Concerning maximal arcs and inversive planes Catherine T. Quinn Department of Pure Mathematics The University of Adelaide Adelaide 5005 AUSTRALIA cquinn@maths.adelaide.edu.au #### Abstract In this article we show that a Thas 1974 maximal arc has an associated inversive plane which is isomorphic in a natural way to the inversive plane obtained from the generalised quadrangle $T_3(\mathcal{O})$ by the method of Payne and Thas, Finite Generalized quadrangles, (Pitman, London, 1984), 1.3.3, Proof of Theorem 5.3.1. Moreover we obtain a characterisation of the Thas 1974 maximal arcs in $PG(2, q^2)$ based on two configurational properties. We show that a maximal arc of degree q satisfying two certain configurational properties in $PG(2, q^2)$, where q-1 is a Mersenne prime, is a Thas 1974 maximal arc. This work is motivated by a paper of Barwick and O'Keefe in 1997, in which the configurational properties of Buekenhout-Metz unitals were examined. # 1 Introduction Denote by π_q a finite projective plane of order q. In a finite projective plane π_q , a $\{k,n\}$ -arc is a non-void proper subset of k points of π_q such that some n and no n+1 points of the set are collinear [4]. The number k of points in such a set is at most qn-q+n. A $\{qn-q+n,n\}$ -arc in π_q is called a maximal arc of degree n. Alternatively, a maximal arc of degree n in π_q is a non-void proper subset \mathcal{K} of points of π_q such that each line meets \mathcal{K} in 0 or exactly n points; a line of π_q is called an external or secant line of the maximal arc \mathcal{K} respectively. In π_q , a maximal arc of degree 1 is a point and a maximal arc of degree q is the complement of a line. These examples are known as the trivial maximal arcs; a non-trivial maximal arc in π_q is a maximal arc of degree n with 1 < n < q. An ovoid \mathcal{O} of PG(3,q), q > 2, is a set of $q^2 + 1$ points of PG(3,q), no three collinear; in PG(3,2), and ovoid is a set of 5 points, no 4 coplanar. Each plane in PG(3,q) intersects an ovoid in exactly 1 or q + 1 points and is called respectively a tangent or secant plane of the ovoid. Note that the q+1 points of an ovoid in a secant plane form an oval (or (q+1)-arc). All known ovoids in PG(3,q) are either elliptic quadrics or Tits ovoids, however the classification of ovoids in PG(3,q) is complete only for all q odd and for q even with $q \leq 32$ (see [13] for a survey of known results). A finite inversive plane of order q is a $3 - (q^2 + 1, q + 1, 1)$ design with the blocks of the design called *circles*. In this paper we will discuss only *finite* inversive planes. See [9] for an introduction to inversive planes. The finite *egglike* inversive planes are defined as follows. Let \mathcal{O} be an ovoid in PG(3,q). The points of \mathcal{O} together with the secant plane sections of \mathcal{O} form the points and circles of a finite inversive plane $I(\mathcal{O})$. An inversive plane of order q is called *egglike* if it is isomorphic to an $I(\mathcal{O})$, for some ovoid \mathcal{O} in PG(3,q). Corresponding to the two known infinite families of ovoids in PG(3,q), the elliptic quadrics and the Tits ovoids, are the two known infinite families of finite egglike inversive planes denoted M(q) and S(q) respectively. One construction of a finite inversive plane arises from the finite generalised quadrangle $T_3(\mathcal{O})$ (see [14] for definitions and results concerning generalised quadrangles), namely if X is a point of type (i) and Y is the point (∞) in $T_3(\mathcal{O})$, then it can be shown using [14, Result 1.3.3] and [14, Proof of Theorem 5.3.1] that the incidence structure with pointset $\{X,Y\}^{\perp}$, circleset the set of elements $\{Z_1,Z_2,Z_3\}^{\perp\perp}$, where Z_1,Z_2,Z_3 are distinct points in $\{X,Y\}^{\perp}$, and with natural incidence, is an inversive plane $I_{X3}(\mathcal{O})$ of order q. In this paper, see Theorem 3.6, we obtain inversive planes isomorphic in structure to these inversive planes. We recall the following representation of π_{q^2} , a translation plane of order q^2 with kernel containing GF(q), in PG(4,q) due to André [2] and Bruck and Bose [7, 8]. The construction is discussed in [12, Section 17.7]. We shall refer to this representation as the André/Bruck and Bose representation of π_{q^2} in PG(4,q). Let Σ_{∞} be a hyperplane of $\operatorname{PG}(4,q)$ and let \mathcal{S} be a spread of Σ_{∞} (that is, a partition of the pointset into lines). Consider the incidence structure whose points are the points of $\operatorname{PG}(4,q) \setminus \Sigma_{\infty}$, lines are the planes of $\operatorname{PG}(4,q)$ which do not lie in Σ_{∞} but which meet Σ_{∞} in a unique line of \mathcal{S} and incidence is natural. This incidence structure is an affine translation plane and can be completed to a projective translation plane π_{q^2} of order q^2 and kernel containing $\operatorname{GF}(q)$ by adjoining the line at infinity ℓ_{∞} whose points are the elements of the spread \mathcal{S} . The line ℓ_{∞} is a translation line of π_{q^2} and we shall refer to it as the line at infinity; the points of ℓ_{∞} will be called points at infinity of π_{q^2} . Note that the resulting translation plane is Desarguesian if and only if the spread \mathcal{S} is regular ([8]). In this representation, planes of PG(4,q) that are not contained in Σ_{∞} and do not contain a line of the spread \mathcal{S} (call such planes transversal planes) correspond to Baer subplanes (that is, subplanes of order q) of π_{q^2} secant to ℓ_{∞} (that is, meeting ℓ_{∞} in q+1 points). Consequently, any line of PG(4,q) that meets Σ_{∞} in a unique point corresponds to a Baer subline of π_{q^2} that meets ℓ_{∞} in a point. In the case π_{q^2} is the Desarguesian plane $PG(2,q^2)$ it can be shown using a counting argument that the converse of these results hold. We shall use the phrase a subspace of $PG(4,q)\backslash \Sigma_{\infty}$ to mean a subspace of PG(4,q) which is not contained in the hyperplane Σ_{∞} . In [15] Thus proves the following construction of a maximal arcs of order q in certain translation planes π_{q^2} of order q^2 with kernel containing GF(q). We continue with the above notation. Let \mathcal{O} be an ovoid in Σ_{∞} and suppose \mathcal{S} is a spread of Σ_{∞} such that each line in S contains a unique point of O. Let π_{q^2} be the translation plane of order q^2 with André/Bruck and Bose representation defined by the spread \mathcal{S} in Σ_{∞} as above. Let \mathcal{K} be the set of points of $PG(4,q)\backslash\Sigma_{\infty}$ contained in an ovoidal cone with base the ovoid \mathcal{O} and vertex a fixed point X in $PG(4,q)\backslash \Sigma_{\infty}$, that is, let \mathcal{K} be the set of points on lines joining X to the ovoid, but not including the ovoid. Then \mathcal{K} is a $\{q^3-q^2+q;q\}$ —arc in π_{q^2} ; that is, \mathcal{K} is a maximal arc of degree q in π_{q^2} . Note that by definition ℓ_{∞} is an external line of the maximal arc \mathcal{K} . By counting, for each point P not in K in π_{q^2} , P is incident with $q^2 - q + 1$ secant lines and q external lines of K. We shall call maximal arcs with the above construction Thas1974 maximal arcs. In [15] examples of Thas 1974 maximal arcs are constructed in the Desarguesian planes of even order q^2 and in Lüneburg planes of even order. In [6] it is shown that the constructions of maximal arcs given by Thas in [15] and [16] do not exist for q odd. Note also that in [3] it is proved that for q odd non-trivial maximal arcs do not exist in the Desarguesian plane PG(2,q). Maximal arcs have been characterised in a number of ways, see for example Hamilton and Penttila [10] and Abatangelo