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Abstract

The recent interest both in partitions of finite geometries into other
geometric objects and in the classical Segre varieties over finite fields are
the background motivation for this paper. More precisely, partitions of
Segre varieties into Segre varieties are investigated and the idea of nested
partitions is introduced. Other partitions, namely of projective spaces
and hyperbolic quadrics, are also studied.
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1 Introduction

Corrado Segre [12] introduced the varieties which are named after him a bit over one
century ago and the projective spaces he considered are real or complex. However,
the definition, as well as many of their properties, carry over to any field, as B. Segre
noted in [11], where the finite field case was first studied.

Quite recently, new interest in the field arose, as it was shown in [1] that Segre
varieties can be partitioned into Veronese surfaces. On the other hand, projective
spaces can be partitioned into Segre varieties [2] which shows that such varieties, in
a certain sense, behave like projective spaces. Also, in a recent paper [3], Leedham-
Green and O’Brien study tensor products of vector spaces as projective geometries
and the geometric object naturally associated with a tensor product is a Segre variety.
These facts inspired the present paper whose aim is to point out further links between
Segre varieties and projective spaces, mainly over finite fields, and to provide new
partitions of geometric objects.

First of all, we show that projective spaces are naturally embedded in Segre
varieties using incidence properties only.

Next, we provide partitions of Segre varieties into Segre varieties. Thus, we
construct such partitions and by iterating the construction we achieve what we call
a nested partition. Several methods of constructing partitions of Segre varieties into
Segre varieties are shown.

It is well known that the smallest non-trivial Segre variety is a hyperbolic quadric
in a 3–space; for such a quadric, under the assumption the ground field has square
order q2, we construct a partition into elliptic quadrics over the subfield of order q.

Only Segre varieties with two indices are considered, i.e. varieties which are prod-
ucts of two projective spaces. Most of the results extend to more general cases, even
if notation becomes a bit messy.

2 Notation

Let PG(h, F ) and PG(k, F ) be projective spaces over a field F , with h, k ≥ 0. Set
N := (h + 1)(k + 1) − 1.

For all points x = (x0, . . . , xh) ∈ PG(h, F ) and y = (y0, . . . , yk) ∈ PG(k, F ),
define

x ⊗ y = (x0y0, . . . , x0yk, x1y0, . . . , x1yk, . . . , xhy0, . . . , xhyk).

The Segre variety, product of PG(h, F ) and PG(k, F ), is the variety Sh,k of
PG(N, F ), consisting of all points represented by the vectors x⊗ y, as x and y range
over all points of PG(h, F ) and PG(k, F ), respectively.

A more classical, and equivalent, definition of a Segre variety is via its parametric
equations. Let xi, with i = 0, 1, . . . , h, be homogeneous projective coordinates in
PG(h, F ) and let yj, with j = 0, 1, . . . , k, be homogeneous projective coordinates in
PG(k, F ). The Segre variety Sh,k has parametric equations:

ξij = xiyj , i = 0, 1, . . . , h , j = 0, 1, . . . , k,
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with ξij homogeneous projective coordinates in PG(N, F ).
Sh,k contains two systems (reguli) of spaces, say M1 and M2, such that M1

consists of k–dimensional spaces, each of which is an S0,k, and M2 consists of h–
dimensional spaces, each of which is an Sh,0. Spaces of the same system are pairwise
skew and any two spaces of different systems meet in exactly one point. The spaces
of each system partition Sh,k.

When F is GF (q), then Sh,k contains θhθk = (qh + qh−1 + . . . + q + 1)(qk + qk−1 +
. . . + q + 1) points, where, for any non-negative integer n, θn = qn + qn−1 + . . . +
q + 1. Moreover, M1 consists of θh k–dimensional spaces and M2 consists of θk

h–dimensional spaces.
Furthermore, a Segre variety Sh,k of PG(N, F ) has an automorphism group either

isomorphic to PGL(h + 1, F ) × PGL(k + 1, F ) if h �= k or isomorphic to PGL(h +
1, F ) × PGL(k + 1, F ) × C2 if h = k ([10], Thm. 25.5.13).

Finally, we denote by G1,n the Grassmannian of the lines of PG(n, F ), i.e. the

variety of PG(M, F ), M =
(

n+1
2

)
− 1, representing, under the Plücker map, the

1-dimensional subspaces of PG(n, F ).
For background and more details, see [7], [8], [9], [10].
A flock of the Segre variety Sh,h over GF (q) is a partition of Sh,h into θh Veronese

surfaces. A flock is linear if all the spaces of the Veronese varieties of the flock share
an h–dimensional space. For more details, see [1].

