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Abstract

The concept of a defective circular coloring is introduced, and results
shown for planar, series-parallel, and outerplanar graphs. Numerous
problems are also stated.

1 Introduction

A (k, d) defective coloring of a graph is an assignment of k colors to the vertices such
that each vertex v is adjacent to at most d vertices having the same color as v [1, 2].
Defective coloring is sometimes known as “improper coloring,” as it is called in the
book by Jensen and Toft [4]. Circular coloring is a well-studied refinement of graph
coloring: a graph G = (V, E) has a k/q coloring if, when k ≥ 2q, there exists a
function c : V → {0, . . . , k − 1} such that for each pair of adjacent vertices u and v,
we have q ≤ |c(v) − c(u)| ≤ k − q [9, 10]. Vince’s famous result shows that circular
coloring is, in fact, a refinement of the usual notion of graph coloring: G has a k/q
coloring implies G has an r/s coloring if k

q
≤ r

s
[9]. Furthermore, Vince showed that

every graph has a rational circular chromatic number, i.e., the circular chromatic
number can be defined as the minimum rational number k/q for which the graph
can be k/q colored, rather than the infimum [9].

Define a defective circular coloring for a simple graph G = (V, E) to be a function
c : V → {0, . . . , k − 1} such that each vertex v is adjacent to at most d vertices u
where q ≤ |c(v) − c(u)| ≤ k − q does not hold. If such a defective circular coloring
exists, we say G is (k/q, d) colorable. A defect for a vertex v is an adjacent vertex
u such that q ≤ |c(v) − c(u)| ≤ k − q does not hold. We shall also use the term
“defect” in the context of the colors themselves: color i is said to be a defect for color
j if q ≤ |i − j| ≤ k − q does not hold. When q = 1 (and d = 0), circular coloring
conforms to the usual, integer version of graph coloring [9].

Define the odd-girth of a graph to be the length of the shortest odd-length cycle
in a graph. Thus, triangle-free graphs have odd-girth at least five. Previously, it
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has been shown that planar graphs exist that are not (3, 1) colorable [2]; that all
planar graphs are (3, 2) colorable [2]; that all toroidal graphs are (3, 2) colorable
[1]; that triangle-free planar graphs are (3, 0) colorable [3]; that planar graphs with
odd-girth at least 17 are (5/2, 0) colorable [5]; that there exist planar graphs with
odd girth seven that are not (5/2, 0) colorable (a graph due to Albertson and Moore
mentioned in [5]); that triangle-free outerplanar graphs are (5/2, 0) colorable [5];
and that outerplanar graphs are (2, 2) colorable [7]. Pan and Zhu [8] proved that
series-parallel graphs with odd-girth at least five are (8/3, 0) colorable and that
series-parallel graphs of odd-girth at least seven are (5/2, 0) colorable.

In this paper, results on defective circular coloring are presented for planar, out-
erplanar, and series-parallel graphs. Numerous problems are also stated.

2 Fundamental Issues

It is immediate that if G is (k/q, d) colorable, then G is (k/q, d′) colorable, for any
d′ ≥ d. We extend this below and then pose two questions which are analogues of
Vince’s results.

A basic lemma is given first that will be used in a few places in this paper. For
ease of exposition, we sometimes will use an alternate, but equivalent, definition of
circular coloring, that is, k/q-coloring: color each vertex with q adjacent integers
from {1, 2, . . . , k} (integers 1 and k are adjacent via wrap-around) so that adjacent
vertices are colored with disjoint sets of integers. It is well-known that this definition
is equivalent to the definition of circular coloring given in Section 1. Extending this
definition to defective circular coloring, we claim a defect exists when two endvertices
of an edge are not colored with disjoint sets of integers.

Lemma 1 The two definitions of defective circular coloring are equivalent.

