Linear blocking sets in $PG(2, q^4)$

P. Polito and O. Polverino

Dipartimento di Matematica Via Vivaldi, 81100 Caserta ITALY opolveri@unina.it

Abstract

In this paper, by using the geometric construction of linear blocking sets as projections of canonical subgeometries, we determine all the GF(q)linear blocking sets of the plane $PG(2, q^4)$.

1 Introduction

A blocking set B in the projective plane PG(2, q) is a set of points meeting every line. B is called *trivial* if it contains a line, and it is called *minimal* if no proper subset of it is a blocking set. We say B is *small* when its size is less than 3(q+1)/2and we call B of *Rédei type* if there exists a line l such that $|B \setminus l| = q$ (the line l is called a Rédei line of B).

A family of small minimal blocking sets in $PG(2, q^t)$, called GF(q)-linear blocking sets, was introduced by G. Lunardon in [3] (for a survey on linear blocking sets see [8]). Every small minimal blocking set of Rédei type in PG(2,q), $q = p^n$ and $p \neq 2,3$, is a linear blocking set over some non-trivial subfield of GF(q) (see [1] and [3]), and the known examples of small minimal blocking sets not of Rédei type are linear ([9]). Hence, all the presently known small minimal blocking sets are linear.

In the planes $PG(2, q^2)$ and $PG(2, q^3)$, the GF(q)-linear blocking sets are completely classified: in $PG(2, q^2)$ they are Baer subplanes and in $PG(2, q^3)$ they are isomorphic either to the blocking set obtained from the trace function of $GF(q^3)$ over GF(q) or to the blocking set obtained from the function $x \mapsto x^q$ ([10]).

In this paper, we study the GF(q)-linear blocking sets in $PG(2, q^4)$. Our main result is the following theorem:

Theorem 1.1 Let B be a GF(q)-linear blocking set in $PG(2, q^4)$. If B is of Rédei type with at least two Rédei lines, then either B is a Baer subplane or B has q^4+q^3+1 points, q + 1 Rédei lines and it is equivalent to the blocking set obtained from the graph of the trace function of $GF(q^4)$ over GF(q). If B is of Rédei type with a unique Rédei line, then the possible sizes of B are $q^4 + q^3 + 1$ and $q^4 + q^3 + q^2 + cq + 1$ with $c \in \{-1, 0, 1\}$. Finally, if B is not of Rédei type, then B has size $q^4 + q^3 + q^2 + dq + 1$ with $d \in \{0, 1\}$.

Australasian Journal of Combinatorics 26(2002), pp.41-48

Finally, in the last section we prove that there exists at least one example of GF(q)linear blocking set in $PG(2, q^4)$ for each possible cardinality.

2 Linear blocking sets in $PG(2, q^4)$

It is possible to define a linear blocking set in three different and equivalent ways. In this paper we will use the geometric construction of such blocking sets following [4].

Let $\Sigma = PG(t, q), t \geq 3$, be a canonical subgeometry of $\Sigma^* = PG(t, q^t)$. Let Λ be a (t-3)-dimensional subspace of Σ^* disjoint from Σ , and let π be a plane of Σ^* disjoint from Λ . Recall that the *projection* of Σ from the *axis* Λ to the plane π is the map $p_{\Lambda,\pi,\Sigma}$ from Σ to π defined by

$$p_{\Lambda,\pi,\Sigma}(P) = \langle P, \Lambda \rangle \cap \pi$$

for each point P of Σ . The set $p_{\Lambda,\pi,\Sigma}(\Sigma)$ is a GF(q)-linear blocking set of $\pi = PG(2, q^t)$. Also, any GF(q)-linear blocking set of $PG(2, q^t)$ can be constructed as a projection of a suitable canonical subgeometry of $PG(t, q^t)$ (see [5]). Note that, since Σ is a canonical subgeometry, there is no hyperplane of Σ^* containing Σ and hence the GF(q)-linear blocking sets obtained projecting Σ are non-trivial.