and Larato [1]. ### 2 Thas maximal arcs Let \mathcal{K} be a Thas 1974 maximal arc in a translation plane π_{q^2} of order q^2 with associated André/Bruck and Bose construction as given in Section 1 and the notation introduced there. Then \mathcal{K} is defined by an ovoid \mathcal{O} in Σ_{∞} with the property that each element of the spread \mathcal{S} of Σ_{∞} contains exactly one point of \mathcal{O} . Denote by o_1, \ldots, o_{q^2+1} the points of the ovoid \mathcal{O} in Σ_{∞} which defines the maximal arc \mathcal{K} . Call the lines Xo_i , $i=1,\ldots,q^2+1$, in PG(4, q), generator lines of \mathcal{K} . Let π_{o_i} denote the unique tangent plane to \mathcal{O} in Σ_{∞} at the point o_i , $i=1,\ldots,q^2+1$. Recall that the unique spread line through a point o_i of \mathcal{O} is contained in the tangent plane π_{o_i} at o_i , since the plane π_{o_i} contains a spread line and each spread line contains a unique (and therefore at least one) point of \mathcal{O} . Denote by s_i the spread line incident with the point o_i of \mathcal{O} . There exist q+1 hyperplanes of $\operatorname{PG}(4,q)$ which contain the plane $\langle X,s_i\rangle$, for a fixed point o_i of the ovoid \mathcal{O} . The hyperplane $\langle X,\pi_{o_i}\rangle$ contains the unique generator line Xo_i of \mathcal{K} and therefore the q-1 planes in $\langle X,\pi_{o_i}\rangle$ about the spread line s_i , besides π_{o_i} and the plane $\langle X,s_i\rangle$, represent q-1 external lines of \mathcal{K} on the point at infinity of π_{q^2} represented by s_i . These q-1 external lines together with ℓ_{∞} are all the external lines to \mathcal{K} on the point at infinity of π_{q^2} represented by s_i . The remaining q hyperplanes on $\langle X, s_i \rangle$ each intersect the ovoidal cone in an oval cone with vertex X. Let Σ be such a hyperplane, so that Σ contains q generator lines of \mathcal{K} besides Xo_i . Planes about s_i in Σ , besides $\Sigma \cap \Sigma_{\infty}$, intersect the oval cone in q points of \mathcal{K} and of these planes all, except $\langle X, s_i \rangle$, intersect the same q generator lines of \mathcal{K} . We have the following well known result: **Result 2.1** Let K be a Thas 1974 maximal arc (of degree q) with base point X and axis line ℓ_{∞} in a translation plane π_{q^2} of order q^2 , where ℓ_{∞} is the translation line of π_{q^2} . Let P be a point of ℓ_{∞} , then the secant lines of K incident with P besides XP are partitioned into q classes of q-1 lines such that the lines in a class intersect the same generator lines of K. # 3 Thas maximal arcs and Inversive planes Motivated by [17] we have the following definition. **Definition 3.1** An **O'Nan** configuration is a set of six distinct points with the following properties. The set contains four distinct points A, B, C, D of which no three are collinear and the remaining two points E, F are such that $\{E\} = AC \cap BD$ and $\{F\} = AB \cap CD$. The six points A, B, C, D, E, F are called the **vertices** of the configuration. Let \mathcal{K} be a maximal arc in a projective plane π_q of order q. Let X be a point of \mathcal{K} . We say K satisfies property I_X : If \mathcal{K} contains no O'Nan configurations with X a vertex. II_X : If l is a secant line of \mathcal{K} not through X, m a secant line of \mathcal{K} through X meeting l in a point of \mathcal{K} and $Y(Y \neq X, Y \notin l)$ a point of \mathcal{K} on m, then there exists a line $l' \neq m$ incident with Y and meeting every line through X that meets l in a point of \mathcal{K} and such that l' intersects each such line in a point of \mathcal{K} . We now show that a Thas 1974 maximal arc K with base point X satisfies I_X and II_X and these properties lead to defining an inversive plane associated to the Thas maximal arc. Let K be a Thas 1974 maximal arc with