Proof: In each of the two definitions, we can map the k integers onto a circle, labelled
in a clockwise direction in increasing order. In both definitions, a color assigned to
a vertex is an interval containing q integers (for a k/q coloring), and a defect exists
when two colors overlap. It follows that the definitions are equivalent. �

Using this alternate definition of defective circular coloring, it is easy to see that
a (k/1, d) coloring is equivalent to a (k, d) coloring. Another lemma is needed to
simplify the proof of the subsequent theorem.

Lemma 2 If G is (k/q, d) colorable, then G is (ck/cq, d) colorable, for any c ≥ 1.

Proof: Consider a (k/q, d) coloring of G. That is, the vertices are colored with q
adjacent colors each (from the set 1, 2, . . . , k) and a defect exists when neighboring
vertices have a color in common. To form the (ck/cq, d) coloring, map the q colors
assigned to vertex v: i, i + 1, . . . , i + q − 1, to the colors c(i − 1) + 1, c(i − 1) +
2, . . . , c(i + q − 1). It is easy to see that u and v are defects in the k/q coloring if
and only if they are defects in the ck/cq coloring. �

By the same token, the converse of Lemma 2 is also true:
If G is (ck/cq, d) colorable, then G is (k/q, d) colorable, for any c ≥ 1.
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Theorem 3 A graph G = (V, E) is (k/q, d) colorable if it is (r/s, d) colorable, when-
ever k/q ≥ r/s.

Proof: Let c be the least common denominator of r/s and k/q. Re-write these
fractions as r′/c and k′/c. As k/q ≥ r/s, k′ ≥ r′. Consider an (r′/c, d) coloring
of G, which exists by Lemma 2. That is, the vertices are colored with c adjacent
colors each (from the set 1, 2, . . . , r′) and a defect exists when neighboring vertices
have a color in common. Such a coloring is, by definition, also a (k′/c, d) coloring.
Therefore, G is (k/q, d) colorable. �

In other words, defective circular coloring is a refinement of defective coloring.
We next ask whether the defective circular chromatic number always exists, as a
rational number. That is, must we define the defective circular chromatic number of
a graph as the infimum over all its defective circular colorings (with a fixed number
of defects), or may it be defined as the minimum?

Conjecture 1 Let G be a graph and d ≥ 0 an integer. There exists a rational
number k/q such that G is (k/q, d) colorable and such that G is not (r/s, d) colorable
for any r/s < k/q.

The next question is likely more difficult, as similar questions are not yet fully
understood for defective coloring.

Question 2 Let G be (k/q, d) colorable. Can it be characterized when G is (r/s, d′)
colorable, based on the relationship between k/q and r/s and the relationship between
d and d′?

3 Planar Graphs

A k-face in a planar graph is a face with k edges. We begin this section with a
negative result.

Theorem 4 Let c be a positive integer. There exists a planar graph G that is not
(5/2, c) colorable.

Proof: We first show that not all planar graphs have a (5/2, 1) coloring. Start with
a triangle v1, v2, v3. Now 5/2-coloring the vertices forces at least two of the vertices
to have one defect. If all three have one defect, adding a new vertex, v4, inside the
interior of this 3-face such that v4 is adjacent to each of v1, v2, v3, forces a vertex
to have a second defect (which is illegal). Otherwise, add a new vertex v4 that is
adjacent to each vertex of the triangle. Coloring v4 produces a 3-face either with at
least one vertex having two defects (which is illegal) or a 3-face with all three vertices
having exactly one defect. In the latter case, add a new vertex, v5, to the interior of
that 3-face so that v5 is adjacent to each vertex on the 3-face, and a second defect
will be forced when we attempt to color v5.
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This construction can be extended to show that not all planar graphs have a
(5/2, c) coloring, for any constant c, since each vertex of some face, f , in the con-
structed graph has at least one defect: repeating the main step of the construction
on the interior of face f yields a graph that is not (5/2, 2) colorable (i.e., a 3-face of
that graph will have all vertices with at least two defects, and the next step forces a
third defect upon some vertex). One additional step must be considered when c > 1.
Consider the case when c = 2 as an illustration. If a 3-face f ′ has all three vertices
the same color (which was not possible when c = 1, as this would have caused each
vertex on the 3-face to have two defects), then we add a new vertex v to the inside
of this 3-face which is adjacent to each vertex in the 3-face. If v is colored differently
than its three neighbors (as it must be), iterate the construction again: create a
3-face with v, a vertex from f ′ and a new vertex u, which forces a defect upon v and
u. Repeating this step forces a second defect upon v and u and one more iteration
of the main step yields the desired configuration. Further iteration can then be used
to prove the theorem for any c ≥ 2. �

