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Abstract

In this article we show that a Thas 1974 maximal arc has an associ-
ated inversive plane which is isomorphic in a natural way to the inversive
plane obtained from the generalised quadrangle 73(0) by the method
of Payne and Thas, Finite Generalized quadrangles, (Pitman, London,
1984), 1.3.3, Proof of Theorem 5.3.1. Moreover we obtain a characterisa-
tion of the Thas 1974 maximal arcs in PG(2, ¢%) based on two configura-
tional properties. We show that a maximal arc of degree q satisfying two
certain configurational properties in PG(2, ¢*), where ¢ — 1 is a Mersenne
prime, is a Thas 1974 maximal arc. This work is motivated by a paper
of Barwick and O’Keefe in 1997, in which the configurational properties
of Buekenhout-Metz unitals were examined.

1 Introduction

Denote by 7, a finite projective plane of order q.

In a finite projective plane 7,, a {k,n}—arc is a non-void proper subset of &
points of 7, such that some n and no n + 1 points of the set are collinear [4]. The
number & of points in such a set is at most gn — ¢+ n. A {gn — ¢ + n,n}—arc in
mq is called a mazimal arc of degree n. Alternatively, a maximal arc of degree n in
74 is a non-void proper subset K of points of 7, such that each line meets K in 0 or
exactly n points; a line of 7, is called an ezternal or secant line of the maximal arc K
respectively. In 7,, a maximal arc of degree 1 is a point and a maximal arc of degree
q is the complement of a line. These examples are known as the ¢rivial maximal arcs;
a non-triwial maximal arc in 7, is a maximal arc of degree n with 1 <n < gq.

An ovoid O of PG(3,q), ¢ > 2, is a set of ¢ + 1 points of PG(3,q), no three
collinear; in PG(3,2), and owvoid is a set of 5 points, no 4 coplanar. Each plane in
PG(3, ¢) intersects an ovoid in exactly 1 or ¢ + 1 points and is called respectively a
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tangent or secant plane of the ovoid. Note that the g+ 1 points of an ovoid in a secant
plane form an oval (or (¢ + 1)—arc). All known ovoids in PG(3, q) are either elliptic
quadrics or Tits ovoids, however the classification of ovoids in PG(3, ¢) is complete
only for all ¢ odd and for ¢ even with g < 32 (see [13] for a survey of known results).

A finite inversive plane of order q is a 3 — (¢* +1,¢+ 1, 1) design with the blocks
of the design called circles. In this paper we will discuss only finite inversive planes.
See [9] for an introduction to inversive planes. The finite egglike inversive planes are
defined as follows. Let O be an ovoid in PG(3, ¢). The points of O together with the
secant plane sections of O form the points and circles of a finite inversive plane I(O).
An inversive plane of order ¢ is called egglike if it is isomorphic to an I(Q), for some
ovoid O in PG(3,q). Corresponding to the two known infinite families of ovoids in
PG(3, q), the elliptic quadrics and the Tits ovoids, are the two known infinite families
of finite egglike inversive planes denoted M(q) and S(q) respectively.

One construction of a finite inversive plane arises from the finite generalised quad-
rangle T5(O) (see [14] for definitions and results concerning generalised quadrangles),
namely if X is a point of type (i) and Y is the point (oo) in T3(0), then it can be
shown using [14, Result 1.3.3] and [14, Proof of Theorem 5.3.1] that the incidence
structure with pointset {X, Y }+, circleset the set of elements {Z, Zy, Z3}++, where
7y, Zy, Z3 are distinct points in {X,Y }*, and with natural incidence, is an inversive
plane Ix3(Q) of order ¢. In this paper, see Theorem 3.6, we obtain inversive planes
isomorphic in structure to these inversive planes.

We recall the following representation of 7,2, a translation plane of order ¢* with
kernel containing GF(g), in PG(4, ¢) due to André [2] and Bruck and Bose [7, 8]. The
construction is discussed in [12, Section 17.7]. We shall refer to this representation
as the André/Bruck and Bose representation of w2 in PG(4, q).