Now, suppose that t = 4 and let $\Sigma = PG(4, q)$ be a canonical subgeometry of $\Sigma^* = PG(4, q^4)$. Let σ be the unique semilinear collineation of Σ^* which fixes Σ pointwise. Then $\sigma^4 = 1$ and the set of fixed points of σ^2 is a canonical subgeometry $\Sigma' = PG(4, q^2)$ of Σ^* containing Σ . Also, if S_i is an *i*-dimensional subspace of Σ^* , then $S_i \cap \Sigma$ (resp. $S_i \cap \Sigma'$) is an *i*-dimensional subspace of Σ (resp. Σ') if and only if $S_i^{\sigma} = S_i$ (resp. $S_i^{\sigma^2} = S_i$) (see e.g. [4]).

Let π be a plane of Σ^* and let l be a line disjoint from both π and Σ . Denote by p the projection $p_{l,\pi,\Sigma}$ of Σ from l to the plane π and by B_l the GF(q)-linear blocking set $p(\Sigma)$ of the plane π . Notice that if R is a point of B_l , then $p^{-1}(R)$ is an *i*-dimensional subspace of Σ with $i \in \{0, 1, 2\}$, and $< p^{-1}(R) >$ is an *i*-dimensional subspace of Σ^* containing l. Similarly, if r is a line of π , then $p^{-1}(r \cap B_l)$ is an *i*-dimensional subspace of Σ with $i \in \{0, 1, 2, 3\}$, and $< p^{-1}(r \cap B_l) >$ is an *i*-dimensional subspace of Σ^* containing l.

Proposition 2.1 B_l is of Rédei type if and only if l is contained in a 3-dimensional subspace of Σ^* fixed by σ .

Proof. Suppose that there exists a 3-dimensional subspace S_3 of Σ^* containing l and fixed by σ . Then $S_3 \cap \Sigma$ is a 3-dimensional subspace of Σ projected from l to the line $r = \pi \cap S_3$, i.e. $p^{-1}(r \cap B_l) = S_3 \cap \Sigma$. Let R be a point of $B_l \setminus r$. Since $p^{-1}(R)$ is a subspace of Σ disjoint from $p^{-1}(r \cap B_l)$, $p^{-1}(R)$ is a point of Σ . This implies that $|B_l \setminus r| = |\Sigma \setminus S_3| = q^4$, i.e. r is a Rédei line of B_l .

Now, suppose that B_l is of Rédei type and let r be a Rédei line of B_l . Since B_l is non-trivial, it contains at least $q^4 + q^2 + 1$ points (see [2]) and $|B_l \cap r| \ge q^2 + 1$. This implies that $p^{-1}(r \cap B_l)$ is either a 2 or a 3-dimensional subspace of Σ . In the latter case, $< p^{-1}(r \cap B_l) >$ is a 3-dimensional subspace of Σ^* containing l and fixed by σ . In the former case, the $q^4 + q^3$ points of $\Sigma \setminus p^{-1}(r \cap B_l)$ are projected to the q^4 points of $B_l \setminus r$. Hence, there exist at least two points R and T of $B_l \setminus r$ such that $p^{-1}(R)$ and $p^{-1}(T)$ contain some line of Σ . Let n and t be lines of Σ^* such that $\Sigma \cap n$ is a line of $p^{-1}(R)$ and $\Sigma \cap t$ is a line of $p^{-1}(T)$. Then $n \cap t = \emptyset$, $n \cap l \neq \emptyset$ and $t \cap l \neq \emptyset$. Hence $S_3 = \langle n, t \rangle$ is a 3-dimensional subspace of Σ^* containing l fixed by σ .

Corollary 2.2 B_l is of Rédei type if and only if dim $\langle l, l^{\sigma}, l^{\sigma^2}, l^{\sigma^3} \rangle \leq 3$. Also, if B_l is not a Baer subplane, then it has a unique Rédei line if and only if dim $\langle l, l^{\sigma}, l^{\sigma^2}, l^{\sigma^3} \rangle = 3$.