We next state a conjecture and a question.

Conjecture 3 Let G be a planar, triangle-free graph. Then G can be (5/2, 2) col-
ored.

Question 4 Does every planar triangle-free graph have a (5/2, 1) coloring? If not,
what girth or odd-girth lower bound ensures such a coloring exists?

Theorem 5 Let G be a graph with ∆(G) ≤ 3. Then G is (5/2, 2)-colorable.

Proof: Suppose the theorem were false and let G be a counterexample with the
minimum number of vertices. G must contain a cycle C = v1, . . . , vk, v1, or else
G is a forest and thus (4/2, 0) colorable. Now (5/2, 2) color the subgraph G′ of G
induced by V (G) − V (C). Extend this coloring to a coloring of G as follows. Let
N(C) = {v | v ∈ V (G) − V (C), vvi ∈ E(G), 1 ≤ i ≤ k}. Note that each vertex
of N(C) may receive up to two defects in the coloring of G′. Color v1 so that v1 is
not a defect for u1, where u1 is the neighbor (provided one exists) of v1 in N(C).
Then color v2 similarly, noting that now v1 and v2 may be defects for one another.
Continuing around C, each vertex on C is colored with at most two defects, which
is a contradiction. �

Question 5 Can every planar, triangle-free graph G with ∆(G) = 3 be (5/2, 1)
colored?

A partial solution is given next. Some properties of planar graphs related to
Euler’s formula are reviewed in the appendix. These properties are used in the proof
of the next result.

Theorem 6 Let G be a planar graph with girth at least six and ∆(G) ≤ 3. Then G
is (5/2, 1)-colorable.
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Proof: Suppose the theorem were false and let G be a counterexample with the
minimum number of vertices. Let Ĝ be the underlying graph of G, obtained from G
by replacing each maximal induced path with an edge.

By Lemma 10 (see the appendix), let Ĉ be a facial circuit of Ĝ with a positive
Euler contribution (Euler contribution is defined in the appendix). Note that the
Euler contribution of a facial cycle of length at least six is at most zero, since δ(Ĝ) ≥
3. Therefore Ĉ is of length at most five. Let C be the cycle of G corresponding to
Ĉ in the underlying graph Ĝ. Therefore, as the girth of G is at least six, length(C)
≥ 6.

It is easy to see than G cannot contain an induced P4 (or else we could delete
the two interior vertices of the P4, color the remaining vertices of G and extend the
coloring to include the two deleted vertices). We shall assume for the time being
that the length of Ĉ is exactly five and the length of C is exactly six. The remaining
cases, namely when Ĉ is of length five and the length of C is seven or more, or when
Ĉ is of length four or three, are dealt with below. Hence there exists an induced P3

in G whose three vertices are on C. Let v be the degree two vertex on this P3, i.e.,
deg(v) = 2 in G and v ∈ V (C). Let the neighbors of v be u, w; each of these has
degree three (or else G has an induced P4). Let the neighbor of u (w) which is not on
C be u1 (w1). Note that we assume that u1, w1 do not lie on C, or else the argument
proceeds in a similar fashion (since there is no neighbor of u (w) whose color from
the coloring of V (G)− V (C) could create a defect). And let us assume without loss
of generality that u1 has two additional neighbors u2, u3 and w1 has two additional
neighbors w2, w3; possibly u2 = w2.