Let ¥, be a hyperplane of PG(4,¢) and let S be a spread of ¥, (that is, a
partition of the pointset into lines). Consider the incidence structure whose points
are the points of PG(4,q) \ X, lines are the planes of PG(4, ¢) which do not lie
in ¥, but which meet ¥, in a unique line of & and incidence is natural. This
incidence structure is an affine translation plane and can be completed to a projective
translation plane 7,2 of order ¢* and kernel containing GF(¢) by adjoining the line at
infinity /., whose points are the elements of the spread S. The line £, is a translation
line of m,2 and we shall refer to it as the line at infinity; the points of £, will be called
points at infinity of m2. Note that the resulting translation plane is Desarguesian if
and only if the spread S is regular ([8]).

In this representation, planes of PG(4, ¢) that are not contained in ¥, and do
not contain a line of the spread S (call such planes transversal planes) correspond to
Baer subplanes (that is, subplanes of order ¢) of 7,2 secant to ¢, (that is, meeting
ly in g + 1 points). Consequently, any line of PG(4, ¢) that meets ¥, in a unique
point corresponds to a Baer subline of 7,2 that meets { in a point. In the case 7
is the Desarguesian plane PG(2, ¢?) it can be shown using a counting argument that
the converse of these results hold.
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We shall use the phrase a subspace of PG(4, q)\ Y.« to mean a subspace of PG(4, q)
which is not contained in the hyperplane ¥,.

In [15] Thas proves the following construction of a maximal arcs of order ¢ in
certain translation planes 7,2 of order ¢* with kernel containing GF(q). We continue
with the above notation. Let O be an ovoid in ¥, and suppose S is a spread of ¥
such that each line in S contains a unique point of O. Let 7, be the translation
plane of order ¢ with André/Bruck and Bose representation defined by the spread
S in ¥, as above. Let I be the set of points of PG(4, ¢)\ X contained in an ovoidal
cone with base the ovoid O and vertex a fixed point X in PG(4, ¢)\ X, that is, let
K be the set of points on lines joining X to the ovoid, but not including the ovoid.
Then K is a {¢> — ¢* + ¢; ¢} —arc in 7,2; that is, K is a maximal arc of degree ¢ in 7.
Note that by definition ¢, is an external line of the maximal arc K. By counting,
for each point P not in K in 72, P is incident with ¢*> — ¢ + 1 secant lines and ¢
external lines of K. We shall call maximal arcs with the above construction Thas
1974 mazimal arcs. In [15] examples of Thas 1974 maximal arcs are constructed in
the Desarguesian planes of even order ¢ and in Liineburg planes of even order. In
[6] it is shown that the constructions of maximal arcs given by Thas in [15] and [16]
do not exist for ¢ odd. Note also that in [3] it is proved that for ¢ odd non-trivial
maximal arcs do not exist in the Desarguesian plane PG(2,¢). Maximal arcs have
been characterised in a number of ways, see for example Hamilton and Penttila [10]
and Abatangelo and Larato [1].

2 Thas maximal arcs

Let K be a Thas 1974 maximal arc in a translation plane 72 of order ¢* with
associated André/Bruck and Bose construction as given in Section 1 and the notation
introduced there. Then K is defined by an ovoid O in ¥, with the property that
each element of the spread S of ¥, contains exactly one point of O.

Denote by o1, ..., 04241 the points of the ovoid O in Y, which defines the maximal
arc KC. Call the lines Xo;,i=1,...,¢°+1, in PG(4, q), generator lines of K. Let m,,
denote the unique tangent plane to O in Y, at the point 0;, i = 1,...,¢>+ 1. Recall
that the unique spread line through a point o; of O is contained in the tangent plane
To; at 0;, since the plane 7, contains a spread line and each spread line contains a

unique (and therefore at least one) point of @. Denote by s; the spread line incident
with the point o; of O.

There exist ¢ + 1 hyperplanes of PG(4, ¢) which contain the plane (X, s;), for a
fixed point o; of the ovoid O. The hyperplane (X, m,,) contains the unique generator
line Xo; of K and therefore the ¢ — 1 planes in (X, m,,) about the spread line s;,
besides 7,, and the plane (X, s;), represent ¢ — 1 external lines of I on the point at
infinity of 7, represented by s;. These ¢ — 1 external lines together with £, are all
the external lines to I on the point at infinity of 7,2 represented by s;.
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The remaining g hyperplanes on (X, s;) each intersect the ovoidal cone in an oval
cone with vertex X. Let X be such a hyperplane, so that ¥ contains ¢ generator lines
of K besides Xo;. Planes about s; in ¥, besides ¥ N X, intersect the oval cone in
g points of I and of these planes all, except (X, s;), intersect the same ¢ generator
lines of K. We have the following well known result:

Result 2.1 Let K be a Thas 1974 mazimal arc (of degree q) with base point X and
azis line Lo, in a translation plane w2 of order ¢, where Uy, is the translation line of
72 Let P be a point of L, then the secant lines of K incident with P besides X P
are partitioned into q classes of ¢ —1 lines such that the lines in a class intersect the
same generator lines of IC. a

3 Thas maximal arcs and Inversive planes
Motivated by [17] we have the following definition.

Definition 3.1 An O’Nan configuration is a set of six distinct points with the fol-
lowing properties. The set contains four distinct points A, B,C, D of which no three
are collinear and the remaining two points E, F are such that {E} = AC N BD and
{F} = ABNCD. The siz points A,B,C,D,E F are called the vertices of the
configuration.

Let K be a maximal arc in a projective plane 7, of order ¢q. Let X be a point of
K.
We say K satisfies property

Ix: If K contains no O’Nan configurations with X a vertex.

IIx: 1If [ is a secant line of I not through X, m a secant line of K through X
meeting [ in a point of K and Y(Y # X, Y ¢ [) a point of K on m, then
there exists a line I’ # m incident with Y and meeting every line through
X that meets [ in a point of K and such that [’ intersects each such line
in a point of K.

We now show that a Thas 1974 maximal arc K with base point X satisfies [x
and Iy and these properties lead to defining an inversive plane associated to the
Thas maximal arc.

Let K be a Thas 1974 maximal arc with base point X in a translation plane 7,
of order ¢* with translation line /. Note that m,» has an André/Bruck and Bose
representation in PG(4, ¢) with the usual notation.

Lemma 3.1 K satisfies Ix.

48



Proof: Suppose there exists an O’Nan configuration in I with X a vertex. Let my
and my be the two secant lines of K not incident with X in the configuration. Let
P; be the point of intersection of m; and ¢, i = 1,2. The three points of I on m;
in the O’Nan configuration correspond to three generator lines [y, s, l3 of IC and my
intersects these same generator lines of K in the O’Nan configuration. By Result 2.1
and the comments preceding it, in the André/Bruck and Bose representation of
Tg2, l1,1l2, I3 generate a hyperplane of PG(4, ¢)\Xo, which contains the spread lines
corresponding to P, P, € /,, a contradiction since ¥, is the only hyperplane of
PG(4, ¢) which contains two distinct elements of the spread S. Therefore there exist
no O’Nan configurations in IC with X a vertex. O

Lemma 3.2 K satisfies Il

Proof: Let [ be a secant line of K not on X and let [ N ¢y, = {P}. The result now
follows from Result 2.1. a.

Consider the incidence structure I, defined by:
Points: generator lines of K, K a Thas 1974 maximal arc;
Blocks: secant lines of K not incident with X; identifying blocks with their
points and using the property IIx to eliminate repeated blocks;
Incidence: is inherited from the translation plane.

Lemma 3.3 I is a 2-(¢> +1,¢,q — 1) design.

Proof: There are ¢ + 1 generator lines of X, corresponding to the points of the
ovoid in the construction of K, therefore the number v’ of points of I is ¢ + 1. A
secant line of IC which is not incident with X intersects ¢ generator lines of IC, hence
the number &' of points in a block is g.

By Result 2.1, each point of £y, corresponds ¢ distinct blocks of I, and since each
secant line of K intersects /., in a unique point, blocks corresponding to distinct
points of ¢, are distinct. Therefore the number " of blocks of I ,'C is therefore q(q? +
1)=¢+q.

By Result 2.1 there exist ¢ — 1 secants on a point P € /., which define the same
block of I ,’C A generator line of K has ¢ — 1 points of K besides X and there exist ¢?
secant lines not containing X through each such point. Therefore in . ,’C, the number
' of blocks containing a point is ¢*(¢ — 1)/(¢ — 1) = ¢*.

Consider two generator lines of IC; they each have ¢ — 1 points besides X. From
above a block is defined by ¢ — 1 distinct secant lines of C and therefore the number
X, of blocks containing two fixed points is (¢ — 1)?/(¢ — 1) = ¢ — 1.