Proof. By Proposition 2.1, if B_l is of Rédei type, then l is contained in some 3dimensional subspace, say S_3 , of Σ^* fixed by σ . This implies that l, l^{σ} , l^{σ^2} , and l^{σ^3} are contained in S_3 and hence dim $< l, l^{\sigma}, l^{\sigma^2}, l^{\sigma^3} > \leq 3$. Conversely, suppose that dim $< l, l^{\sigma}, l^{\sigma^2}, l^{\sigma^3} > \leq 3$. If dim $< l, l^{\sigma}, l^{\sigma^2}, l^{\sigma^3} > = 3$, then $S_3 = < l, l^{\sigma}, l^{\sigma^2}, l^{\sigma^3} >$ is a 3-dimensional subspace of Σ^* containing l and fixed by σ , hence B_l is of Rédei type. If dim $< l, l^{\sigma}, l^{\sigma^2}, l^{\sigma^3} > = 2$, for any point $P \in \Sigma \setminus < l, l^{\sigma}, l^{\sigma^2}, l^{\sigma^3} >$, it is easy to check that $< P, l, l^{\sigma}, l^{\sigma^2}, l^{\sigma^3} > = 2$, for any point $P \in \Sigma \setminus < l, l^{\sigma}, l^{\sigma^2}, l^{\sigma^3} >$, it is easy to check that $< P, l, l^{\sigma}, l^{\sigma^2}, l^{\sigma^3} > = 2$, for any point $P \in \Sigma \setminus < l, l^{\sigma}, l^{\sigma^2}, l^{\sigma^3} >$, it is easy to check that $< P, l, l^{\sigma}, l^{\sigma^2}, l^{\sigma^3} > = 2$, for any point $P \in \Sigma \setminus < l, l^{\sigma}, l^{\sigma^2}, l^{\sigma^3} >$, it is easy to check that $< P, l, l^{\sigma}, l^{\sigma^2}, l^{\sigma^3} > = 2$, for any point $P \in \Sigma \setminus < l, l^{\sigma}, l^{\sigma^2}, l^{\sigma^3} >$, it is easy to check that $< P, l, l^{\sigma}, l^{\sigma^2}, l^{\sigma^3} > = 3$. This is a 3-dimensional subspace fixed by σ , so B_l is of Rédei type. Finally, suppose that B_l is of Rédei type, but it is not a Baer subplane. In this case $|B_l| \ge q^4 + q^3 + 1$ (see [1]) and hence, if r is a Rédei line of B_l , then $|B_l \cap r| \ge q^3 + 1$. This implies that $p^{-1}(r \cap B_l)$ is a 3-dimensional subspace of Σ , hence $< p^{-1}(r \cap B_l) >$ is a 3-dimensional subspace of Σ^* containing l fixed by σ . Then $< l, l^{\sigma}, l^{\sigma^2}, l^{\sigma^3} > = < p^{-1}(r \cap B_l) >$. Thus r is the unique Rédei line of B_l if and only if $< l, l^{\sigma}, l^{\sigma^2}, l^{\sigma^3} > = < p^{-1}(r \cap B_l) >$, i.e. if and only if dim $< l, l^{\sigma}, l^{\sigma^2}, l^{\sigma^3} > = 3$.

Proposition 2.3 With the previous notation, the following are equivalent:

- 1) *B* has maximum size $q^4 + q^3 + q^2 + q + 1$.
- 2) There is no line of Σ projected from l to a point of π .
- 3) There is no line of Σ^* fixed by σ incident with l.

Proof. B_l has maximum size if and only if the map p is a bijection, hence if and only if $p^{-1}(R)$ is a point of Σ for every point $R \in B_l$ (see also [4]). Finally, B_l has not maximum size if and only if there exists a line t of Σ projected from l to a point of B_l . In this case, if t' is the line of Σ^* containing t, then t' is incident with l and $t'^{\sigma} = t'$.