3 Segre varieties and projective geometries

In this section we show that in any Segre variety Sk,n, over GF (q), k < n, there is
a natural structure of projective space of dimension n.

In PG(2n + 1, q) fix a line A and an n−dimensional subspace B skew with A,
and consider the lines joining all the points on A with the points on B. Under the
Plücker map, these lines are mapped onto the points of G1,n contained in a suitable
(2n + 1)−dimensional space which intersects G1,n in S1,n.

Define the following geometry G1,n:
the points are the lines of S1,n which form the regulus of 1–spaces of the Segre variety;
the m−dimensional subspaces G1,n

m ’s are the S1,m’s canonically embedded in S1,n;
hence, the lines are the hyperbolic quadrics S1,1 canonically embedded in S1,n, and
similarly for all dimensions.

Note that the number of points of G1,n is θn = qn + qn−1 + ... + q + 1. A subspace
G1,n

m = S1,m of positive dimension m consists of the images of the points on all the
lines joining the points on the line A with the points of a suitable subspace U ⊂ B of
dimension m, and a subspace G1,n

l = S1,l of positive dimension l consists of the images
of the points on all the lines joining the points on the line A with the points of a
suitable subspace V ⊂ B of dimension l. Hence, the subspace G1,n

m ∩G1,n
l is the image

of the set of points on the lines joining the points on the line A with the points of the
subspace U ∩ V. Therefore, the incidence structure G1,n is a projective geometry of
dimension n, as all the incidence properties which characterise a projective geometry
follow from the corresponding properties of PG(2n + 1, q).
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The argument above easily generalises by taking the Segre variety Sk,n, k < n,
giving the geometry Gk,n. Points are the Sk,0’s (which form the regulus of k–spaces),
lines are the Sk,1’s canonically embedded in Sk,n, and so on.

This proves the following result.

Theorem 3.1 The geometry Gk,n, embedded in the Segre variety Sk,n, is a projective
space isomorphic to PG(n, q). �

Example. Let n = 3. The projective geometry G1,3 ∼= PG(3, q) is the following.
Points are the lines of S1,3 of one regulus, and they number θ3 = q3 + q2 + q + 1;
Lines are the hyperbolic quadrics Q+(3, q) = S1,1 canonically embedded in S1,3,

and they number (q2 + 1)(q2 + q + 1);
Planes are the Segre varieties S1,2’s canonically embedded in S1,3, and they num-

ber θ3.

Observe that Theorem 3.1 is true over any field but the proof is not by counting
arguments but follows from the incidence properties.

4 Nested partitions of Segre varieties

Can a Segre variety S3,3⊂PG(15, q) be partitioned into hyperbolic quadrics Q+(3, q)?
More generally, can a Segre variety Sh,k be partitioned into Segre varieties?

Fix an n−spread, say S1, in PG(2n+1, q), and an m−spread, say S2, in PG(2m+
1, q).

Construct the Segre variety S(2n+1),(2m+1) as PG(2n + 1, q)⊗PG(2m + 1, q). For
any A ∈ S1 and B ∈ S2, the Segre variety Sn,m

∼= A ⊗ B is naturally embedded in
S(2n+1),(2m+1). Moreover, if (A, B) �= (A′, B′), with A, A′ ∈ S1 and B, B′ ∈ S2, then
Sn,m

∼= A⊗B is disjoint from S ′
n,m

∼= A′⊗B′. The set F = {Sn,m
∼= A⊗B|A ∈ S1, B ∈

S2} has cardinality (qn+1 + 1)(qm+1 + 1) and is a partition of S(2n+1),(2m+1) because
each Sn,m ∈ F consists of θnθm points, and the number of points of S(2n+1),(2m+1) is
θ2n+1θ2m+1= (qn + qn−1 + . . . + q + 1)(qm + qm−1 + . . . + q + 1)(qn+1 + 1)(qm+1 + 1).
Hence, we have constructed a partition of the Segre variety S(2n+1),(2m+1) into Segre
varieties Sn,m’s. Repeating the above construction yields a partition of S(4n+3),(4m+3)

into S(2n+1),(2m+1)’s, each partitioned into Sn,m’s; therefore, an ascending chain of
partitions into Segre varieties of S(2s(n+1)−1),(2t(m+1)−1) is defined, which we call a
nested partition of Segre varieties with basis Sn,m.