It follows that Iy is a 2-(¢> + 1,¢,¢ — 1) design. O

We have that a block, Bp say, of I ;’c is determined by g — 1 distinct secant lines
of K each incident with a common point P € £,,. Thus to each block Bp in I is
associated a unique point not incident with the block, namely, the generator line of
K on the line X P. We use this fact to define a new incidence structure as follows.
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Definition 3.4 Let I be the incidence structure defined by:
Points:  generator lines of IC, K a Thas 197/ maximal arc;
Circles: {{Block Bp of I} U {the generator line of K in XP} ; for all
blocks Bp in I,’C};
Incidence: containment.

Lemma 3.5 The incidence structure Ix is a 3-(¢*> + 1,q + 1,1) design, namely a
finite inversive plane of order q.

Proof: I has the same number of points and blocks as I,'C therefore v = v' = > + 1
and b =0 = ¢® + ¢. The number k of points in a block of Ix isb=b +1=¢q+ 1.

The number 7 of blocks on a fixed point of I is given by

r=r'+

{the number of blocks of I;- determined by secant lines on a fixed point of £ }.

Using the definition of blocks of I;- and Result 2.1 we have r = ' + ¢ = ¢° + ¢.

It remains to show that for any three distinct points of Ix there exists a unique
block containing them.

Let l1,[5,l3 be three distinct points of I, that is, l,[s,l3 are three generator
lines of I in the André/Bruck and Bose representation of the translation plane. The
three lines span a unique hyperplane ¥ in PG(4, ¢) which intersects ¥, in a plane
containing a unique spread element; denote this spread element by P. Since the
hyperplane ¥ intersects the ovoidal cone of the Thas maximal arc in three generator
lines, ¥ contains an oval cone of generator lines. Thus the planes in ¥ about P
represent secant lines of K and define a unique block of I containing the points
l1,1s,13.

We have shown therefore that I is an inversive plane. O

Theorem 3.6 The inversive plane I associated to a Thas mazximal arc K with
vertex X and base ovoid O in a translation plane mp is isomorphic to the inversive
plane Ix3(O) obtained from the generalized quadrangle T5(O) (defined in the PG(4, q)
with ovoid O of the construction of K.)

The inversive planes are egglike.

Proof: The result follows from the above discussion of the construction in PG(4, q)
of I and the known results of 73(O) discussed in Section 1. O

Remark: The inversive plane associated to a Buekenhout-Metz unital (see Barwick
and O’Keefe [5]) is isomorphic in a natural way to the inversive planes of Theo-
rem 3.6 defined with the same ovoid O of PG(3,¢), since both Thas maximal arcs
and Buekenhout-Metz unitals are defined using an ovoidal cone in PG(4, ¢) with base
an ovoid O in a hyperplane of PG(4, ¢q).
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4 A characterisation of Thas maximal arcs

In this section we endeavour to find a converse to the main result of Section 3. We
attempt to characterise Thas 1974 Maximal Arcs with the configurational properties
Ix and I1x. We weaken our hypothesis and obtain a partial converse.

4.1 A sequence of lemmata

Let K be a (maximal) {¢*> — ¢* + ¢; ¢}-arc in a translation plane 7,2 of order ¢ with
kernel containing GF(g). Then 7, has an André/Bruck and Bose representation in
PG(4, q) defined by a spread in the hyperplane ¥, of PG(4, ¢). Denote by £, the
translation line of 7y corresponding to ¥, and suppose £, is an external line of K.
Note that if ¢ = 2, then K is a Thas 1974 maximal arc in PG(2, 4); hence we consider
the case ¢ > 2.

Let X be a fixed point of .
We say K satisfies:

Iy: (As in Section 3.)

IT%: 1Iflis asecant line of IC not through X and P is the point of intersection
of lines [ and /., then there exist ¢ — 2 further secant lines of X incident
with P and which intersect every line through X that meets [ (these
intersections are all in ).

Suppose K satisfies properties Ix and I7%.

We proceed with a sequence of lemmata and determine some properties of I, but
first we introduce some terminology.

Each line on X contains ¢ — 1 points of K besides X; call such a set of ¢ — 1
points of IC on a line through X a variety. For a variety V' (on a line [ through X),
label the point at infinity of [, namely [ N ¢, by P,,. We shall sometimes refer to
Py as the point at infinity of the variety V.

