G F(q)$ linear blocking sets of the plane $P G\left(2, q^{4}\right)$.

1 Introduction

A blocking set B in the projective plane $P G(2, q)$ is a set of points meeting every line. B is called trivial if it contains a line, and it is called minimal if no proper subset of it is a blocking set. We say B is small when its size is less than $3(q+1) / 2$ and we call B of Rédei type if there exists a line l such that $|B \backslash l|=q$ (the line l is called a Rédei line of B).

A family of small minimal blocking sets in $P G\left(2, q^{t}\right)$, called $G F(q)$-linear blocking sets, was introduced by G. Lunardon in [3] (for a survey on linear blocking sets see [8]). Every small minimal blocking set of Rédei type in $P G(2, q), q=p^{n}$ and $p \neq 2,3$, is a linear blocking set over some non-trivial subfield of $G F(q)$ (see [1] and [3]), and the known examples of small minimal blocking sets not of Rédei type are linear ([9]). Hence, all the presently known small minimal blocking sets are linear.

In the planes $P G\left(2, q^{2}\right)$ and $P G\left(2, q^{3}\right)$, the $G F(q)$-linear blocking sets are completely classified: in $P G\left(2, q^{2}\right)$ they are Baer subplanes and in $P G\left(2, q^{3}\right)$ they are isomorphic either to the blocking set obtained from the trace function of $G F\left(q^{3}\right)$ over $G F(q)$ or to the blocking set obtained from the function $x \mapsto x^{q}([10])$.

In this paper, we study the $G F(q)$-linear blocking sets in $P G\left(2, q^{4}\right)$. Our main result is the following theorem:
Theorem 1.1 Let B be a $G F(q)$-linear blocking set in $P G\left(2, q^{4}\right)$. If B is of Rédei type with at least two Rédei lines, then either B is a Baer subplane or B has $q^{4}+q^{3}+1$ points, $q+1$ Rédei lines and it is equivalent to the blocking set obtained from the graph of the trace function of $G F\left(q^{4}\right)$ over $G F(q)$. If B is of Rédei type with a unique Rédei line, then the possible sizes of B are $q^{4}+q^{3}+1$ and $q^{4}+q^{3}+q^{2}+c q+1$ with $c \in\{-1,0,1\}$. Finally, if B is not of Rédei type, then B has size $q^{4}+q^{3}+q^{2}+d q+1$ with $d \in\{0,1\}$.

Finally, in the last section we prove that there exists at least one example of $G F(q)$ linear blocking set in $P G\left(2, q^{4}\right)$ for each possible cardinality.

2 Linear blocking sets in $P G\left(2, q^{4}\right)$

It is possible to define a linear blocking set in three different and equivalent ways. In this paper we will use the geometric construction of such blocking sets following [4].

Let $\Sigma=P G(t, q), t \geq 3$, be a canonical subgeometry of $\Sigma^{*}=P G\left(t, q^{t}\right)$. Let Λ be a $(t-3)$-dimensional subspace of Σ^{*} disjoint from Σ, and let π be a plane of Σ^{*} disjoint from Λ. Recall that the projection of Σ from the axis Λ to the plane π is the $\operatorname{map} p_{\Lambda, \pi, \Sigma}$ from Σ to π defined by

$$
p_{\Lambda, \pi, \Sigma}(P)=<P, \Lambda>\cap \pi
$$

for each point P of Σ. The set $p_{\Lambda, \pi, \Sigma}(\Sigma)$ is a $G F(q)$-linear blocking set of $\pi=$ $P G\left(2, q^{t}\right)$. Also, any $G F(q)$-linear blocking set of $P G\left(2, q^{t}\right)$ can be constructed as a projection of a suitable canonical subgeometry of $P G\left(t, q^{t}\right)$ (see [5]). Note that, since Σ is a canonical subgeometry, there is no hyperplane of Σ^{*} containing Σ and hence the $G F(q)$-linear blocking sets obtained projecting Σ are non-trivial.

