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Abstract

Buckley and Harary introduced several graphical invariants related to
convexity theory, such as the geodetic number of a graph. These invari-
ants have been the subject of much study and their determination has
been shown to be NP -hard. We use the probabilistic method developed
by Erdös to determine the asymptotic behavior of the geodetic number of
random graphs with fixed edge probability. As a consequence we have a
random greedy algorithm for a good approximation of a geodetic basis of
a given graph G. Our technique can be applied to other random graphs
of diameter 2 and to random digraphs.

1 Introduction

A graph G consists of a finite set V = V (G) of n vertices and a set E = E(G) of
unordered pairs of vertices called edges. Let S be any subset of the vertex set V of
a graph G. Then the closure of S, denoted C(S), consists of all vertices w such that
there exist vertices u and v in S such that w lies on a geodesic between u and v.
Therefore S ⊆ C(S) along with C({u, v}) for all pairs of non-adjacent vertices u, v in
S. The set S is convex if it is closed, i.e. S = C(S). If C(S) = V (G), then S is called
a geodetic cover of G. Such a set of minimum cardinality is called a geodetic basis of
G. The geodetic number of a graph, denoted gn(G), is the cardinality of a geodetic
basis. For example, the geodetic number of the Kuratowski graph K3,3 is 3 while that
of the Petersen graph is 4. This parameter was introduced by Harary and Buckley
in their book [2] and has been the subject of much recent study. See [3], [4], [8], [9]
and [10].

The determination of gn(G) was found to be NP -hard by Harary, Loukakis and
Tsouros [13]. We have found a random greedy algorithm that is very effective for
approximating a geodetic basis of a random graph Gn,p of order n with fixed edge
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probability p. Our proof is made by showing that gn(Gn,p) is asymptotic to logb n
where b = 1/(1− p). The methods also apply to other random graphs of diameter 2
and to random digraphs.

There are several useful references for background material not provided here.
We refer the reader to the books by Palmer [17] and Bollobás [1] for relevant theory
of random graphs. For graph theory and graph algorithms see Chartrand and Oeller-
mann [7]. Chartrand and Lesniak [6] and West [18] cover both graphs and random
graphs.

2 Greedy geodetic cover algorithm

We begin with a greedy algorithm that always produces a geodetic cover and can be
applied to any graph G. We assume that the input is in the form of an adjacency
matrix. The algorithm recursively examines non-adjacent vertices to build the cover
set.
GREEDY GEODETIC COVER ALGORITHM (GGCA)

Step 0. H ← G and S ← φ.
Step 1. IF H is a complete graph, S ← S ∪ V (H). EXIT.
Step 2. Choose two non-adjacent vertices u, v in V (H)

and S ← S ∪ {u, v}.
IF C(S) = V (G) , EXIT.
ELSE let H be the subgraph of G induced by the vertex set
V (G)− C(S) and GO to Step 1.

The algorithm always terminates with a geodetic cover in S. Observe that Step 2
is executed at most n/2 times. To find the closure C({u, v}) of a pair of non-adjacent
vertices u, v, one can build two breadth-first search (BFS) trees rooted at u and v.
If the distance between u and v, denoted d(u, v), is finite, then the closure consists
of all vertices w such that d(u, w) + d(w, v) = d(u, v). The BFS complexity is O(n2)
for our input and since the two BFS trees supply the necessary distance information,
the number of operations to determine C({u, v}) is also O(n2). Step 2 may demand
the determination of the closure of non-adjacent vetices as many as 2 |S| + 1 times.
And so altogether Step 2 requires at most

(
n

2

)
+ O(n2 |S|)

operations.
Thus the overall worst-case complexity of the algorithm is O(n4). This estimate

can be reduced slightly with a bit more effort. Note that all BIG OH and little oh
notation is used with respect to n, the number of vertices in our graphs.

Note that in Step 2 we could have enlarged set S one vertex at a time. The
algorithm would have produced a geodetic cover with the same worst case complexity.
But the analysis below is easier when we add two vertices at a time and furthermore
the estimate of the size of the cover is the same.