3 Proof of Theorem 1.1

The structure of B_l depends on the position of l with respect to the subgeometries Σ and Σ' . In order to determine the different possibilities for B_l , we have to distinguish between the following cases:

- (A) $l = l^{\sigma^2} \iff l$ intersects Σ' in a line;
- (B) $l \cap l^{\sigma^2}$ is a point $\iff l$ intersects Σ' in a point;
- (C) $l \cap l^{\sigma^2} = \emptyset \iff l \text{ is disjoint from } \Sigma'.$

Case A

It is easy to check that in this case $l \cap l^{\sigma} = \emptyset$, hence $S_3 = \langle l, l^{\sigma} \rangle$ is a 3-dimensional subspace of Σ^* . Since S_3 is fixed by σ , by Proposition 2.1, B_l is of Rédei type and $r = S_3 \cap \pi$ is a Rédei line of B_l . Also, if $P \in l \cap \Sigma'$ the line $\langle P, P^{\sigma} \rangle$ is fixed by σ and hence $\langle P, P^{\sigma} \rangle \cap \Sigma$ is a line of Σ . So $\langle P, P^{\sigma} \rangle \cap \Sigma$ is projected from l to a point of $r \cap B_l$, for every point $P \in l \cap \Sigma'$. This implies that the size of $B_l \cap r$ is $q^2 + 1$, and hence $|B_l| = q^4 + q^2 + 1$, i.e. B_l is a Baer subplane of π ([2]).

Case B

Put $l \cap l^{\sigma^2} = \{P\}$. Note that the line $\langle P, P^{\sigma} \rangle$ is fixed by σ , hence $\langle P, P^{\sigma} \rangle$ intersects Σ in a line.

 $(B_1) \qquad l \cap l^{\sigma} \neq \emptyset$

In this case, we have $l^{\sigma} \cap l^{\sigma^2} \neq \emptyset$, $l^{\sigma^2} \cap l^{\sigma^3} \neq \emptyset$, and $l^{\sigma^3} \cap l \neq \emptyset$, i.e. $\overline{\pi} = \langle l, l^{\sigma}, l^{\sigma^2}, l^{\sigma^3} \rangle$ is a plane of Σ^* fixed by σ . Hence $\overline{\pi} \cap \Sigma$ is projected from l to a point R of B_l . Also, every 3-dimensional subspace obtained joining $\overline{\pi}$ to a point of $\Sigma \setminus \overline{\pi}$ intersects Σ in a 3-dimensional subspace. Then, through R there pass q+1 Rédei lines and $|B_l| = q^4 + q^3 + 1$. This implies that B_l is equivalent to the blocking set obtained from the graph of the trace function of $GF(q^4)$ over GF(q) (see [6]).

 (B_2) $l \cap l^{\sigma} = \emptyset$ and dim $\langle l, l^{\sigma}, l^{\sigma^2}, l^{\sigma^3} \rangle = 3$

Let $S_3 = \langle l, l^{\sigma}, l^{\sigma^2}, l^{\sigma^3} \rangle$. By Corollary 2.2 and Proposition 2.1, B_l is of Rédei type and $S_3 \cap \pi$ is a Rédei line of B_l . Note that both lines $\langle P, P^{\sigma} \rangle$ and $l' = \langle l, l^{\sigma^2} \rangle \cap \langle l^{\sigma}, l^{\sigma^3} \rangle$ are fixed by σ , so they intersect Σ in a line. Also, any line of Σ^* fixed by σ and incident with l is incident with l^{σ} , l^{σ^2} and l^{σ^3} . This implies that $\langle P, P^{\sigma} \rangle$ and l' are the unique lines of Σ^* fixed by σ and incident with l.

- (B₂₁) If $\langle P, P^{\sigma} \rangle = l'$, then exactly one line of Σ is projected from l to a point of B_l , so B_l has size $q^4 + q^3 + q^2 + 1$.
- (B₂₂) If $\langle P, P^{\sigma} \rangle \neq l'$, then exactly two lines of Σ are projected from l to a point of B_l , so B_l has size $q^4 + q^3 + q^2 q + 1$.