Now, suppose that $t=4$ and let $\Sigma=P G(4, q)$ be a canonical subgeometry of $\Sigma^{*}=P G\left(4, q^{4}\right)$. Let σ be the unique semilinear collineation of Σ^{*} which fixes Σ pointwise. Then $\sigma^{4}=1$ and the set of fixed points of σ^{2} is a canonical subgeometry $\Sigma^{\prime}=P G\left(4, q^{2}\right)$ of Σ^{*} containing Σ. Also, if S_{i} is an i-dimensional subspace of Σ^{*}, then $S_{i} \cap \Sigma$ (resp. $S_{i} \cap \Sigma^{\prime}$) is an i-dimensional subspace of Σ (resp. Σ^{\prime}) if and only if $S_{i}^{\sigma}=S_{i}$ (resp. $S_{i}^{\sigma^{2}}=S_{i}$) (see e.g. [4]).

Let π be a plane of Σ^{*} and let l be a line disjoint from both π and Σ. Denote by p the projection $p_{l, \pi, \Sigma}$ of Σ from l to the plane π and by B_{l} the $G F(q)$-linear blocking set $p(\Sigma)$ of the plane π. Notice that if R is a point of B_{l}, then $p^{-1}(R)$ is an i-dimensional subspace of Σ with $i \in\{0,1,2\}$, and $<p^{-1}(R)>$ is an i-dimensional subspace of Σ^{*} containing l. Similarly, if r is a line of π, then $p^{-1}\left(r \cap B_{l}\right)$ is an i-dimensional subspace of Σ with $i \in\{0,1,2,3\}$, and $<p^{-1}\left(r \cap B_{l}\right)>$ is an i-dimensional subspace of Σ^{*} containing l.

Proposition 2.1 B_{l} is of Rédei type if and only if l is contained in a 3-dimensional subspace of Σ^{*} fixed by σ.

Proof. Suppose that there exists a 3 -dimensional subspace S_{3} of Σ^{*} containing l and fixed by σ. Then $S_{3} \cap \Sigma$ is a 3 -dimensional subspace of Σ projected from l to the line $r=\pi \cap S_{3}$, i.e. $p^{-1}\left(r \cap B_{l}\right)=S_{3} \cap \Sigma$. Let R be a point of $B_{l} \backslash r$. Since $p^{-1}(R)$ is a subspace of Σ disjoint from $p^{-1}\left(r \cap B_{l}\right), p^{-1}(R)$ is a point of Σ. This implies that $\left|B_{l} \backslash r\right|=\left|\Sigma \backslash S_{3}\right|=q^{4}$, i.e. r is a Rédei line of B_{l}.

Now, suppose that B_{l} is of Rédei type and let r be a Rédei line of B_{l}. Since B_{l} is non-trivial, it contains at least $q^{4}+q^{2}+1$ points (see [2]) and $\left|B_{l} \cap r\right| \geq q^{2}+1$. This implies that $p^{-1}\left(r \cap B_{l}\right)$ is either a 2 or a 3-dimensional subspace of Σ. In the latter case, $<p^{-1}\left(r \cap B_{l}\right)>$ is a 3 -dimensional subspace of Σ^{*} containing l and fixed by σ.

In the former case, the $q^{4}+q^{3}$ points of $\Sigma \backslash p^{-1}\left(r \cap B_{l}\right)$ are projected to the q^{4} points of $B_{l} \backslash r$. Hence, there exist at least two points R and T of $B_{l} \backslash r$ such that $p^{-1}(R)$ and $p^{-1}(T)$ contain some line of Σ. Let n and t be lines of Σ^{*} such that $\Sigma \cap n$ is a line of $p^{-1}(R)$ and $\Sigma \cap t$ is a line of $p^{-1}(T)$. Then $n \cap t=\emptyset, n \cap l \neq \emptyset$ and $t \cap l \neq \emptyset$. Hence $S_{3}=<n, t>$ is a 3 -dimensional subspace of Σ^{*} containing l fixed by σ.

Corollary 2.2 B_{l} is of Rédei type if and only if $\operatorname{dim}<l, l^{\sigma}, l^{\sigma^{2}}, l^{\sigma^{3}}>\leq 3$. Also, if B_{l} is not a Baer subplane, then it has a unique Rédei line if and only if $\operatorname{dim}<$ $l, l^{\sigma}, l^{\sigma^{2}}, l^{\sigma^{3}}>=3$.