Let [ be a secant line of IC not on X. Then [ is incident with ¢ varieties and by
11 there exist ¢ — 2 further secants of K incident with these same ¢ varieties and
concurrent with [ in a point P on /. Call such a collection of ¢ varieties a block
b and call the associated point P on /,, the point at infinity of the block b and
say b is a block of P.

Lemma 4.1.1 For a point P € {,
(i)  Distinct blocks of P are disjoint (they have no varieties in common,).

(i) P is the point at infinity of exactly q blocks.
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Proof: Let P be a point on /.

(i) Let by and by be two blocks of P. Suppose b; and b, intersect in a variety V. Let Iy
be a secant line of K on P incident with b; (and therefore incident with every variety
in by). Since [y is incident with the variety Vi of block by and I; passes through P,
then /; must be one of the ¢ — 1 secant lines of IC on P incident with every variety in
by by II%. Since [; intersects K in exactly ¢ points, blocks b; and b must coincide.
We have shown therefore that distinct blocks of P are disjoint.

(ii) There exist q2 — ¢ secant lines of K on P besides the line X P. For each block
of P there exist ¢ — 1 secant lines of IC on P which determine that block and since
by (i) distinct blocks of P are disjoint, there are exactly ¢ blocks of P. O

Lemma 4.1.2 Let P and @) be two points on l and let bp, by be a block of P, Q
respectively. Then the blocks bp and bg intersect in exactly 0,1,2 or q varieties.

Proof: If P = () then by Lemma 4.1.1 bp intersects by in 0 or ¢ varieties.

If P # @, suppose bp and by have three varieties Vi, V5, V3 in common; V; con-
tained in line [;, + = 1,2, 3, incident with X. Let R be a point of K in V;. By II%,
the line RP is a secant line of K incident with P and incident with the varieties in
bp; also the line R() is a secant line of K on () incident with bg. The lines RP,
RQ, I and I3 are four lines of an O’Nan configuration in K with X as a vertex; a
contradiction, as K satisfies Ix, thus in this case bp and by have at most 2 varieties
in common. O

Lemma 4.1.3 There are exactly ¢* + q blocks in K.

Proof: By Lemma 4.1.1 there are g blocks corresponding to each of the ¢+ 1 points
of £, and by definition (or the proof of Lemma 4.1.2) a block corresponds to a unique
point at infinity. The result follows. O

Lemma 4.1.4 Let Vi and V5 be two distinct varieties. There exist exactly ¢ — 1
blocks containing both Vi and V5.

Proof: Let V] be on line /; through X and let V5 be on line l; through X. Let R
be a point (of ) in V;. The join of R to each point of V5 defines ¢ — 1 secant lines
m; (i=1,...,¢—1) of £, not on X and with distinct points P;,... P, ; (say) on
the line at infinity. The line m; defines block B;, containing both varieties V; and
Vs, and with point at infinity P; (for s = 1,...,¢—1). Thus there exist at least ¢ — 1
blocks containing both V; and V5.

By I1I%, for each block B; there exist ¢ — 2 further lines through P; incident with
both Vi and V5, thus giving all the possible (secant) lines joining a point of V; and
a point of V5. Thus there exist exactly ¢ — 1 blocks containing both V; and V,. O

Lemma 4.1.5 There are exactly ¢* blocks containing a given variety V.
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Proof: Let Py be the point at infinity of a fixed variety V. For each point P on
the line at infinity besides Py, V lies in a block of P, since there exist secant lines
of IC on P incident with points in V. Therefore by Lemmata 4.1.1 and 4.1.2, V lies
in exactly one block of P (P € £, \{Py}), with no two distinct points at infinity
determining the same block containing V. Since there are ¢? points on £, besides
Py, there exist exactly ¢? blocks containing the variety V. O

Let V be the set of varieties and B be the set of blocks and with incidence I the
natural containment relation. We define an incidence structure Z' = (V, B, I).

Lemma 4.1.6 The incidence structure T' = (V,B,1) is a 2-(¢*> + 1,q,q — 1) design
with parametersv' = > +1, k' =q, b = +q, r' =¢*> and \, = ¢ — 1.

Proof: Lemmata 4.1.1, 4.1.2, 4.1.3, 4.1.3, 4.1.4 and 4.1.5 determine the parameters
of 7'. O

Next we define a new incidence structure Z = (V,C, I) based on Z'. Let the set
of varieties V of Z' be the points P of Z and let

C = {{varieties in a block Bp of a point P} U {the variety contained in the
line X P} : for all blocks Bp of a point P, for all points P on £.}.