Since the blocking sets B_l obtained in Cases B_{21} and B_{22} are not Baer subplanes, $S_3 \cap \pi$ is the unique Rédei line of B_l (Corollary 2.2).

 $\begin{array}{ll} (B_3) & l \cap l^{\sigma} = \emptyset \text{ and } \dim < l, l^{\sigma}, l^{\sigma^2}, l^{\sigma^3} >= 4 \\ \text{Since the subspace joining } l, l^{\sigma}, l^{\sigma^2}, \text{ and } l^{\sigma^3} \text{ has dimension four, } B_l \text{ is not of } \\ \text{Rédei type (Corollary 2.2). If } m \text{ is a line fixed by } \sigma \text{ and incident with } l, \text{ then } \\ m = < P, P^{\sigma} >. \text{ Thus, } B_l \text{ has size } q^4 + q^3 + q^2 + 1. \end{array}$

Case C

- (C₁) dim $\langle l, l^{\sigma}, l^{\sigma^2}, l^{\sigma^3} \rangle = 3$ Let $S_3 = \langle l, l^{\sigma}, l^{\sigma^2}, l^{\sigma^3} \rangle$. In this case B_l is of Rédei type and $r = S_3 \cap \pi$ a Rédei line of B_l (Corollary 2.2).
 - (C₁₁) Suppose that $l \cap l^{\sigma} \neq \emptyset$ and let $\{P\} = l \cap l^{\sigma}$. This implies that $l = \langle P, P^{\sigma^3} \rangle$. Hence the unique lines intersecting $l, l^{\sigma}, l^{\sigma^2}$ and l^{σ^3} are $\langle P^{\sigma^2}, P \rangle$ and $\langle P^{\sigma^3}, P^{\sigma} \rangle$. Since such lines are not fixed by σ , there is no line of Σ^* projected from l to a point of B_l , i.e. B_l has maximum size (Proposition 2.3).
 - (C₁₂) Suppose that $l \cap l^{\sigma} = \emptyset$ and that $l, l^{\sigma}, l^{\sigma^2}$ and l^{σ^3} belong to the same regulus \mathcal{R} of S_3 . Since \mathcal{R} is fixed by $\sigma, \mathcal{R} \cap \Sigma$ is a regulus of $S_3 \cap \Sigma$. This implies that each transversal line to $\mathcal{R} \cap \Sigma$ is projected from l to a point of $r \cap B_l$. Since the transversal lines to $\mathcal{R} \cap \Sigma$ number q + 1, the size of $r \cap B_l$ is $q^3 + 1$, and $|B_l| = q^4 + q^3 + 1$ (see also [6]).

Now, suppose that $l \cap l^{\sigma} = \emptyset$ and that $l, l^{\sigma}, l^{\sigma^2}$ and l^{σ^3} do not belong to the same regulus of S_3 . Let \mathcal{R} be the regulus determined by l, l^{σ} , and l^{σ^2} and let $\overline{\mathcal{R}}$ be the opposite regulus to \mathcal{R} . A line l' fixed by σ and incident with l, is incident with l^{σ}, l^{σ^2} and l^{σ^3} and hence it is a transversal line to $\mathcal{R}, \mathcal{R}^{\sigma}, \mathcal{R}^{\sigma^2}$ and \mathcal{R}^{σ^3} , i.e. $l' \in \overline{\mathcal{R}} \cap \overline{\mathcal{R}}^{\sigma} \cap \overline{\mathcal{R}}^{\sigma^2} \cap \overline{\mathcal{R}}^{\sigma^3}$. Note that two distinct reguli can have at most two transversal lines in common and that the intersection of $\overline{\mathcal{R}}, \overline{\mathcal{R}}^{\sigma}, \overline{\mathcal{R}}^{\sigma^2}$ and $\overline{\mathcal{R}}^{\sigma^3}$ is fixed by σ .