Proof. By Proposition 2.1, if B_{l} is of Rédei type, then l is contained in some 3dimensional subspace, say S_{3}, of Σ^{*} fixed by σ. This implies that $l, l^{\sigma}, l^{\sigma^{2}}$, and $l^{\sigma^{3}}$ are contained in S_{3} and hence $\operatorname{dim}<l, l^{\sigma}, l^{\sigma^{2}}, l^{\sigma^{3}}>\leq 3$. Conversely, suppose that $\operatorname{dim}<l, l^{\sigma}, l^{\sigma^{2}}, l^{\sigma^{3}}>\leq 3$. If $\operatorname{dim}<l, l^{\sigma}, l^{\sigma^{2}}, l^{\sigma^{3}}>=3$, then $S_{3}=<l, l^{\sigma}, l^{\sigma^{2}}, l^{\sigma^{3}}>$ is a 3 -dimensional subspace of Σ^{*} containing l and fixed by σ, hence B_{l} is of Rédei type. If $\operatorname{dim}<l, l^{\sigma}, l^{\sigma^{2}}, l^{\sigma^{3}}>=2$, for any point $P \in \Sigma \backslash<l, l^{\sigma}, l^{\sigma^{2}}, l^{\sigma^{3}}>$, it is easy to check that $<P, l, l^{\sigma}, l^{\sigma^{2}}, l^{\sigma^{3}}>$ is a 3 -dimensional subspace fixed by σ, so B_{l} is of Rédei type. Finally, suppose that B_{l} is of Rédei type, but it is not a Baer subplane. In this case $\left|B_{l}\right| \geq q^{4}+q^{3}+1$ (see [1]) and hence, if r is a Rédei line of B_{l}, then $\left|B_{l} \cap r\right| \geq q^{3}+1$. This implies that $p^{-1}\left(r \cap B_{l}\right)$ is a 3-dimensional subspace of Σ, hence $<p^{-1}\left(r \cap B_{l}\right)>$ is a 3 -dimensional subspace of Σ^{*} containing l fixed by σ. Then $<l, l^{\sigma}, l^{\sigma^{2}}, l^{\sigma^{3}}>\subset<p^{-1}\left(r \cap B_{l}\right)>$. Thus r is the unique Rédei line of B_{l} if and only if $<l, l^{\sigma}, l^{\sigma^{2}}, l^{\sigma^{3}}>=<p^{-1}\left(r \cap B_{l}\right)>$, i.e. if and only if $\operatorname{dim}<l, l^{\sigma}, l^{\sigma^{2}}, l^{\sigma^{3}}>=3$.

Proposition 2.3 With the previous notation, the following are equivalent:

1) B has maximum size $q^{4}+q^{3}+q^{2}+q+1$.
2) There is no line of Σ projected from l to a point of π.
3) There is no line of Σ^{*} fixed by σ incident with l.

Proof. B_{l} has maximum size if and only if the map p is a bijection, hence if and only if $p^{-1}(R)$ is a point of Σ for every point $R \in B_{l}$ (see also [4]). Finally, B_{l} has not maximum size if and only if there exists a line t of Σ projected from l to a point of B_{l}. In this case, if t^{\prime} is the line of Σ^{*} containing t, then t^{\prime} is incident with l and $t^{\prime \sigma}=t^{\prime}$.

3 Proof of Theorem 1.1

The structure of B_{l} depends on the position of l with respect to the subgeometries Σ and Σ^{\prime}. In order to determine the different possibilities for B_{l}, we have to distinguish between the following cases:
(A) $\quad l=l^{\sigma^{2}} \Longleftrightarrow l$ intersects Σ^{\prime} in a line;
(B) $\quad l \cap l^{\sigma^{2}}$ is a point $\Longleftrightarrow l$ intersects Σ^{\prime} in a point;
(C) $\quad l \cap l^{\sigma^{2}}=\emptyset \Longleftrightarrow l$ is disjoint from Σ^{\prime}.

