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Abstract

The upper bound for embedding a partial 8-cycle system of order n
is improved from 4n + c

√
n, c > 0, to 4n + 29.

1 Introduction

An m-cycle system of order n is a pair (S, C), where C is a collection of edge-disjoint
m-cycles which partitions the edge set of Kn (the complete undirected graph on n
vertices) with vertex set S. A partial m-cycle system of order n is a pair (X, P ),
where P is a collection of edge disjoint m-cycles of the edge set of Kn (E(Kn)). The
difference between a partial m-cycle system and an m-cycle system is that the edges
belonging to the m-cycles in a partial m-cycle system do not necessarily include all
edges of Kn.

A natural question to ask is the following: given a partial m-cycle system (X, P )
or order n, is it always possible to decompose E(Kn) \ E(P ) into edge disjoint m-
cycles? (E(Kn)\E(P ) is the complement of the edge set of P in the edge set of Kn.)
That is, can a partial m-cycle system always be completed to an m-cycle system?
The answer to this question is no, since for any m we can construct a partial m-cycle
system consisting of one m-cycle of order not satisfying the necessary conditions for
the existence of an m-cycle system (see [3] for example).

Given the fact that a partial m-cycle system cannot necessarily be completed,
the next question to ask is whether or not a partial m-cycle system can always be
embedded in an m-cycle system.

The partial m-cycle system (X, P ) is said to be embedded in the m-cycle system
(S, C) provided X ⊆ S and P ⊆ C. If the answer to this question is yes, we would
like the size of the containing m-cycle system to be as small as possible.

In [5] it is shown that a partial m-cycle system of order n can be embedded in
an m-cycle system of order 2mn + 1 when m is EVEN and embedded in an m-cycle
system of order m(2n + 1) when m is ODD [4].

In [1] the following theorem is proved.
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Theorem 1.1 (P. Horák and C. C. Lindner [1].) Let m be even. A partial m-cycle
system of order n can be embedded in an m-cycle system of order

(
x
2

)
(m/2)+x, where

x is the smallest positive integer such that x ≡ 1 (mod 4m) and
(

x
2

) ≥ n.

To make a long story short, a partial (m = 2k)-cycle system of order n can
always be embedded in an m-cycle system of order ≤ (mn)/2 + c

√
n, for some

positive constant c (depending on m).
In [2] this bound was improved from 3n + c

√
n to 3n + 42 for 6-cycles.

The object of this note is to give a new construction for 8-cycle systems which
improves the upper bound from 4n + c

√
n to 4n + 29.

2 The 16k + 17 Construction.

Let X and Y be sets of size 4k and 17 respectively and set S = (X ×{1, 2, 3, 4})∪Y .
Define a collection C of 8-cycles of the edge set of K16k+17 with vertex set S as
follows:

(1) Let (Y, C∗) be any 8-cycle system of order 17 (see [3]) and place the 8-cycles
of C∗ in C.

(2) For each pair x �= y ∈ X, let C(x, y) be a decomposition of K4,4 (with parts
{x}×{1, 2, 3, 4} and {y}×{1, 2, 3, 4}) into 2 8-cycles and place these 8-cycles
in C. Without loss in generality we can assume the 8-cycle ((x, 1), (y, 1), (x, 2),
(y, 3), (x, 4), (y, 4), (x, 3), (y, 2)) belongs to C(x, y).

(3) Let π be a partition of X into subsets of size 2 and for each {x, y} ∈ π define 3
8-cycles by (∞1, (x, 1), (x, 2), (x, 3),∞5, (y, 3), (y, 2), (y, 1)), (∞2, (x, 1), (x, 3),
(x, 4), ∞6, (y, 4), (y, 3), (y, 1)), and (∞3, (x, 1), (x, 4), (x, 2), ∞4, (y, 2), (y, 4),
(y, 1)), where ∞1,∞2,∞3, ∞4,∞5, and ∞6 are 6 distinct elements belonging
to Y .

(4) Let C1 be any partition of K4k,14 (with parts X × {1} and Y \ {∞1,∞2,∞3})
into 8-cycles (see [6]) and place these 8-cycles in C.

(5) For each i ∈ {2, 3, 4} let Ci be any partition of K4k,16 (with parts X ×{i} and
Y \ {∞i+2}) into 8-cycles and place these 8-cycles in C.

Theorem 2.1 (S, C) is an 8-cycle system of order 16k + 17.

Proof: It suffices to show that (i) each edge in K16k+17 (with vertex set S) belongs
to a cycle of type (1), (2), (3), (4), or (5) and that (ii) the total number of 8-cycles
in the 16k + 17 Construction is |C| = n(n − 1)/16, n = 16k + 17.

(i) Let {a, b} ∈ E(K16k+17).

(a) a, b ∈ Y . Then {a, b} belongs to a cycle in C∗ and therefore to a cycle in C.