For any choice of the dimensions n, m such that 2 does not divide gcd(n−1, m−1),
the Segre variety Sn,m is the ”bottom” of the ascending chain of the Segre varieties
in the nested partition. On the other hand, if 2 divides gcd(n− 1, m− 1) = 2d, then
write n = 2dh+1, m = 2dk +1, and Sn,m is in the nested partition with basis Sdh,dk.
Therefore, it suffices to consider only nested partitions with a minimal basis, which
is an Sn,m such that 2 does not divide gcd(n− 1, m− 1). Note that nested partitions
with different (minimal) bases share no elements.

Observe that the same result holds in the infinite case even if the proof is not by
counting arguments (coordinates may be used).
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The construction of a nested partition, for n = m, can be given also via projec-
tivities, and provides a partition of the Segre variety S(2n+1),(2n+1). Let M1 and M2

be the two systems of pairwise disjoint (2n+1)–dimensional spaces. For i, j ∈ {1, 2}
and i �= j, the spaces of Mi define a projectivity φ between any two given spaces π1

and π2 of Mj by taking as corresponding points the intersections with the same space
of Mi. Take π1 and π2 in Mj, and take any spread S1 of n–dimensional subspaces
in π1.

Then, Sφ
1 is a spread of n–spaces in π2, and S1 ∧ Sφ

1 = {A ∧ Aφ : A ∈ S1} is a
block of the partition of S(2n+1),(2n+1) into Sn,n’s we want to construct. By taking a

cyclic permutation σ acting on Sφ
1 and considering S1 ∧Sφσj

1 , j = 1, 2, . . . , qn, we get
the other blocks of the partition.

Further, observe that the construction in this section does not require φ to be
a projectivity. Indeed, φ was used only to get the spread Sφ

1 . We could also take
any two spreads, Si ∈ πi, i = 1, 2, and any bijection φ between them, and obtain a
partition by the same argument.

We observe that this construction works also for infinite fields, provided the
required infinite permutation can be found. On the other hand, since the members
of the spread can always be viewed as the points of a suitable projective space, the
shifting can be achieved by using the relevant projective group.

Remark 4.1 Let φ be the projectivity between the two spreads S1 and S2, Sj ∈ πj ,
with j = 1, 2, π1 and π2 both belonging to say M1, in which points correspond if
and only if they lie in some π̃ ∈ M2.

Let τ ∈ Stab(S1); then φτ is in Stab(S2). Hence, Stab(S1) ⊗ Stab(S2) is a
subgroup of PGL(2n + 1, q)⊗PGL(2n + 1, q) which, in the general case, is a proper
subgroup.

Remark 4.2 For any Sh,k (over any field) such a projectivity φ exists. It is defined
between any two h–spaces by the k–spaces and between any two k–spaces by the
h–spaces: two points correspond under φ iff they belong to the same space of the
other system.

Remark 4.3 Obviously, any Segre variety which is the product of two spaces ad-
mitting a partition into subgeometries admits a partition into Segre varieties be-
longing to these subgeometries. E.g., PG(2, q2) ⊗ PG(2, q2) admits a partition into
PG(2, q) ⊗ PG(2, q), [8].

Remark 4.4 By the argument involving spreads, whenever (d + 1)|(h + 1) and
(r + 1)|(k + 1), a decomposition of Sh,k into Sd,r’s is obtained.

Clearly, the construction above can also be presented via coordinates using the
parametric equations of a Segre variety, i.e.

ξij = xiyj , i, j = 0, 1, 2, . . . , n − 1,

with ξij homogeneous projective coordinates in PG(n2 + 2n, F ), and the relevant
canonical forms of the involved projectivities and the considered spaces of one regulus
can always be chosen so that they have easy to handle equations.
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5 Nested partitions and linear flocks

We can also construct nested partitions via the action of a suitable group, naturally
partitioning each Segre variety into Veronese surfaces which form linear flocks.

Theorem 5.1 The Segre variety S(2n+1),(2n+1) can be partitioned into Segre varieties
Sn,n’s. Furthermore, such a partition can be obtained by a group which naturally
partitions each Segre variety into linear flocks.

Proof. The proof is given for n = 1, the general case following by a similar
argument.

Let S be a Singer cycle of GL(4, q) and V its natural module. The matrix S is
similar in GL(4, q4) to the diagonal matrix D = diag (ω, ωq, ωq2

, ωq3
), where ω is a

primitive element of GF (q4) over GF (q).
It is known that 〈S〉 has projective order (q + 1)(q2 + 1) and admits a subgroup,

say A, of order q2+1 which acts irreducibly and semiregularly on PG(3, q) and whose
orbits are elliptic quadrics, and a subgroup, say B = 〈b〉, which is reducible and its
orbits are lines forming a regular spread of PG(3, q). We are interested in the latter
subgroup.