Case A

It is easy to check that in this case $l \cap l^{\sigma}=\emptyset$, hence $S_{3}=<l, l^{\sigma}>$ is a 3-dimensional subspace of Σ^{*}. Since S_{3} is fixed by σ, by Proposition 2.1, B_{l} is of Rédei type and $r=S_{3} \cap \pi$ is a Rédei line of B_{l}. Also, if $P \in l \cap \Sigma^{\prime}$ the line $<P, P^{\sigma}>$ is fixed by σ and hence $<P, P^{\sigma}>\cap \Sigma$ is a line of Σ. So $<P, P^{\sigma}>\cap \Sigma$ is projected from l to a point of $r \cap B_{l}$, for every point $P \in l \cap \Sigma^{\prime}$. This implies that the size of $B_{l} \cap r$ is $q^{2}+1$, and hence $\left|B_{l}\right|=q^{4}+q^{2}+1$, i.e. B_{l} is a Baer subplane of $\pi([2])$.

Case B

Put $l \cap l^{\sigma^{2}}=\{P\}$. Note that the line $<P, P^{\sigma}>$ is fixed by σ, hence $<P, P^{\sigma}>$ intersects Σ in a line.
$\left(B_{1}\right) \quad l \cap l^{\sigma} \neq \emptyset$
In this case, we have $l^{\sigma} \cap l^{\sigma^{2}} \neq \emptyset, l^{\sigma^{2}} \cap l^{\sigma^{3}} \neq \emptyset$, and $l^{\sigma^{3}} \cap l \neq \emptyset$, i.e. $\bar{\pi}=<$ $l, l^{\sigma}, l^{\sigma^{2}}, l^{\sigma^{3}}>$ is a plane of Σ^{*} fixed by σ. Hence $\bar{\pi} \cap \Sigma$ is projected from l to a point R of B_{l}. Also, every 3-dimensional subspace obtained joining $\bar{\pi}$ to a point of $\Sigma \backslash \bar{\pi}$ intersects Σ in a 3 -dimensional subspace. Then, through R there pass $q+1$ Rédei lines and $\left|B_{l}\right|=q^{4}+q^{3}+1$. This implies that B_{l} is equivalent to the blocking set obtained from the graph of the trace function of $G F\left(q^{4}\right)$ over $G F(q)$ (see [6]).
$\left(B_{2}\right) \quad l \cap l^{\sigma}=\emptyset$ and $\operatorname{dim}<l, l^{\sigma}, l^{\sigma^{2}}, l^{\sigma^{3}}>=3$
Let $S_{3}=<l, l^{\sigma}, l^{\sigma^{2}}, l^{\sigma^{3}}>$. By Corollary 2.2 and Proposition 2.1, B_{l} is of Rédei type and $S_{3} \cap \pi$ is a Rédei line of B_{l}. Note that both lines $<P, P^{\sigma}>$ and $l^{\prime}=<l, l^{\sigma^{2}}>\cap<l^{\sigma}, l^{\sigma^{3}}>$ are fixed by σ, so they intersect Σ in a line. Also, any line of Σ^{*} fixed by σ and incident with l is incident with $l^{\sigma}, l^{\sigma^{2}}$ and $l^{\sigma^{3}}$. This implies that $<P, P^{\sigma}>$ and l^{\prime} are the unique lines of Σ^{*} fixed by σ and incident with l.
$\left(B_{21}\right)$ If $<P, P^{\sigma}>=l^{\prime}$, then exactly one line of Σ is projected from l to a point of B_{l}, so B_{l} has size $q^{4}+q^{3}+q^{2}+1$.
$\left(B_{22}\right)$ If $<P, P^{\sigma}>\neq l^{\prime}$, then exactly two lines of Σ are projected from l to a point of B_{l}, so B_{l} has size $q^{4}+q^{3}+q^{2}-q+1$.

Since the blocking sets B_{l} obtained in Cases B_{21} and B_{22} are not Baer subplanes, $S_{3} \cap \pi$ is the unique Rédei line of B_{l} (Corollary 2.2).
$\left(B_{3}\right) \quad l \cap l^{\sigma}=\emptyset$ and $\operatorname{dim}<l, l^{\sigma}, l^{\sigma^{2}}, l^{\sigma^{3}}>=4$
Since the subspace joining $l, l^{\sigma}, l^{\sigma^{2}}$, and $l^{\sigma^{3}}$ has dimension four, B_{l} is not of Rédei type (Corollary 2.2). If m is a line fixed by σ and incident with l, then $m=<P, P^{\sigma}>$. Thus, B_{l} has size $q^{4}+q^{3}+q^{2}+1$.