Next we apply our greedy algorithm GGCA to a random graph Gn,p of order
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n with fixed edge probability p with 0 < p < 1. It is well known (see [1] or [17])
that Gn,p almost surely has diameter 2. Therefore after Step 2 is applied for the
first time, almost surely S will consist of two non-adjacent vertices and there will
be approximately p2n vertices in the closure C(S) of S. And there will be about
(1 − p2)n vertices outside the closure of S. As the algorithm continues to execute
Step 2, after j passes the cardinality of S is 2j and there are at most approximately
(1−p2)jn vertices remaining outside the closure of S. Suppose we halt the algorithm
after j steps and simply set S ← S ∪ (V − C(S)). Then S will be a geodetic cover
with at most approximately 2j + (1 − p2)jn vertices. It will be seen at once that
if j = loga(n) with a = 1/(1 − p2) then |S| is O(log(n)). (Note that although we
frequently deal with integer values such as j, we do not always round off expressions
for these variables because the proofs remain valid without the distraction of the
extra notation.)

Note that the algorithm is allowed to halt after Step 1 if H is a complete graph.
A famous theorem of Matula (see [14] or [15]) shows that the clique number of Gn,p is
asymptotic to 2 logb(n) where b = 1/p. Details are also available in both [1] and [17].
So if the number of vertices outside C(S) is much more than 2 logb(n), this exit will
almost surely not be taken.

The outcome of these observations is summarized next.

Proposition 1 Given a random graph Gn,p of order n with fixed edge probability p,
the random greedy geodetic covering algorithm almost surely finds a geodetic cover of
order O(log(n)), i.e. gn(Gn,p) = O(log(n)).

We could also apply the algorithm to other families of random graphs but we will
see that Proposition 1 provides a target value for the geodetic number of a random
graph which leads to better results in the next section.

3 The geodetic number of a random graph

of diameter 2

In this investigation our goal was to determine the asymptotic behavior of the geode-
tic number of a random graph with fixed edge probability. Taking a cue from the
Proposition in the previous section, we found a lower bound for gn(Gn,p) of the form
c1 log(n) with c1 as large as possible. Then we turned our attention to the prob-
lem of establishing an upper bound of nearly the same value. The result was the
following theorem in which the two bounds are asymptotically equal. The proof is
straightforward and uses techniques well-known to experts in the field but we have
filled in extra steps to reveal the method of discovery.

Theorem 1 Let Gn,p be a random graph of order n with fixed edge probability p and
define b = 1

1−p
. Almost surely:

gn(Gn,p) = (1 + o(1)) logb n.
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Proof. First we determine a lower bound for gn(Gn,p). Let k = (1−εn) logb n where
εn → 0 as n → ∞ and εn will be defined later. Next, for any graph G with vertex
set V of order n, we define the random variable X = X(G) to be the number of
k-subsets of V = V (G) which are geodetic covers. Then the expected number E[X ]
of geodetic covers of order k for Gn,p is

E[X ] =
∑
S⊆V
|S|=k

P (C(S) = V ).
(1)

But since these random graphs have diameter 2 almost surely, when C(S) = V , each
vertex in V −S must have at least 2 neighbors in S. Hence P (C(S) = V ) is bounded
above by the probability that each vertex in V − S has at least 2 neighbors in S.
Therefore we have almost surely

E[X ] ≤
(

n

k

)
(1− (1− p)k − kp(1− p)k−1)n−k

≤
(

n

k

)
(1− kp(1− p)k−1)n−k

≤ nk

k!
exp{−(n− k)kp(1− p)k−1}

=
f(n)k

k!
,

(2)

where
f(n) = n exp{−(n− k)p(1− p)k−1}. (3)

We emphasize that the equations (2) rely on the random graph having diameter 2,
and so are conditional. They can be made unconditional by adding on the right side

(
n

k

)
P (d(Gn,p) �= 2) ≤

(
n

k

)(
n

2

)
(1− p)(1− p2)n−2 = o(1)

where d(G) is the diameter of G. The last equality holds for k = O(logb n) and so
this omission posses no difficulty.