Denote the vertices of C, in order around C, as a, b, c, u, v, w, a and let the neigh-
bors of a, b, c that are not on C be a1, b1, c1, respectively. Let G′ be the subgraph of
G induced by V (G) − V (C). Now (5/2, 1) color G′. We extend the coloring of G′

to a coloring of G as follows. If u1 and w1 do not have disjoint colors, we claim the
coloring of G′ can be so extended (see below). Otherwise, assume without loss of
generality that c(u1) = {1, 2} and c(w1) = {3, 4} and that each of these two vertices
has one defect, or else the coloring of G′ can easily be extended to a coloring of
G (by having, say, u have a defect with u1, if necessary). Assume, without loss of
generality, that u1 has a defect with u2 and no defect with u3. Then we may modify
the color of u1 to another color so that u1 still has a defect with u2 and not with u3.
For example, if c(u1) = {1, 2}, c(u2) = {1, 2}, and c(u3) = {3, 4}, we can change the
color of u1 to {1, 5}.

Now suppose that u1 and w1 do not have disjoint colors. Furthermore, modify
the colors of a1, b1, c1, if necessary, as we did for u1, in order that c(c1) �= c(b1) and
c(b1) �= c(a1). It may be that as a result, for example, c(c1) and c(b1) are not disjoint,
but we only require that they not be the same color. We can now color a, b and c so
that they have no defects with one another, nor with a1, b1, or c1, respectively. We
may then color u, v, w so that each vertex on C has at most one defect. This resolves
the case when the length of C is six.

Next, assume Ĉ is of length five and the length of C is seven. This case basically
proceeds as above: we assume G contains no induced P4, color the subgraph induced
by V (G)− V (C) and extend the coloring. Focus again on vertex v (of degree two in
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G) and its neighbors, u and w (of degree three in G). As above, modify the colors
of u1 and w1 (the other neighbors of u and w, respectively), if necessary, so that
they do not have disjoint colors. Likewise, modify the colors of the vertices a1, b1

and c1 so that c(c1) �= c(b1) and c(b1) �= c(a1). Then the modified coloring can be
extended to the seven vertices of C so that each vertex on C has at most one defect
and none of the colors assigned to vertices on C are defects for any of the vertices in
V (G) − V (C). To see this, there are two cases to consider. One, suppose ab and bc
are edges in C. In this case, we may assume by symmetry that v′ (a vertex of degree
two in G which lies on C) is adjacent to w, i.e., C = a, b, c, u, v, w, v′, a. Color a, b
and c so that they have no defects with one another, nor with a1, b1, or c1. It is now
simple to color u, v, v′ and w so that each vertex on C has at most one defect, as
we did in the case when the length of C was six (by coloring v′ first so that it has
no defect with a, then the problem of extending the coloring reduces to the same
situation as when the length of C was six). On the other hand, if ab and bc are not
both edges on C, then C is of the form u, v, w, a, v′, b, c, u, where v and v′ have degree
two in G. By coloring a, b and c so that they have no defects with one another, nor
with a1, b1, or c1, we can again easily extend the coloring to include u, v, v′ and w.
The cases when the length of C is greater than seven are identical.

Finally, we have the cases when Ĉ is of length four or three. If the length of Ĉ is
3, the only way to avoid an induced P4 is for C to be of the form a, b, c, d, e, f, a where
b, d and f are degree two vertices in G. In this case, color the subgraph induced by
V (G) − V (C). Then color a, c, e so they have no defects with their neighbors from
V (G) − V (C). Such a coloring can then be extended to include b, d and f . Now
suppose the length of Ĉ is 4. This proceeds exactly as in the case when the length
of Ĉ is 5, by treating one of the degree two vertices as vertex “u” (the degree two
vertex in the argument above) and one of the degree two vertices as either “a”, “b”,
or “c”, depending on its location in C. As this vertex has no neighbors outside of
C, we can color, in the same manner that a, b, or c were colored, the case when the
length of Ĉ is 5. This completes the proof. �

4 Outerplanar Graphs

Theorem 7 There exists an outerplanar graph not having a (5/2, 1) coloring.