Call the elements of C circles and call C the set of circles in Z.

There is a natural one-to-one correspondence between blocks of Z' and circles of
7 since each block of Z' is contained in a unique circle and conversely each circle of
7 contains a unique block of Z'.

Lemma 4.1.7 The incidence structure T = (V,C,1) is a 2-(¢*>+1,q+1,q+1) design
with parametersv =q¢*+ 1, k=q+1,b=¢*+q, r=q¢>+q and \y = ¢+ 1.

Proof: Now v = v/ = ¢+ 1 and b = V' = ¢ + ¢ using the definition of Z and
the natural one-to-one correspondence between circles and blocks. The number & of
varieties in a circle is one more than the number £’ of varieties in a block, therefore
k=kK+1=q+1.

For a variety V with point at infinity P, the number of circles containing V'
equals the number of blocks containing V' plus the number of blocks of P, therefore
r=r'"+q=q¢*+q.

Lastly, consider two varieties V; and V, with points at infinity P, and P; respec-
tively. Variety V; lies in a unique block of P, and similarly variety V5 lies in a unique
block of P, and there are ¢ — 1 blocks containing both V; and V5. Therefore the
number A; of circles containing both V; and V5 is Ay = )\'2 +2=q+1. O

Corollary 4.1.8 The following four statements are equivalent for the incidence struc-

ture IL:
(i)  three distinct varieties are contained in at least one circle;

(ii)  three distinct varieties are contained in at most one circle;
(i1i) the design T has parameter A3 = 1;
(iv) the design T is a finite inversive plane.
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Proof: If three distinct varieties are contained in a unique circle, for any choice of
three distinct varieties, then Z is a 3-(¢2 + 1,¢ + 1,1) design with the parameters
given in Lemma 4.1.7 together with A3 = 1, that is, Z is a finite inversive plane.

Let A3, i =1,..., (g), be the number of circles containing three given (distinct)

v

varieties Vi, Vo, V3, for all (3) possible choices of Vi, V5, V3. We now count in two

ways the number of 3-flags of 7
(5)
i=1 3

Thus the average number A3, ave of circles on three varieties is given by

Maave = b(3)/(3)

= 1

Therefore if A\3; > 1 for all 7 then A3, = 1 for all 7. Similarly if A3, < 1 for all ¢
then A3, =1 for all 3. a

Lemma 4.1.9 Let Vi and V5 be two distinct varieties in a block bp of a point P
(P € ly). Let l; be the lines on X containing Vi, with the point at infinity of I;
denoted by Q;, 1 = 1,2.

If a Baer subplane B of mp contains P,(Q)1,Q2 and X then
either B contains no points of Vi or Vs
or B contains the same number of points of V1 as of V.

Proof: Let R be a point of V; in B. Since PR and [, are lines of B, the point
PR Ny is a point of B. Since [, and [y lie in the block bp of P, by 1I%, the point
PRN Iy of B is a point on [y of the maximal arc K, that is PR N [, is a point of V5.
The same argument holds if we suppose R is a point of V5 in B.

It follows that either B contains no points of V; and V5, or B contains the same
number of points of V; as of V5. O

In the following lemmata, a linear Baer subplane of 7, is a Baer subplane of
7,2 which is represented in PG(4, ¢) by a (transversal) plane of PG(4, ¢)\Xs which
intersects X, in a line which is not a line of the spread S of ¥; a linear Baer subline
is a Baer subline of a line of m,> which is represented by a line of PG(4, ¢)\X. Note
that a linear Baer subplane of 7,2 necessarily contains £, as a line.

Lemma 4.1.10 Each linear Baer subline which contains X and contains further
points of K contains a constant number n points of K besides X. Moreover, 1 < n <
q—1 and n divides ¢ — 1.
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Proof: There exists a linear Baer subline in 7,2 containing X and which contains at
least one further point of K. Let [; be a line on X containing a linear Baer subline
Ip1, where [g; contains X and say n points of IC besides X. Let lo(# l;) be any other
line containing a linear Baer subline (gs, with X € lgs, and such that /g, contains
further points of K. There exists a linear Baer subplane B of 7,2 containing [z, and
Igo. Note that the line at infinity is a line of B.