- (C₁₃) $\mathcal{R}, \mathcal{R}^{\sigma}, \mathcal{R}^{\sigma^2}$ and \mathcal{R}^{σ^3} have two transversal lines in common, both fixed by σ . Then B_l has size $q^4 + q^3 + q^2 q + 1$.
- (C₁₄) $\mathcal{R}, \mathcal{R}^{\sigma}, \mathcal{R}^{\sigma^2}$ and \mathcal{R}^{σ^3} have two transversal lines in common, each one not fixed by σ . Then B_l has maximum size.
- (C₁₅) $\mathcal{R}, \mathcal{R}^{\sigma}, \mathcal{R}^{\sigma^2}$ and \mathcal{R}^{σ^3} have a unique transversal line in common. Such transversal is fixed by σ , so B_l has size $q^4 + q^3 + q^2 + 1$.
- (C₁₆) $\mathcal{R}, \mathcal{R}^{\sigma}, \mathcal{R}^{\sigma^2}$ and \mathcal{R}^{σ^3} have no transversal line in common. Then B_l has maximum size.

Since the blocking sets B_l obtained in Cases (C_{1i}) , for i = 1, ..., 6, are not Baer subplanes, $r = S_3 \cap \pi$ is the unique Rédei line of B_l (Corollary 2.2).

$$(C_2)$$
 dim $< l, l^{\sigma}, l^{\sigma^2}, l^{\sigma^3} >= 4$

By Corollary 2.2, B_l is not of Rédei type. Also, $l, l^{\sigma}, l^{\sigma^2}$ and l^{σ^3} are pairwise disjoint. Let $S_3 = \langle l, l^{\sigma} \rangle$ and let $L = S_3 \cap S_3^{\sigma} \cap S_3^{\sigma^2} \cap S_3^{\sigma^3}$. Note that L is fixed by σ and, since $S_3^{\sigma} \neq S_3$, dim $L \in \{0, 1, 2\}$. If dim L = 2, then $S_3 \cap S_3^{\sigma} = S_3^{\sigma^2} \cap S_3^{\sigma^3}$. Hence l^{σ} and l^{σ^3} are contained in the plane $S_3 \cap S_3^{\sigma}$, a contradiction. So, $0 \leq \dim L \leq 1$. If l' is a line fixed by σ and incident with l, then l' is contained in L.

- (C₂₁) Suppose that dim L = 1. Then L is the unique line of Σ projected from l to a point of B_l . So $|B_l| = q^4 + q^3 + q^2 + 1$.
- (C_{22}) Suppose that dim L = 0. In this case there is no line of Σ projected from l to a point of B_l . Hence B_l has maximum size.

This completes the proof of Theorem 1.1.

4 Examples

In this section we show that all the cases discussed in the proof of Theorem 1.1, but Case (C_{16}) , effectively occur.

Let σ be the semilinear collineation of $\Sigma^* = PG(4, q^4)$ defined by

$$\sigma \colon (x_0, x_1, x_2, x_3, x_4) \longmapsto (x_0^q, x_4^q, x_1^q, x_2^q, x_3^q).$$

Then the set $\Sigma = \{(\alpha, x, x^q, x^{q^2}, x^{q^3}) : \alpha \in GF(q), x \in GF(q^4)\}$ of fixed points of σ is a 4-dimensional canonical subgeometry of Σ^* . Let l be the line with equations

$$x_0 = 0, \ x_1 = \beta x_3, \ x_2 = ax_3 + bx_4,$$

where $\beta, a, b \in GF(q^4)$. The lines $l, l^{\sigma}, l^{\sigma^2}$ and l^{σ^3} are contained in the 3-dimensional subspace with equation $x_0 = 0$. Hence, if $l \cap \Sigma = \emptyset$, projecting Σ from l to a plane π disjoint from l, we obtain a GF(q)-linear blocking set of Rédei type of π . By different choices of the coefficients β , a and b we get all the GF(q)-linear blocking sets of Rédei type listed in Theorem 1.1, but Case (C_{16}) :