Case C

$\left(C_{1}\right) \quad \operatorname{dim}<l, l^{\sigma}, l^{\sigma^{2}}, l^{\sigma^{3}}>=3$
Let $S_{3}=<l, l^{\sigma}, l^{\sigma^{2}}, l^{\sigma^{3}}>$. In this case B_{l} is of Rédei type and $r=S_{3} \cap \pi$ a Rédei line of B_{l} (Corollary 2.2).
$\left(C_{11}\right)$ Suppose that $l \cap l^{\sigma} \neq \emptyset$ and let $\{P\}=l \cap l^{\sigma}$. This implies that $l=<$ $P, P^{\sigma^{3}}>$. Hence the unique lines intersecting $l, l^{\sigma}, l^{\sigma^{2}}$ and $l^{\sigma^{3}}$ are $<$ $P^{\sigma^{2}}, P>$ and $<P^{\sigma^{3}}, P^{\sigma}>$. Since such lines are not fixed by σ, there is no line of Σ^{*} projected from l to a point of B_{l}, i.e. B_{l} has maximum size (Proposition 2.3).
$\left(C_{12}\right)$ Suppose that $l \cap l^{\sigma}=\emptyset$ and that $l, l^{\sigma}, l^{\sigma^{2}}$ and $l^{\sigma^{3}}$ belong to the same regulus \mathcal{R} of S_{3}. Since \mathcal{R} is fixed by $\sigma, \mathcal{R} \cap \Sigma$ is a regulus of $S_{3} \cap \Sigma$. This implies that each transversal line to $\mathcal{R} \cap \Sigma$ is projected from l to a point of $r \cap B_{l}$. Since the transversal lines to $\mathcal{R} \cap \Sigma$ number $q+1$, the size of $r \cap B_{l}$ is $q^{3}+1$, and $\left|B_{l}\right|=q^{4}+q^{3}+1$ (see also [6]).

Now, suppose that $l \cap l^{\sigma}=\emptyset$ and that $l, l^{\sigma}, l^{\sigma^{2}}$ and $l^{\sigma^{3}}$ do not belong to the same regulus of S_{3}. Let \mathcal{R} be the regulus determined by l, l^{σ}, and $l^{\sigma^{2}}$ and let $\overline{\mathcal{R}}$ be the opposite regulus to \mathcal{R}. A line l^{\prime} fixed by σ and incident with l, is incident with $l^{\sigma}, l^{\sigma^{2}}$ and $l^{\sigma^{3}}$ and hence it is a transversal line to \mathcal{R}, \mathcal{R}, $\mathcal{R}^{\sigma^{2}}$ and $\mathcal{R}^{\sigma^{3}}$, i.e. $l^{\prime} \in \overline{\mathcal{R}} \cap \overline{\mathcal{R}}^{\sigma} \cap \overline{\mathcal{R}}^{\sigma^{2}} \cap \overline{\mathcal{R}}^{\sigma^{3}}$. Note that two distinct reguli can have at most two transversal lines in common and that the intersection of $\overline{\mathcal{R}}, \overline{\mathcal{R}}^{\sigma}$, $\overline{\mathcal{R}}^{\sigma^{2}}$ and $\overline{\mathcal{R}}^{\sigma^{3}}$ is fixed by σ.
$\left(C_{13}\right) \mathcal{R}, \mathcal{R}^{\sigma}, \mathcal{R}^{\sigma^{2}}$ and $\mathcal{R}^{\sigma^{3}}$ have two transversal lines in common, both fixed by σ. Then B_{l} has size $q^{4}+q^{3}+q^{2}-q+1$.
$\left(C_{14}\right) \mathcal{R}, \mathcal{R}^{\sigma}, \mathcal{R}^{\sigma^{2}}$ and $\mathcal{R}^{\sigma^{3}}$ have two transversal lines in common, each one not fixed by σ. Then B_{l} has maximum size.
$\left(C_{15}\right) \mathcal{R}, \mathcal{R}^{\sigma}, \mathcal{R}^{\sigma^{2}}$ and $\mathcal{R}^{\sigma^{3}}$ have a unique transversal line in common. Such transversal is fixed by σ, so B_{l} has size $q^{4}+q^{3}+q^{2}+1$.
$\left(C_{16}\right) \mathcal{R}, \mathcal{R}^{\sigma}, \mathcal{R}^{\sigma^{2}}$ and $\mathcal{R}^{\sigma^{3}}$ have no transversal line in common. Then B_{l} has maximum size.