Let [ be a line not through X and such that [ contains a point of IC in Ip; and a
point of I in Ipg, then [ is a line of B and intersects £, in a point P of B. Thus, as
[ is a secant line of IC on P and hence the varieties in /; and [, lie together in a block
of P. Now by Lemma 4.1.9, Baer sublines /5 and 5y contain the same number (n)
of points of K besides X. It follows that the linear Baer sublines of 7,» which contain
X contain either 0 or n further points of I, where 1 < n < ¢ — 1 is a fixed integer.
Moreover, since each secant line of K incident with X contains exactly ¢ — 1 points
of IC distinct from X, the integer n divides ¢ — 1. O

Next we show that if ;> is the Desarguesian plane, then the parameter n found
in Lemma 4.1.10 satisfies n # 1.

Lemma 4.1.11 If 7 is the Desarguesian plane PG(2,¢*), then each linear Baer
subline of mp2 which contains X contains either 0 or n further points of K, where
1 <n<q—11is a fixed integer such that n divides ¢ — 1.

Proof: If 7 is the Desarguesian plane PG(2, ¢*), then by [3] and since 7,2 contains
a maximal arc K we have that ¢ is even. Moreover in the André/Bruck and Bose
representation of 7,2 in PG(4, ¢) the 1—spread S of ¥, = PG(3, ¢) is then a regular
spread. By Lemma 4.1.10 we have that each linear Baer subline of 7,2 which contains
X contains exactly 0 or n further points of K, where 1 < n < ¢—1 is a fixed integer
and n divides ¢ — 1. Since ¢ > 2 and q is even, we have ¢ > 4. Consider two distinct
varieties V; and V5 of 7' contained in lines ¢, {5 of 7, respectively. By definition
£1 and /5 intersect in the point X of /IC. Denote by P, and P, the points at infinity
of ¢; and /5 respectively. In the André/Bruck and Bose representation, the points
Py, P, on ¢ correspond to distinct elements Py, Py of the regular spread S of ¥.
In 7', there exist ¢ — 1 distinct blocks which contain the varieties V; and V5; denote
the points at infinity of these blocks by Q1,Qs,...,Q, 1. In the André/Bruck and
Bose representation the points (); correspond to ¢ — 1 distinct elements of the spread
S; denote these spread elements by @F, 7 = 1,...,g — 1. There exist ¢ + 1 reguli
in S containing P and P, therefore there exists at least one regulus R of lines
of § which contains Py and Py but which contains no spread element @;. Let R’
denote the opposite regulus of R in ¥,. In PG(4, ¢), the lines ¢; and ¢y correspond
to planes ¢; and ¢4 in PG(4, q) respectively; both planes contain X and a line Pf,
Py respectively of S.

Since n = 1, the ¢ points of I in ¢; are represented in PG(4, ¢) by the point X
and ¢ — 1 further points of £{\{ P} on distinct lines of ¢ through X. Similarly for
the points of K incident with ¢y. In PG(4,¢), since ¢ > 4 there exists a line m in
the opposite regulus of R such that the plane B = (m, X) contains a point of  in
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4 besides X and a point of I in /; besides X; denote these two points of I in B,
which are distinct from X, by Y}, Y respectively. Each point Y;* corresponds to a
point Y; in 7,2 incident with the variety V; for i = 1,2. The line Y;Y5 is distinct from
l+ and intersects £, in a point () which is necessarily the point at infinity of a block
containing both varieties V7 and V5. In PG(4, ¢), @ corresponds to a spread element
Q" contained in the regulus R of S; a contradiction, since the regulus R contains
no element which is the André/Bruck and Bose representation of a point of infinity
of a block containing the varieties Vi and V5;. Hence n # 1 and therefore n > 1 as
required. O

Note that a Mersenne prime is a prime number which can be written in the form
2P — 1 for some positive integer p which is necessarily prime (see [11, Theorem 18]).
There are 31 known Mersenne primes and it is conjectured that there exist an infinite
number of Mersenne primes.

Corollary 4.1.12 Suppose K is a mazimal {¢* — ¢*> + q; ¢} —arc in the Desarguesian
plane PG(2,q?) satisfying properties Ix and IT% for some point X in K. If ¢ — 1
is (Mersenne) prime, then K is a Thas mazimal arc with base point X and axis
line l. O
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