(b) a = (z, 1), b ∈ {∞1,∞2,∞3}. Then {a, b} belongs to a cycle of type (3).
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(c) a = (z, 1), b ∈ Y \ {∞1,∞2,∞3}. Then {a, b} belongs to a cycle of type (4).

(d) a = (z, i), i ∈ {2, 3, 4}, b = ∞i+2. Then {a, b} belongs to a cycle of type (3).

(e) a = (z, i), i ∈ {2, 3, 4}, b ∈ Y \ {∞i+2}. Then {a, b} belongs to a cycle of type
(5).

(f) a = (x, i), b = (y, i). Then {a, b} belongs to a cycle of type (2).

(g) a = (x, i), b = (y, j), i �= j. If x = y, then {a, b} belongs to a type (3) 8-cycle.
If x �= y, then {a, b} belongs to a type (2) 8-cycle.

Combining the above cases shows that each edge of K16k+17 belongs to an 8-cycle
of type (1), (2), (3), (4), or (5) in the 16k + 17 Construction.

(ii) Counting the 8-cycles in the 16k +17 Constuction gives: 34 type (1), 2
(
4k
2

)
=

16k2 − 4k type (2), 6k type (3), 7k type (4), and 24k type (5) 8-cycles. Adding
these numbers gives n(n − 1)/16 (remember that n = 16k + 17).

Combining parts (i) and (ii) completes the proof.

3 The 16k + 17 embedding.

Let (Z, P ) be a partial 4-cycle system of order n and X a set of size 4k ≥ n,
where 4k is as small as possible; so 4k = n, n + 1, n + 2, or n + 3. Let X be
a set of size 4k such that Z ⊆ X and use the 16k + 17 Construction to con-
struct an 8-cycle system (S, C) of order 16k + 17. If the edge {x, y} belongs to
the cycle c in the partial 8-cycle system (Z, P ) denote by c(x, y) the type (2) 8-
cycle ((x, 1), (y, 1), (x, 2), (y, 3), (x, 4), (y, 4), (x, 3), (y, 2)) in the 16k + 17 Construc-
tion. For each 8-cycle c = (x1, x2, x3, x4, x5, x6, x7, x8) ∈ P denote by 8c the collec-
tion of eight 8-cycles c(xi, xi+1). We define a balanced set of 8-cycles 8c∗ on the edges
belonging to 8c as follows: ((x1, i), (x2, i), (x3, i), (x4, i), (x5, i), (x6, i), (x7, i), (x8, i)),
i ∈ {1, 4}; and for each (i, i+1), i = 1, 2, 3, the two 8-cycles ((x1, i), (x2, i+1), (x3, i),
(x4, i+1), (x5, i), (x6, i+1), (x7, i), (x8, i+1)) and ((x1, i+1), (x2, i), (x3, i+1), (x4, i),
(x5, i+1), (x6, i), (x7, i+1), (x8, i)). Since 8c and 8c∗ are balanced (contain the same
edges) (C \ 8c) ∪ 8c∗ is an 8-cycle system. If ci �= cj ∈ P , then 8ci and 8cj are edge
disjoint. Hence (C \{8c | c ∈ P})∪{8c∗ | c ∈ P} is an 8-cycle system containing two
disjoint copies of P ; namely the cycles having the same second coordinate (1 and 4)
in each collection 8c∗.

Theorem 3.1 A partial 8-cycle system of order n can be embedded in an 8-cycle
system of order 16k + 17, where 4k is the smallest positive integer such that 4k ≥ n.

Corollary 3.2 A partial 8-cycle system of order n can be embedded in an 8-cycle
system of order at most 4n + 29.

Proof: Since 4k ≥ n is as small as possible, 4k = n, n + 1, n + 2, or n + 3. Hence
16k + 17 ≤ 4n + 29.
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4 Concluding remarks.

Some comments about size are appropriate! The results in [1] (Theorem 1.1 in
this paper), [2], and in this note all involve estimating the size of n. The 16n + 1
embedding in [5] does this exactly whereas the estimation in Theorem 1.1 uses the
smallest x ≡ 1 (mod 32) such that

(
x
2

) ≥ n. For small n this can be a very bad

estimate. For example, if n = 23, then x = 33,
(
33
2

)
= 528, and the 4

(
x
2

)
+ x

embedding gives a containing 8-cycle system of order 2145 which is a lot worse than
the bound of 361 given by the 16n+1 embedding. However, the 4

(
x
2

)
+x embedding

is eventually better than the 16n + 1 embedding and is asymptotic to 4n. However,
in every case the 16k + 17 embedding is better, particularly for small n, since the
estimation of n is off by at most 3. For n = 23, 4k = 24, and the 16k+17 embedding
gives a containing system of order 113.

Unfortunately, the technique used in the 16k+17 Construction (to use CATCH-22
vernacular) always never works for 2k �= 8.
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