Now we can finish this part of the proof by defining εn so that f(n) is bounded
above by a constant independent of n. First note that in our notation

(1− p)k = n−1+εn (4)

and so if εn → 0 as n→∞, then

kp(1− p)k−1 = o(1). (5)

Therefore
log f(n) = log n− p

1− p
nεn + o(1). (6)

14



Observe that we could now define εn by

nεn =
1− p

p
log n, (7)

but it is convenient to pick a small ε > 0 and let

εn = (1 + ε)
log log n

log n
= (1 + ε)

logb log n

logb n
. (8)

Now it can be seen that with εn and hence k so defined, we have the expectation
E[X ] → 0 as n → ∞. Therefore Gn,p almost surely has no geodetic covers of order
k. That is, almost surely

gn(Gn,p) ≥ (1− εn) logb n = logb n− (1 + ε) logb log n. (9)

Now we turn to the upper bound. Set k = (1+εn) logb n where εn → 0 as n→∞
with εn to be defined later. Next let S be a subset of V = V (Gn,p) of order k chosen
uniformly at random and define the random variable XS by

XS(G) = |{v : v /∈ C(S)}| . (10)

Thus E[XS] is the expected number of vertices that lie outside the closure of S. We
will show that E[XS]→ 0 as n→∞. It then follows that almost surely no vertices
lie outside the closure of S. We begin with a formula for P (v /∈ C(S)), i.e. the
probability that a vertex v is not in C(S). For convenience and to emphasize that it
depends on k, we denote this probability by αk. We find that

αk =
k∑

i=0

(
k

i

)
pi+(i

2)(1− p)k−i. (11)

To verify the formula, consider a vertex v ∈ V −S with exactly i neighbors in S. The
neighbors can be chosen in

(
k
i

)
ways. The probability that the vertex has exactly

the i neighbors chosen is pi(1− p)k−i. But the neighbors must be mutually adjacent

and that probability is p(i
2). Since these probabilities are independent, we multiply

them before summing over all i = 0 to k to obtain the result above.
Then we have for the expectation:

E[XS] = (n− k)αk ≤ nαk (12)

and so we need a nice upper bound for αk. To do this we split the sum in αk in
two parts and focus first on the lower portion where 0 ≤ i ≤ s = c log k, and c is a
constant that depends on p and will be chosen shortly. Then for the lower portion of
the sum we have the following upper bound, which holds for all n sufficiently large:

s∑
i=0

(
k

i

)
pi+(i

2)(1− p)k−i ≤
s∑

i=0

(
k

i

)
pi(1− p)k−i ≤ 3

2

(
k

s

)
ps(1− p)k−s. (13)
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The second (crude) inequality of (13) follows from well known estimates of the
tail of the binomial distribution (see [17], p. 133).

Now we look at the upper portion of the sum in (11) and show that it is dominated
by the right side of (13). Here are some of the steps:

k∑
i=s+1

(
k

i

)
pi+(i

2)(1− p)k−i ≤ (1− p)k

k∑
i=s+1

ki

i!
(

p
i+1
2

1− p
)i

= (1− p)k

k∑
i=s+1

(kp
i+1
2

1−p
)i

i!

= O(1)(1− p)k
(kp

s+2
2

1−p
)s+1

(s + 1)!
,

(14)

where the last equality holds if the constant c in the definition of s is large enough
so that

kp
s+2
2

1− p
< 1. (15)

To show that the right side of (13) dominates, just divide the right side of (14) by
the right side of (13) and note that the quotient is negligible provided that

kp
s
2 < 1. (16)

Now it can be seen that if c = 3
log 1

p

and s = c log k then,

αk ≤ 2

(
k

s

)
ps(1− p)k−s (17)

for sufficiently large n.
Here is another interesting way to establish this bound on αk that we have heard

about. It makes use of the important estimate mentioned earlier of the clique size of
a random graph first found by Matula (see [14], [15] and also the texts [1] or [17]).
In a random graph of order k with edge probability p the order of a largest clique is
asymptotic to 2 log k

log 1
p

. Therefore the clique number of the random set S of order k is

at most 3 log k

log 1
p

= s. Now suppose that a vertex v in V − S is not covered by S, i.e.

v /∈ C(S). Then v has at most s neighbors in S. Therefore

αk ≤
s∑

i=0

(
k

i

)
pi(1− p)k−i (18)

which implies the bound in the previous inequality.
From our definitions of s and k we have for sufficiently large n
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E[XS] ≤ nαk

≤ 2 n
(kp)s

s!
(1− p)k−s

= 2
g(n)s

s!
,

(19)

where

g(n) =
kp

1− p
n−εn/s. (20)

Now we can finish by defining εn so that g(n) is bounded by a constant independent
of n. Since p is fixed we only need

kn−εn/s = O(1). (21)