- If $\beta = 1$, a = 0, $b^{q^2+1} = 1$ and $b \neq 1$, then $l \cap \Sigma = \emptyset$, $l = l^{\sigma^2}$ and hence Case (A) occurs.
- If $\beta = 0$ and $b^{q^2+1} = 1$, then $l \cap \Sigma = \emptyset$ and $l \cap l^{\sigma^2} = \{P\}$ with P = (0, 0, b, 0, 1). In this case, if a = b = -1, since $l \cap l^{\sigma} \neq \emptyset$, we get Case (B_1) . If a = 1 and $b \neq -1$, since $l \cap l^{\sigma} = \emptyset$ and $P^{\sigma} \in \langle l, l^{\sigma^2} \rangle$, we get Case (B_{21}) . Finally, if b = 1 and $a \notin GF(q^2)$, since $l \cap l^{\sigma} = \emptyset$ and $P^{\sigma} \notin \langle l, l^{\sigma^2} \rangle$, we get Case (B_{22}) .
- If $\beta = a = b = 0$, then $l \cap \Sigma = \emptyset$, $l \cap l^{\sigma^2} = \emptyset$ and $l \cap l^{\sigma} \neq \emptyset$. So Case (C₁₁) occurs.
- If $\beta = a = 0$ and $b^{q^2+1} \neq 1$ with $b \neq 0$, then $l \cap \Sigma = \emptyset$, l, l^{σ} and l^{σ^2} are mutually disjoint and determine a regulus \mathcal{R} of the quadric with equations

$$x_0 = 0$$
, $b^{q^2+q+1}x_1x_2 - b^{q+1}x_1x_4 - x_2x_3 + bx_3x_4 = 0$.

If $b^{q^3+q^2+q+1} = 1$, then $l^{\sigma^3} \in \mathcal{R}$ (Case (C_{12})). If $b^{q^3+q^2+q+1} \neq 1$ then $\mathcal{R}, \mathcal{R}^{\sigma}, \mathcal{R}^{\sigma^2}$ and \mathcal{R}^{σ^3} have in common the transversal lines with equations $x_0 = x_4 = x_2 = 0$ and $x_0 = x_3 = x_1 = 0$, each one not fixed by σ (Case (C_{14})).

• If $\beta = b = 0$ and $a \neq 0$, then $l \cap \Sigma = \emptyset$, l, l^{σ} and l^{σ^2} are mutually disjoint and determine a regulus \mathcal{R} of the quadric with equations

 $x_0 = 0$, $ax_3^2 - a^{q^2+q}x_1x_2 + a^qx_2x_4 - x_2x_3 - a^{q+1}x_3x_4 = 0$.

By direct calculations it is possible to prove that if either q is even or q is odd and $1 + 4a^{q^3+q^2+q+1}$ is a non square in G(q), then the reguli \mathcal{R} , \mathcal{R}^{σ} , \mathcal{R}^{σ^2} and \mathcal{R}^{σ^3} have two transversal lines in common, both fixed by σ (Case (C_{13})). Also, if q is odd and $a^{q^3+q^2+q+1} = -1/4$, then the reguli \mathcal{R} , \mathcal{R}^{σ} , \mathcal{R}^{σ^2} and \mathcal{R}^{σ^3} have a unique transversal line in common (Case (C_{15})).

In order to obtain the GF(q)-linear blocking sets not of Rédei type consider the following lines:

- Let l be the line of Σ^* with equations $x_0 = x_4$, $x_1 = x_3$, $x_2 = 0$. Since $l \cap \Sigma = \emptyset$, $l \cap l^{\sigma^2} = \{P\}$ with P = (0, 1, 0, 1, 0), $l \cap l^{\sigma} = \emptyset$ and dim $< l, l^{\sigma}, l^{\sigma^2}, l^{\sigma^3} >= 4$, projecting Σ from l to a plane π disjoint from l, we obtain a GF(q)-linear blocking set of π as discussed in Case (B_3) .
- Let l be the line of Σ^* with equations $x_0 = x_4$, $x_1 = 0$, $x_2 = 0$ and let $S_3 = \langle l, l^{\sigma} \rangle$. Since $l \cap \Sigma = \emptyset$, $l \cap l^{\sigma^2} = \emptyset$, dim $\langle l, l^{\sigma}, l^{\sigma^2}, l^{\sigma^3} \rangle = 4$ and dim $(S_3 \cap S_3^{\sigma} \cap S_3^{\sigma^2} \cap S_3^{\sigma^3}) = 0$, projecting Σ from l to a plane disjoint from l, we get Case (C_{22}) .
- Finally, let l be the line with equations $x_1 = ax_0$, $x_1 = x_2$ and $x_2 = x_3$ with $a \notin GF(q^2)$ and let $S_3 = \langle l, l^{\sigma} \rangle$. Since $l \cap l^{\sigma^2} = \emptyset$, $l \cap l^{\sigma} = \emptyset$ and $L = S_3 \cap S_3^{\sigma} \cap S_3^{\sigma^2} \cap S_3^{\sigma^3}$ is the line with equations $x_1 = x_2$, $x_2 = x_3$ and $x_3 = x_4$, Case (C_{21}) occurs.

We close this section by noting that different positions of the axis of the projection with respect to Σ and Σ' can produce non-equivalent linear blocking sets of the same type and of the same size. Indeed, projecting Σ to the plane π with equations $x_3 = x_4 = 0$ from the line $l_{a,b}$ with equations $x_0 = 0$, $x_1 = 0$, $x_2 = ax_3 + bx_4$, we get the following GF(q)-linear blocking set of π

$$B_{l_{a,b}} = \{ (\alpha, x, x^q - ax^{q^2} - bx^{q^3}) : \alpha \in GF(q), x \in GF(q^4) \}.$$

As previously noted, if a = b = 0, then $B_{l_{0,0}}$ is a GF(q)-linear blocking set of Rédei type of maximum size of Case (C_{11}) and, if a = 0 and $b^{q^3+q^2+q+1} \neq 1$, $B_{l_{0,b}}$ is a GF(q)linear blocking set of Rédei type of maximum size of Case (C_{14}) . It is possible to prove (see [7]) that $B_{l_{0,0}}$ and $B_{l_{0,b}}$ with $b^{q^3+q^2+q+1} \neq 1$ are not isomorphic if q > 3.

References

- S. Ball, A. Blokhuis, A.E. Brouwer, L. Storme and T. Szőnyi, On the number of slopes of the graph of a function defined on a finite field. J. Combin. Theory (A), 86 (1998), 187–196.
- [2] A.A, Bruen, Baer subplanes and blocking sets. Bull. Amer. Math. Soc., 76 (1970), 342–344.
- [3] G. Lunardon, Normal spreads. Geom. Dedicata, 75 (1999), 245–261.
- [4] G. Lunardon, Linear k-blocking sets. Combinatorica, to appear.
- [5] G. Lunardon, P. Polito and O. Polverino, A geometric characterisation of k-linear blocking sets. J. Geometry, to appear.
- [6] G. Lunardon and O. Polverino, Blocking sets of size $q^t + q^{t-1} + 1$. J. Combin. Theory (A), **90** (2000), 148–158.
- [7] G. Lunardon and O. Polverino, Blocking sets and derivable partial spreads. J. Alg. Combin., to appear.
- [8] G. Lunardon and O. Polverino, Linear Blocking Sets: a survey. *Finite Fields Appl.*, to appear.
- [9] P. Polito and O. Polverino, On small blocking sets. Combinatorica, 18 (1998), 133–137.
- [10] O. Polverino, Blocking set nei piani proiettivi, Ph.D. Thesis, University of Naples "Federico II", 1998.
- [11] O. Polverino and L. Storme, Small minimal blocking sets in $PG(2, q^3)$, European J. Combin., to appear.
- [12] T. Szőnyi, Blocking sets in desarguesian affine and projective planes. *Finite Fields Appl.*, 3 (1997), 187–202

(Received 14/3/2001)