The Kronecker product b ⊗ b has a rational canonical form which is a block
diagonal matrix. In particular, b ⊗ b is the direct sum of four 4 × 4 blocks, each of
which is the lifting of a Singer cycle of GL(2, q) to a collineation of PG(3, q) fixing
a hyperbolic quadric as described in [4]. Of course, the collineation group 〈b ⊗ b〉 of
PG(3, q), induced by 〈b ⊗ b〉, fixes the Segre variety S3,3 ⊂ PG(15, q).

We can rearrange entries in the canonical form of b ⊗ b so that the following
matrix is obtained: diag (E, T 2, T 2, T 2, T 2), where E is the scalar matrix aI8, where
a ∈ GF (q)∗ and I8 is the identity 8 × 8 matrix. Looking at the canonical form of
b⊗ b in GL(16, q4) shows that the element ωq3+q2+q+1 ∈ GF (q) appears exactly eight
times. Each of such elements can be rewritten in the form ηq+1, with η ∈ GF (q2).
In particular, the matrix E can be viewed as the direct sum of four scalar matrices
of the form diag (a, a).

It follows that 〈b ⊗ b〉 fixes two 7–dimensional subspaces, say Σ1 and Σ2, and each
of them is the direct sum of four lines.

In particular, Σ2 is the direct sum of two copies of PG(3, q), and the group 〈b ⊗ b〉
induces on each copy a regular line spread, say S1 and S2. Also, each 3–subspace Σ
generated by a line in S1 and a line in S2 is fixed by 〈b ⊗ b〉 and the orbits of the
group induced on Σ are lines forming again a line spread.

Consider a 3–dimensional subspace, say Ψ, generated by a line in Σ1 and a line
in Σ2. Clearly, Ψ is fixed by 〈b ⊗ b〉 and Ψ ∩ S3,3 is either empty or a hyperbolic
quadric, and each hyperbolic quadric so obtained (recall that any PG(3, q) meets
S3,3 in a hyperbolic quadric) is partitioned into conics inducing a linear flock. The
theorem is completely proved. �
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6 Partitioning the hyperbolic quadric in a 3–space

Let Q+(3, q) be a hyperbolic quadric in PG(3, q). The number of points of Q+(3, q)
is (q + 1)2.

Which are the possible “uniform” partitions of Q+(3, q) into interesting objects?
By a uniform partition, we mean a partition into objects of the same type; for
instance:

1) partition into lines (the lines of a regulus of Q+(3, q) cover the pointset of Q+(3, q));
2) partition into conics (any flock of Q+(3, q));
3) partition into twisted cubics (see [4] for a possible construction).

Here, we construct a new partition of the hyperbolic quadric, assuming that the
ground field has square order.

Let x0, x1, x2, x3 be homogeneous projective coordinates in PG(3, q2).
Let l1 be the line with equations x0 = x1 = 0 and l2 the line with equations

x2 = x3 = 0. Thus, l1 and l2 are skew.
Consider the set L of all lines of PG(3, q2) which join a point on l1 and a point

on l2. Using the Plücker correspondence between lines of PG(3, q2) and points of
PG(5, q2) on the Klein quadric K, the set L is represented on K by a hyperbolic
quadric Q+(3, q2) obtained by intersecting K with the 3–subspace Σ : p01 = p23 = 0,
where the pij’s are Plücker coordinates in PG(5, q2) (or Plücker line coordinates in
PG(3, q2)).

Next, consider the lines of L joining any point P = (0, 0, a, b) on l1 with the point
P ′ = (aq, bq, 0, 0) on l2. Call E this set of lines. Then the locus, on K, described by
E is an elliptic quadric E embedded in a subgeometry Σ1

∼= PG(3, q) of Σ.
The Plücker coordinates of the lines of E are (0, aq+1, aqb, abq, bq+1, 0), where

a, b ∈ GF (q2), a, b not both zero.
The point with these coordinates describes a rational curve in Σ, i.e. the curve

C = {(1, t, tq, tq+1)|t ∈ GF (q2)} ∪ {(0, 0, 0, 1)}. There exists a collineation of Σ
mapping this curve onto an elliptic quadric in Σ1 [5].

Next, let S be a Singer cycle in GL(2, q2). Then S is similar in GL(2, q4) to
the diagonal matrix diag (ω, ωq2

), where ω is a primitive element of GF (q4) over
GF (q2). Consider the Kronecker product D ⊗ Dq. This is the diagonal matrix
diag (ωq+1, ωq2+q, ωq3+1, ωq3+q2

). If we view ω as a primitive element of GF (q4) over
GF (q), then D ⊗ Dq coincides with the canonical form of the unique subgroup of
order q2 + 1 of a Singer cycle of GL(4, q) whose orbits are elliptic quadrics [6]. It
follows that the linear collineation group, induced by 〈S⊗Sq〉, has order q2 +1, fixes
a hyperbolic quadric Q+(3, q2) (by definition) and its orbits (all of size q2 + 1) are
elliptic quadrics (defined over the field GF (q)) partitioning the pointset of Q+(3, q2).