On taking the log of both sides and using the definitions of k and s it can be seen
that εn can be defined by

εn =
(3 + ε)

log 1
p

(log logb n)2

log n
. (22)

where ε > 0 is arbitrary. Then almost surely

gn(Gn,p) ≤ (1 + εn) logb n

= logb n +
3 + ε

log 1
p
log 1

1−p

(log logb n)2. � (23)

The proof suggests an improved heuristic greedy geodetic cover algorithm that
can be applied to a random graph Gn,p.
IMPROVED GREEDY GEODETIC COVER ALGORITHM (IGGCA)

Step 0. Let ε > 0 be given.
Step 1. Choose k = (1 + ε) logb n vertices at random.

and put them in set S.
Step 2. WHILE there is a vertex v in V − S which does not have two

non-adjacent neighbors in S, DO S ← S ∪ {v}.
The theorem shows that when applied to Gn,p the algorithm IGGCA will almost

surely terminate with a geodetic cover without putting any new vertices in S. It
also shows that the cardinality of the cover will be the same order of magnitude as
a geodetic basis. The computational effort is O(n) for Step 1. To implement Step 2,
consider each of the n−k vertices outside S and determine if they have a pair of non-
adjacent common neighbors in S. This requires about O(n(log n)2) computations.
So the overall worst-case complexity is O(n(log n)2).

The random graph threshold for diameter 2 is well-known and easy to establish.
It is a fact that if the edge probability p is given by

p2 =
2 log n + ωn

n
, (24)
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where ωn →∞, but also
n2(1− p)→∞, (25)

then almost surely Gn,p has diameter 2. The next theorem is a result that covers a
range of edge probability at least as large as this threshold. But we redefine the edge
probability as follows:

p2 =
2 log n + ωn

n1−c
(26)

where ωn = o(log(n)) and c is a constant between 0 and 1.

Theorem 2 Let Gn,p be a random graph of order n and let c be a positive constant
less than 1. Then with edge probability p given by formula (26), almost surely

(
1 + c

2
− o(1))

log n

p
≤ gn(Gn,p) ≤ (1 + o(1))

log n

p
.

The proof requires a bit more effort than the previous theorem but since the
method is similar, it is omitted. The corresponding problem for random graphs of
diameter greater than 2 is considerably more complicated and remains unsolved.

4 Conclusion

Buckley and Harary discussed several other graph invariants whose values can be
determined by our theorems for some families of random graphs. For example, the
hull number of a graph was introduced by Everett and Seidman [12] and studied
further in [5], [11] and [16]. Let S be a subset of the vertex set V = V (G) of
the graph G. Following [2] we denote the iteration of the closure operation in the
usual way so that C(C(S)) = C2(S) and C(C(C(S))) = C3(S), etc. Then the
geodetic iteration number of S, denoted gin(S), is the smallest integer i such that
Ci(S) = Ci+1(S). The geodetic iteration number of G, denoted by gin(G) is the
maximum value of gin(S) taken over all subsets S of V . For example, it is easy to
verify that gin(K2,3) = 2.

The convex hull of S, denoted by H(S), is Ci(S) where i = gin(G). Then the
hull number of G, denoted by h(G) is the smallest cardinality of a set S whose hull
is V . For example, the hull number of the Petersen graph is 3.

Corollary 4.1 Let Gn,p be a random graph of order n with edge probability p fixed
and 0 < p < 1. Almost surely

h(Gn,p) = gin(Gn,p) = 2.

Proof. Consider two non-adjacent vertices u and v of Gn,p. The following statements
all hold almost surely. First the cardinality of their common neighborhood, i.e.
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|C({u, v})|, is approximately p2n. But since p is fixed, p2n >> log n and so it follows
from the proof of the upper bound in our first theorem that C2({u, v}) = V . Thus
the hull number is 2 because |S| = |{u, v}| = 2 and the geodetic iteration number is
2 because the closure operation must be performed twice. �

The methods used above can also be applied to random digraphs. But a number
of problems involving convexity in random graphs remain. For example, can the
result of Theorem 2 be sharpened? And what is the behavior of the geodetic number
for random graphs of diameter greater than 2? Even the determination of other
invariants like the iteration number or the hull number remains unsolved for random
graphs of diameter 2.
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