Proof: It is easy to verify that the graph in Figure 1 cannot be (5/2, 1) colored. �
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Figure 1. Outerplanar Graph
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Theorem 8 Let G be an outerplanar graph with no adjacent triangles (i.e., no 3-
cycles share an edge). Then G is (5/2, 1) colorable.

Proof: Assume without loss of generality that δ(G) > 1, because degree one vertices
can be colored easily. The proof is by induction on the number of vertices. Denote
the closed walk along the exterior face of G as C (if G is 2-connected, then C is a
simple cycle). Of course, since G is outerplanar, V (G) = V (C). Now G is either a
chordless cycle (in which case the result immediately follows), or G contains a cut-
vertex v, or C contains a chord, xy, such that the cut-vertex/chord “cuts” G into
two graphs, G1, G2 (both containing the cut-vertex v/the chord xy), such that one
of them, say G2, is 2-regular.

We first argue the case when C contains a chord xy; the case when there is a
cut-vertex is handled below. Inductively color G1. We claim that there exists such
a coloring of G1 that can be extended to a coloring of G (i.e., extended to a coloring
including the remaining vertices of G2). If x and y are defects for each other in the
coloring of G1, then the claim follows easily. So suppose x and y are not defects
for each other and each has one defect in the coloring of G1 (if at least one of x, y
has no defects, the claim follows easily). We examine two cases. First suppose xy
borders a k-face, k > 3, ab . . . xy . . . ab in G1. Then either ab is a chord of C or G1 is
a cycle. The latter case is easily handled. So assume ab is a chord of C. Let G3 be
the subgraph of G1 induced by V (G1) − {x, y}. Inductively color G3. We can then
extend this coloring to G1 in such a way that either x, y are defects for one another,
or x, y have no defects whatsoever. To do this, suppose this k-face in question is
a, a1, . . . , ai, x, y, bj, bj−1, . . . , b, a. Start with a’s color and color a1, a2, . . . , ai, x so
that none of these vertices have defects. Then color bj , bj−1, . . . , b1 so that none of
these vertices have defects. Now color y so that it either has no defects, or only a
defect with x. This coloring of G1 can then be extended to include G2. Therefore we
may assume that xy lies on a 3-face in G1. But then G2 cannot be a triangle, and
thus the coloring of G1 is easily extended to G2.

To complete the proof, consider the case when G contains a cut-vertex. If C
contains a chord, we can apply the argument above. So we may assume that G is a
set of chordless cycles joined at cut-vertices. Remove one of these chordless cycles
and inductively color the remaining graph. This coloring can be trivially extended
to the remaining cycle. �

5 Series-Parallel Graphs

Let G be a (two-terminal) series-parallel graph with terminals x and y. Let �o(G)
denote the length of the shortest odd-length path from x to y in G and �e(G) denote
the length of the shortest even-length path from x to y in G; the parameter G is
omitted when the meaning is clear from the context.

Theorem 9 Let G be a triangle-free series-parallel graph. Then G can be (5/2, 2)
colored.
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Proof: Let x, y be the two terminals of G. Define a set L(G) as follows; the param-
eter G is omitted when the meaning is clear from the context.

If �o = 1 and �e = 2 then L = ∅ (G contains a triangle);
if �o = 1 and �e ≥ 4 then let L = {0, 1, 2, 3, 4};
if �o = 3 and �e = 2 then let L = {1, 2, 3, 4};
if �o = 3 and �e ≥ 4 then let L = {1, 2, 3, 4};
if �o ≥ 5 and �e = 2 then let L = {0, 1, 4};
if �o ≥ 5 and �e ≥ 4 then let L = {0, 1, 4}.