We can summarise the above in the following result.

Theorem 6.1 The hyperbolic quadric Q+(3, q2) in PG(3, q2) admits a partition
into elliptic quadrics Q−(3, q)’s defined over GF (q) (i.e., belonging to subgeometries
PG(3, q)). �
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Alternatively, Theorem 6.1 can be proved by observing that a partition of
Q+(3, q2) into Q−(3, q)’s can also be obtained in a purely geometric way. More
precisely, let l1, l2, E and S be as above. By construction, E is a linear elliptic
congruence and its image under the Plücker map is an elliptic quadric Q−(3, q) over
GF (q). Put

T =

(
I2 02

02 S

)
,

where I2 is the 2 × 2 identity matrix and 02 is the 2 × 2 zero matrix.
The orbit of E under 〈T 〉 consists of q2 + 1 pairwise disjoint linear elliptic con-

gruences whose images under the Plücker map are the elliptic quadrics Q−(3, q)
partitioning Q+(3, q2).

Note that PG(3, q2) does not admit a partition into subgeometries PG(3, q) (see
[8]).

7 Partitioning projective spaces into Segre vari-

eties

In [2], using suitable subgroups of Singer cyclic groups, some properties of regular
n–spreads are proven and, in particular, that, for n = mk and gcd(m, k) = 1, the
space PG(n − 1, q) can be partitioned into Segre varieties Sm−1,k−1’s. Here, we give
a shorter proof of this result.

Let ω be a primitive element of GF (q6) over GF (q). Then ωq4+q2+1 is a primitive
element of GF (q2) and ωq3+1 is a primitive element of GF (q3). Thus, D = diag
(wq4+q2+1, ωq5+q3+q) is the canonical form of a Singer cycle S of GL(2, q) and diag
D′ = diag (ωq3+1, ωq4+q, ωq5+q2

) is the canonical form of a Singer cycle T of GL(3, q).
Consider the Kronecker product D′′ = D⊗D′. Therefore, D′′ = diag (ωq4+q3+q2+2,

ω2q4+q2+q+1, ωq5+q4+2q2+1, ωq5+2q3+q+1, ωq5+q4+q3+2q, ω2q5+q3+q2+q).
We observe that the entries of D′′ are distinct elements of GF (q6) conjugate over

GF (q). It follows that the cyclic group 〈S ⊗ T 〉 induces a collineation group, say
〈Φ〉, of the projective space PG(5, q) which fixes no subspace, i.e. its action on the
pointset of PG(5, q) is irreducible. Also, each orbit of 〈S ⊗ T 〉 generates PG(5, q)
(since the linear transformation S ⊗ T has six distinct eigenvalues).

Lemma 7.1 The order of 〈Φ〉 is (q + 1)(q2 + q + 1).

Proof. Set α = (q + 1)(q2 + q + 1). It is easily seen that ω(q4+q3+q2+2)α =
ω5(q5+q4+q3+q2+q+1) = β5, with β ∈ GF (q). Hence, the order of S ⊗ T is at least
α. On the other hand, the α–th power is the least power of ωq4+q3+q2+2 such that
this element lies in GF (q). �

Lemma 7.2 All the point–orbits of 〈Φ〉 have size (q + 1)(q2 + q + 1).

Proof. The order of Φ is (q + 1)(q2 + q + 1) and its action is semiregular. �
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Theorem 7.3 ([2], Prop. 3) The projective space PG(n − 1, q), with n = mk,
gcd(m, k) = 1, can be partitioned into Segre varieties Sm−1,k−1’s.

Proof. We restrict ourselves to the case m = 2, k = 3, the general case immedi-
ately follows by a similar argument using the corresponding appropriate statements
of Lemmas 7.1 and 7.2. Actually, the required primitive element of GF (qm) over

GF (q) is ωqm(k−1)+qm(k−2)+...+qm+1, and the required primitive element of GF (qk) over

GF (q) is ωqk(m−1)+qk(m−2)+...+qk+1.
By definition, 〈Φ〉 fixes a Segre variety S1,2. Since S1,2 has (q + 1)(q2 + q + 1) points,
it is a point–orbit of 〈Φ〉, and the projective space PG(5, q) can be partitioned into
Segre varieties S1,2’s. �
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