Since the blocking sets B_{l} obtained in Cases $\left(C_{1 i}\right)$, for $i=1, \ldots, 6$, are not Baer subplanes, $r=S_{3} \cap \pi$ is the unique Rédei line of B_{l} (Corollary 2.2).
$\left(C_{2}\right) \quad \operatorname{dim}<l, l^{\sigma}, l^{\sigma^{2}}, l^{\sigma^{3}}>=4$
By Corollary 2.2, B_{l} is not of Rédei type. Also, $l, l^{\sigma}, l^{\sigma^{2}}$ and $l^{\sigma^{3}}$ are pairwise disjoint. Let $S_{3}=<l, l^{\sigma}>$ and let $L=S_{3} \cap S_{3}^{\sigma} \cap S_{3}^{\sigma^{2}} \cap S_{3}^{\sigma^{3}}$. Note that L is fixed by σ and, since $S_{3}^{\sigma} \neq S_{3}, \operatorname{dim} L \in\{0,1,2\}$. If $\operatorname{dim} L=2$, then $S_{3} \cap S_{3}^{\sigma}=S_{3}^{\sigma^{2}} \cap S_{3}^{\sigma^{3}}$. Hence l^{σ} and $l^{\sigma^{3}}$ are contained in the plane $S_{3} \cap S_{3}^{\sigma}$, a contradiction. So, $0 \leq \operatorname{dim} L \leq 1$. If l^{\prime} is a line fixed by σ and incident with l, then l^{\prime} is contained in L.
$\left(C_{21}\right)$ Suppose that $\operatorname{dim} L=1$. Then L is the unique line of Σ projected from l to a point of B_{l}. So $\left|B_{l}\right|=q^{4}+q^{3}+q^{2}+1$.
$\left(C_{22}\right)$ Suppose that $\operatorname{dim} L=0$. In this case there is no line of Σ projected from l to a point of B_{l}. Hence B_{l} has maximum size.

This completes the proof of Theorem 1.1.

4 Examples

In this section we show that all the cases discussed in the proof of Theorem 1.1, but Case (C_{16}), effectively occur.

Let σ be the semilinear collineation of $\Sigma^{*}=P G\left(4, q^{4}\right)$ defined by

$$
\sigma:\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right) \longmapsto\left(x_{0}^{q}, x_{4}^{q}, x_{1}^{q}, x_{2}^{q}, x_{3}^{q}\right) .
$$

Then the set $\Sigma=\left\{\left(\alpha, x, x^{q}, x^{q^{2}}, x^{q^{3}}\right): \alpha \in G F(q), x \in G F\left(q^{4}\right)\right\}$ of fixed points of σ is a 4 -dimensional canonical subgeometry of Σ^{*}. Let l be the line with equations

$$
x_{0}=0, \quad x_{1}=\beta x_{3}, \quad x_{2}=a x_{3}+b x_{4},
$$

where $\beta, a, b \in G F\left(q^{4}\right)$. The lines $l, l^{\sigma}, l^{\sigma^{2}}$ and $l^{\sigma^{3}}$ are contained in the 3 -dimensional subspace with equation $x_{0}=0$. Hence, if $l \cap \Sigma=\emptyset$, projecting Σ from l to a plane π disjoint from l, we obtain a $G F(q)$-linear blocking set of Rédei type of π. By different choices of the coefficients β, a and b we get all the $G F(q)$-linear blocking sets of Rédei type listed in Theorem 1.1, but Case $\left(C_{16}\right)$:

- If $\beta=1, a=0, b^{q^{2}+1}=1$ and $b \neq 1$, then $l \cap \Sigma=\emptyset, l=l^{\sigma^{2}}$ and hence Case (A) occurs.
- If $\beta=0$ and $b^{q^{2}+1}=1$, then $l \cap \Sigma=\emptyset$ and $l \cap l^{\sigma^{2}}=\{P\}$ with $P=(0,0, b, 0,1)$. In this case, if $a=b=-1$, since $l \cap l^{\sigma} \neq \emptyset$, we get Case $\left(B_{1}\right)$. If $a=1$ and $b \neq-1$, since $l \cap l^{\sigma}=\emptyset$ and $P^{\sigma} \in<l, l^{\sigma^{2}}>$, we get Case $\left(B_{21}\right)$. Finally, if $b=1$ and $a \notin G F\left(q^{2}\right)$, since $l \cap l^{\sigma}=\emptyset$ and $P^{\sigma} \notin<l, l^{\sigma^{2}}>$, we get Case $\left(B_{22}\right)$.
- If $\beta=a=b=0$, then $l \cap \Sigma=\emptyset, l \cap l^{\sigma^{2}}=\emptyset$ and $l \cap l^{\sigma} \neq \emptyset$. So Case $\left(C_{11}\right)$ occurs.
- If $\beta=a=0$ and $b^{q^{2}+1} \neq 1$ with $b \neq 0$, then $l \cap \Sigma=\emptyset, l, l^{\sigma}$ and $l^{\sigma^{2}}$ are mutually disjoint and determine a regulus \mathcal{R} of the quadric with equations

$$
x_{0}=0, \quad b^{q^{2}+q+1} x_{1} x_{2}-b^{q+1} x_{1} x_{4}-x_{2} x_{3}+b x_{3} x_{4}=0 .
$$

If $b^{q^{3}+q^{2}+q+1}=1$, then $l^{\sigma^{3}} \in \mathcal{R}\left(\right.$ Case $\left.\left(C_{12}\right)\right)$. If $b^{q^{3}+q^{2}+q+1} \neq 1$ then $\mathcal{R}, \mathcal{R}^{\sigma}, \mathcal{R}^{\sigma^{2}}$ and $\mathcal{R}^{\sigma^{3}}$ have in common the transversal lines with equations $x_{0}=x_{4}=x_{2}=0$ and $x_{0}=x_{3}=x_{1}=0$, each one not fixed by $\sigma\left(\right.$ Case $\left.\left(C_{14}\right)\right)$.

- If $\beta=b=0$ and $a \neq 0$, then $l \cap \Sigma=\emptyset, l, l^{\sigma}$ and $l^{\sigma^{2}}$ are mutually disjoint and determine a regulus \mathcal{R} of the quadric with equations

$$
x_{0}=0, \quad a x_{3}^{2}-a^{q^{2}+q} x_{1} x_{2}+a^{q} x_{2} x_{4}-x_{2} x_{3}-a^{q+1} x_{3} x_{4}=0 .
$$

By direct calculations it is possible to prove that if either q is even or q is odd and $1+4 a^{q^{3}+q^{2}+q+1}$ is a non square in $G(q)$, then the reguli $\mathcal{R}, \mathcal{R}^{\sigma}, \mathcal{R}^{\sigma^{2}}$ and $\mathcal{R}^{\sigma^{3}}$ have two transversal lines in common, both fixed by σ (Case $\left.\left(C_{13}\right)\right)$. Also, if q is odd and $a^{q^{3}+q^{2}+q+1}=-1 / 4$, then the reguli $\mathcal{R}, \mathcal{R}^{\sigma}, \mathcal{R}^{\sigma^{2}}$ and $\mathcal{R}^{\sigma^{3}}$ have a unique transversal line in common (Case (C_{15})).

In order to obtain the $G F(q)$-linear blocking sets not of Rédei type consider the following lines:

- Let l be the line of Σ^{*} with equations $x_{0}=x_{4}, x_{1}=x_{3}, x_{2}=0$. Since $l \cap \Sigma=\emptyset$, $l \cap l^{\sigma^{2}}=\{P\}$ with $P=(0,1,0,1,0), l \cap l^{\sigma}=\emptyset$ and $\operatorname{dim}<l, l^{\sigma}, l^{\sigma^{2}}, l^{\sigma^{3}}>=4$, projecting Σ from l to a plane π disjoint from l, we obtain a $G F(q)$-linear blocking set of π as discussed in Case $\left(B_{3}\right)$.
- Let l be the line of Σ^{*} with equations $x_{0}=x_{4}, x_{1}=0, x_{2}=0$ and let $S_{3}=<l, l^{\sigma}>$. Since $l \cap \Sigma=\emptyset, l \cap l^{\sigma^{2}}=\emptyset$, $\operatorname{dim}<l, l^{\sigma}, l^{\sigma^{2}}, l^{\sigma^{3}}>=4$ and $\operatorname{dim}\left(S_{3} \cap S_{3}^{\sigma} \cap S_{3}^{\sigma^{2}} \cap S_{3}^{\sigma^{3}}\right)=0$, projecting Σ from l to a plane disjoint from l, we get Case (C_{22}).
- Finally, let l be the line with equations $x_{1}=a x_{0}, x_{1}=x_{2}$ and $x_{2}=x_{3}$ with $a \notin G F\left(q^{2}\right)$ and let $S_{3}=<l, l^{\sigma}>$. Since $l \cap l^{\sigma^{2}}=\emptyset, l \cap l^{\sigma}=\emptyset$ and $L=S_{3} \cap S_{3}^{\sigma} \cap S_{3}^{\sigma^{2}} \cap S_{3}^{\sigma^{3}}$ is the line with equations $x_{1}=x_{2}, x_{2}=x_{3}$ and $x_{3}=x_{4}$, Case (C_{21}) occurs.

We close this section by noting that different positions of the axis of the projection with respect to Σ and Σ^{\prime} can produce non-equivalent linear blocking sets of the same type and of the same size. Indeed, projecting Σ to the plane π with equations $x_{3}=x_{4}=0$ from the line $l_{a, b}$ with equations $x_{0}=0, x_{1}=0, x_{2}=a x_{3}+b x_{4}$, we get the following $G F(q)$-linear blocking set of π

$$
B_{l_{a, b}}=\left\{\left(\alpha, x, x^{q}-a x^{q^{2}}-b x^{q^{3}}\right): \alpha \in G F(q), x \in G F\left(q^{4}\right)\right\} .
$$

As previously noted, if $a=b=0$, then $B_{l_{0,0}}$ is a $G F(q)$-linear blocking set of Rédei type of maximum size of Case $\left(C_{11}\right)$ and, if $a=0$ and $b^{q^{3}+q^{2}+q+1} \neq 1, B_{l_{0, b}}$ is a $G F(q)$ linear blocking set of Rédei type of maximum size of Case $\left(C_{14}\right)$. It is possible to prove (see [7]) that $B_{l_{0,0}}$ and $B_{l_{0, b}}$ with $b^{q^{3}+q^{2}+q+1} \neq 1$ are not isomorphic if $q>3$.

References

[1] S. Ball, A. Blokhuis, A.E. Brouwer, L. Storme and T. Szőnyi, On the number of slopes of the graph of a function defined on a finite field. J. Combin. Theory (A), 86 (1998), 187-196.
[2] A.A, Bruen, Baer subplanes and blocking sets. Bull. Amer. Math. Soc., 76 (1970), 342-344.
[3] G. Lunardon, Normal spreads. Geom. Dedicata, 75 (1999), 245-261.
[4] G. Lunardon, Linear k-blocking sets. Combinatorica, to appear.
[5] G. Lunardon, P. Polito and O. Polverino, A geometric characterisation of k-linear blocking sets. J. Geometry, to appear.
[6] G. Lunardon and O. Polverino, Blocking sets of size $q^{t}+q^{t-1}+1$. J. Combin. Theory (A), 90 (2000), 148-158.
[7] G. Lunardon and O. Polverino, Blocking sets and derivable partial spreads. J. Alg. Combin., to appear.
[8] G. Lunardon and O. Polverino, Linear Blocking Sets: a survey. Finite Fields Appl., to appear.
[9] P. Polito and O. Polverino, On small blocking sets. Combinatorica, 18 (1998), 133-137.
[10] O. Polverino, Blocking set nei piani proiettivi, Ph.D. Thesis, University of Naples "Federico II", 1998.
[11] O. Polverino and L. Storme, Small minimal blocking sets in $P G\left(2, q^{3}\right)$, European J. Combin., to appear.
[12] T. Szőnyi, Blocking sets in desarguesian affine and projective planes. Finite Fields Appl., 3 (1997), 187-202