We prove that for any q ∈ L(G), G can be (5/2, 2) colored in such a way that
x is assigned color 0, y is assigned color q, and each of x, y has no defects, except
for possibly with each other. The proof is by induction on the number of series or
parallel constructions, k, used in the construction of G. If k = 0, then G = K2

and the theorem is true. For the inductive step, consider two cases, depending on
whether the kth step in the construction of G is a parallel or series construction.

Case 1 The kth step is a parallel construction. Let the kth step take two series-
parallel graphs G1 and G2, with terminals x1, y1 and x2, y2, respectively, and identify
x1 with x2 and y1 with y2. Observe that if there exists a path of length l between
x and y in G, then there exists a path of length l between x and y in at least one
of G1, G2. Let q ∈ L(G). Note that L(G) ⊆ L(G1) ∩ L(G2) and L(G) �= ∅. Color
G1 so that c(x1) = 0 and c(y1) = q and x1 and y1 having no defects except possibly
with each other. Likewise, color G2 with c(x2) = 0 and c(y2) = q and x2 and y2

having no defects except possibly with each other. When the two pairs of terminals
are identified, the resulting coloring of G will be such that c(x) = 0, c(y) = q and
x, y have no defects except possibly with each other.

Case 2 The kth step is a series construction. Let the kth step take two series-parallel
graphs G1 and G2, with terminals x1, y1 and x2, y2 respectively, and identify y1 with
x2. Keep in mind that, in terms of G, we let x = x1 and y = y2. We consider four
subcases depending on the values of �o(G) and �e(G).

Subcase 1 �o = 1. Then the kth step cannot be a series construction.

Subcase 2 Suppose x1 is adjacent to y1 and x2 is adjacent to y2. That is, �e = 2.
If �o = 3, then since G is triangle-free, the kth step cannot be series construction. So
we may assume that �o ≥ 5. Since G is triangle-free and �o(G1) = �o(G2) = 1, we
have �e(G1) ≥ 4 and �e(G2) ≥ 4. Then L(G) = {0, 1, 4}. Color G1 and G2 inductively
so that c(y1) = c(x2), noting that the colorings of G1 and G2 are based on L(G1) and
L(G2), and thus we may choose c(y1) and c(x2) to be any of {0, 1, 2, 3, 4}. When we
color G1, we need c(x2) �= 0, in order that no defect exists with x = x1 in the future
(and also, c(y1) �= q, in order that no defect exists with y = y2 in the future). This
requirement that c(x2) �= 0 seems to violate the needs of the inductive hypothesis

28



that we color the “x” terminal of a graph with color 0. However, in this case, we
shift the colors by subtracting c(x2) from each color, modulo 5, (do this shifting to
each v ∈ V (G2)) so that we color x2 with the desired non-zero color. The color
assigned to x2 will also be assigned to y1. Since L(G2) = {0, 1, 2, 3, 4}, the coloring
of y2 and G2 can be completed. In other words, (inductively) color G2 with c(x2) = 0
and c(y2) = q − s (modulo 5), where s, 1 ≤ s ≤ 4, is the ultimate color we wish
to assign x2 in G (thereby satisfying the induction requirements). We then modify
the coloring of each vertex in G2, by shifting, to one in which c(x2) = s �= 0 and
c(y2) = q, and use the modified coloring to complete the coloring of G.

In this manner, we inductively color G1 and G2 with c(y1) = c(x2), with c(y1) not
being a defect for 0, and with c(x2) not being a defect for c(y2) = q. Combining the
colorings of G1 and G2 into a coloring of G, we have that x and y have the desired
colors and no defects.

Subcase 3 Suppose �o = 3 and �e ≥ 4. First assume that �o(G1) = 1. This
implies �e(G1) ≥ 4, �e(G2) = 2, and �o(G2) ≥ 3. Based on L(G1) and L(G2), we can
color G1 and G2 such that c(x1) = 0, c(y2) = q, c(y1) = c(x2) �= 0 (so y1 is not a
defect for x1) and c(x2) is not a defect for c(y2) = q. Note that in this case, since
c(y1) �= 0, we need to use the shifting technique discussed in Subcase 2. In particu-
lar, L(G) is equal to {1, 2, 3, 4}. And L(G2) = {1, 2, 3, 4} or L(G2) = {0, 1, 4} and
L(G1) = {0, 1, 2, 3, 4}. We may restrict our consideration by setting L(G2) = {1, 4}
in this case (since {1, 4} is a subset of the two possible values of L(G2) mentioned in
the previous sentence). Color G2 as follows. Color y2 with 0 and let c(x2) ∈ {1, 4}
(by treating y2 as the “x” terminal of G2, i.e., the terminal that we always color
with color 0). Now shift the coloring of G2 by changing y2’s color to q (the desired
color of y). Since (in this case) L(G2) ⊇ {1, 4}, at least one color from the shifted
L(G2) will be non-zero. Assign this color to x2 and subsequently to y1 in G1. These
two colorings can then be combined to a coloring of G. A similar argument can be
applied if �o(G2) = 1.

Subcase 4 Suppose �o ≥ 5 and �e ≥ 4. Then L(G) = {0, 1, 4}. We analyze
several cases.

If �o(G1) = 1, then �e(G1) ≥ 4, since G is triangle-free. First suppose that
�o(G2) ≥ 5. In this case, L(G1) = {0, 1, 2, 3, 4}. If �e(G2) ≥ 2, then L(G2) = {0, 1, 4}.
Color x1 = 0. If q = 1, then color y1 with 2. Color x2 with 0 and y2 with 4. When
we identify y1 and x2, shift c(x2) to 2, which causes c(y2) to shift to 1, as desired. If
q = 4, then color y1 with 3. Color x2 with 0 and y2 with 1. When we identify y1 and
x2, shift c(x2) to 3, which causes c(y2) to shift to 4, as desired. If q = 0, color x2 with
a 4 and y2 with a 0 (by treating y2 as the “x” terminal of G2). We can then color
x1 with a 0 and y1 with a 4, and combine the colorings of G1 and G2 to produce the
desired coloring of G.

Now suppose that �o(G2) = 3 (and �o(G1) = 1, �e(G1) ≥ 4). Then �e(G2) ≥ 2
and L(G2) = {1, 2, 3, 4}. As above, L(G1) = {0, 1, 2, 3, 4}. Color x1 with 0. If q = 1,
then color y1 with 2. Color x2 with 0 and y2 with 4. When we identify y1 and x2,
shift c(x2) to 2, which causes c(y2) to shift to 1, as desired. If q = 4, then color y1
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with 3. Color x2 with 0 and y2 with 1. When we identify y1 and x2, shift c(x2) to 3,
which causes c(y2) to shift to 4, as desired. If q = 0, color x2 with 4 and y2 with a 0
(by treating y2 as the “x” terminal of G2). We can then color x1 with 0 and y1 with
4, and combine the colorings of G1 and G2 to produce the desired coloring of G.

On the other hand, if �o(G1) = 1, �e(G1) ≥ 4, �o(G2) ≥ 5 and �e(G2) ≥ 4, then
L(G1) = {0, 1, 2, 3, 4} and L(G2) = {0, 1, 4}. The argument is identical to the case
above.

If �o(G2) = 1, then �e(G2) ≥ 4 and �o(G1) ≥ 5. In this case, L(G2) = {0, 1, 2, 3, 4}.
If �e(G1) = 2, then L(G1) = {0, 1, 4}. And if �e(G1) ≥ 4, then L(G1) = {0, 1, 4}.
Both cases proceed easily, since we have freedom of choice for y2, allowing us to color
y = y2 with q.

We can conclude the proof by considering the case when suppose that �o(G1) ≥ 3.
We need only consider the most restrictive case (i.e., other cases involve supersets of
the L sets of this case), which occurs when L(G1) = L(G2) = {0, 1, 4}. Color x1 with
0. If q = 0, then color x2 with 4 and y2 with 0 (by treating y2 as the “x” terminal
of G2). We can then color x1 with 0 and y1 with 4, and combine the colorings of G1

and G2 to produce the desired coloring of G. If q = 1, then color y1 with 1. Color
x2 with 0 and y2 with 0 (there is no defect between x2 and y2 in this case, as we
are assuming that �o(G2) > 1). When we identify y1 and x2, shift c(x2) to 1, which
causes c(y2) to shift to 1, as desired. If q = 4, then color y1 with 0. Color x2 with 0
and y2 with 4. The colorings of G1 and G2 can then be combined, as desired. �

We conclude with two more questions.

Question 6 Can all triangle-free series-parallel graphs be (5/2, 1) colored?

Question 7 Can all series-parallel graphs be (5/2, 2) colored?
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Appendix

Let G be a planar graph, without loops or bridges, embedded in the plane with
vertex set V (G), edge set E(G), and face set F (G).

Denote the degree of a vertex v by d(v) and the degree of a face f (i.e., the length
of the boundary of f) by d(f). For a vertex v of graph G, the set of all edges of G
incident with v is denoted by E(v).

Definition 1 At a vertex v ∈ V (G), let {e1, . . . , ed(v)} = E(v) where ei, ei+1 (mod
d(v)) are on the boundary of a face. An angle α (at v) of G is a pair of edges
{ei, ei+1}.

Denote the set of all angles of G by Λ(G). For an angle α ∈ Λ(G) at a vertex v
and at a corner of a face f , denote the vertex v by vα and the face f by fα. Note
that there are d(v) angles at a vertex v and there are d(f) angles at the corners of a
face f and each edge appears in four angles and each angle consists of two edges. It
is obvious that

|V (G)| =
∑

α∈Λ(G)

1

d(vα)
,

|E(G)| =
∑

α∈Λ(G)

1

2
,

|F (G)| =
∑

α∈Λ(G)

1

d(fα)
.
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By Euler’s formula,

|F (G)| + |V (G)| = |E(G)| + 2,

we have the following Lebesgue’s formula

∑

α∈Λ(G)

(
1

d(vα)
+

1

d(fα)
− 1

2
) = 2. (1)

For each angle α, the general term of equation (1)

Φ(α) =
1

d(vα)
+

1

d(fα)
− 1

2
(2)

is called the Euler contribution of the angle α.
Let f be a face of G. Summing the Euler contributions of all angles at all corners

of a face f , one obtains the Euler contribution of the face f ,

Φ(f) = 1 − d(f)

2
+

∑ 1

d(v)
, (3)

where the sum is over all the vertices on the boundary of f .
For a vertex v, summing the Euler contributions of all angles at v, one obtains

the Euler contribution of the vertex v,

Φ(v) = 1 − d(v)

2
+

∑ 1

d(f)
, (4)

where the sum is over all the faces having v on their boundaries.
For an edge e = v1v2, let f1, f2 be two faces incident with e. Note that e appears

in four angles and each angle consists of two edges. When one sums one-half of the
Euler contributions of all angles containing e, one obtains the Euler contribution of
the edge e,

Φ(e) =
1

d(v1)
+

1

d(v2)
+

1

d(f1)
+

1

d(f2)
− 1. (5)

According to Lebesgue’s formula (1), we have the total Euler contributions of
angles, vertices, faces and edges as

∑

α∈Λ(G)

Φ(α) =
∑

v∈V (G)

Φ(v) =
∑

f∈F (G)

Φ(f) =
∑

e∈E(G)

Φ(e) = 2. (6)

Since the total Euler contributions of a planar graph is two, we have the following
lemma.

Lemma 10 (Lebesgue [6]) Let G be a planar graph without loops and bridges. There
must be an angle, a vertex, a face and an edge such that each of their Euler contri-
butions is positive.
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