base point X in a translation plane π_{q^2} of order q^2 with translation line ℓ_{∞} . Note that π_{q^2} has an André/Bruck and Bose representation in PG(4, q) with the usual notation. **Lemma 3.1** \mathcal{K} satisfies I_X . **Proof:** Suppose there exists an O'Nan configuration in \mathcal{K} with X a vertex. Let m_1 and m_2 be the two secant lines of \mathcal{K} not incident with X in the configuration. Let P_i be the point of intersection of m_i and ℓ_{∞} , i=1,2. The three points of \mathcal{K} on m_1 in the O'Nan configuration correspond to three generator lines l_1, l_2, l_3 of \mathcal{K} and m_2 intersects these same generator lines of \mathcal{K} in the O'Nan configuration. By Result 2.1 and the comments preceding it, in the André/Bruck and Bose representation of π_{q^2} , l_1, l_2, l_3 generate a hyperplane of $PG(4, q) \setminus \Sigma_{\infty}$ which contains the spread lines corresponding to $P_1, P_2 \in \ell_{\infty}$, a contradiction since Σ_{∞} is the only hyperplane of PG(4, q) which contains two distinct elements of the spread \mathcal{S} . Therefore there exist no O'Nan configurations in \mathcal{K} with X a vertex. #### Lemma 3.2 K satisfies II_X **Proof:** Let l be a secant line of K not on X and let $l \cap \ell_{\infty} = \{P\}$. The result now follows from Result 2.1. Consider the incidence structure $I_{\mathcal{K}}'$ defined by: Points: generator lines of K, K a Thas 1974 maximal arc; Blocks: secant lines of K not incident with X; identifying blocks with their points and using the property II_X to eliminate repeated blocks; Incidence: is inherited from the translation plane. **Lemma 3.3** $I'_{\mathcal{K}}$ is a 2- $(q^2 + 1, q, q - 1)$ design. **Proof:** There are $q^2 + 1$ generator lines of \mathcal{K} , corresponding to the points of the ovoid in the construction of \mathcal{K} , therefore the number v' of points of $I'_{\mathcal{K}}$ is $q^2 + 1$. A secant line of \mathcal{K} which is not incident with X intersects q generator lines of \mathcal{K} , hence the number k' of points in a block is q. By Result 2.1, each point of ℓ_{∞} corresponds q distinct blocks of $I'_{\mathcal{K}}$ and since each secant line of \mathcal{K} intersects ℓ_{∞} in a unique point, blocks corresponding to distinct points of ℓ_{∞} are distinct. Therefore the number b' of blocks of $I'_{\mathcal{K}}$ is therefore $q(q^2 + 1) = q^3 + q$. By Result 2.1 there exist q-1 secants on a point $P \in \ell_{\infty}$ which define the same block of $I'_{\mathcal{K}}$. A generator line of \mathcal{K} has q-1 points of \mathcal{K} besides X and there exist q^2 secant lines not containing X through each such point. Therefore in $I'_{\mathcal{K}}$, the number r' of blocks containing a point is $q^2(q-1)/(q-1)=q^2$. Consider two generator lines of K; they each have q-1 points besides X. From above a block is defined by q-1 distinct secant lines of K and therefore the number λ'_2 of blocks containing two fixed points is $(q-1)^2/(q-1)=q-1$. It follows that $$I_{\mathcal{K}}'$$ is a 2- $(q^2+1,q,q-1)$ design. \Box We have that a block, B_P say, of $I'_{\mathcal{K}}$ is determined by q-1 distinct secant lines of \mathcal{K} each incident with a common point $P \in \ell_{\infty}$. Thus to each block B_P in $I'_{\mathcal{K}}$ is associated a unique point not incident with the block, namely, the generator line of \mathcal{K} on the line XP. We use this fact to define a new incidence structure as follows. **Definition 3.4** Let I_K be the incidence structure defined by: Points: generator lines of K, K a Thus 1974 maximal arc; Circles: $\{\{Block\ B_P\ of\ I_{\mathcal{K}}'\}\cup\{the\ generator\ line\ of\ \mathcal{K}\ in\ XP\}\ ;\ for\ all\ generator\ line\ of\ \mathcal{K}\ in\ XP\}$ blocks B_P in $I'_{\mathcal{K}}$; Incidence: containment. **Lemma 3.5** The incidence structure $I_{\mathcal{K}}$ is a 3- $(q^2 + 1, q + 1, 1)$ design, namely a finite inversive plane of order q. **Proof:** $I_{\mathcal{K}}$ has the same number of points and blocks as $I'_{\mathcal{K}}$ therefore $v = v' = q^2 + 1$ and $b = b' = q^3 + q$. The number k of points in a block of $I_{\mathcal{K}}$ is b = b' + 1 = q + 1. The number r of blocks on a fixed point of $I_{\mathcal{K}}$ is given by $$r = r' +$$ {the number of blocks of $I_{\mathcal{K}}'$ determined by secant lines on a fixed point of ℓ_{∞} }. Using the definition of blocks of $I_{\mathcal{K}}^{'}$ and Result 2.1 we have $r=r'+q=q^2+q$. It remains to show that for any three distinct points of $I_{\mathcal{K}}$ there exists a unique block containing them. Let l_1, l_2, l_3 be three distinct points of $I_{\mathcal{K}}$, that is, l_1, l_2, l_3 are three generator lines of \mathcal{K} in the André/Bruck and Bose representation of the translation plane. The three lines span a unique hyperplane Σ in $\mathrm{PG}(4,q)$ which intersects Σ_{∞} in a plane containing a unique spread element; denote this spread element by P. Since the hyperplane Σ intersects the ovoidal cone of the Thas maximal arc in three generator lines, Σ contains an oval cone of generator lines. Thus the planes in Σ about P represent secant lines of \mathcal{K} and define a unique block of $I_{\mathcal{K}}$ containing the points l_1, l_2, l_3 . We have shown therefore that $I_{\mathcal{K}}$ is an inversive plane. **Theorem 3.6** The inversive plane $I_{\mathcal{K}}$ associated to a Thas maximal arc \mathcal{K} with vertex X and base ovoid \mathcal{O} in a translation plane π_{q^2} is isomorphic to the inversive plane $I_{X3}(\mathcal{O})$ obtained from the generalized quadrangle $T_3(\mathcal{O})$ (defined in the PG(4,q) with ovoid \mathcal{O} of the construction of \mathcal{K} .) The inversive planes are egglike. **Proof:** The result follows from the above discussion of the construction in PG(4, q) of $I_{\mathcal{K}}$ and the known results of $T_3(\mathcal{O})$ discussed in Section 1. **Remark:** The inversive plane associated to a Buekenhout-Metz unital (see Barwick and O'Keefe [5]) is isomorphic in a natural way to the inversive planes of Theorem 3.6 defined with the same ovoid \mathcal{O} of PG(3, q), since both Thas maximal arcs and Buekenhout-Metz unitals are defined using an ovoidal cone in PG(4, q) with base an ovoid \mathcal{O} in a hyperplane of PG(4, q). ## 4 A characterisation of Thas maximal arcs In this section we endeavour to find a converse to the main result of Section 3. We attempt to characterise Thas 1974 Maximal Arcs with the configurational properties I_X and II_X . We weaken our hypothesis and obtain a partial converse. ### 4.1 A sequence of lemmata Let \mathcal{K} be a (maximal) $\{q^3-q^2+q;q\}$ -arc in a translation plane π_{q^2} of order q^2 with kernel containing GF(q). Then π_{q^2} has an André/Bruck and Bose representation in $\operatorname{PG}(4,q)$ defined by a spread in the hyperplane Σ_{∞} of $\operatorname{PG}(4,q)$. Denote by ℓ_{∞} the translation line of π_{q^2} corresponding to Σ_{∞} and suppose ℓ_{∞} is an external line of \mathcal{K} . Note that if q=2, then \mathcal{K} is a Thas 1974 maximal arc in $\operatorname{PG}(2,4)$; hence we consider the case q>2. Let X be a fixed point of \mathcal{K} . We say \mathcal{K} satisfies: I_X : (As in Section 3.) II_X^* : If l is a secant line of \mathcal{K} not through X and P is the point of intersection of lines l and ℓ_{∞} , then there exist q-2 further secant lines of \mathcal{K} incident with P and which intersect every line through X that meets l (these intersections are all in \mathcal{K}). Suppose K satisfies properties I_X and II_X^* . We proceed with a sequence of lemmata and determine some properties of \mathcal{K} , but first we introduce some terminology. Each line on X contains q-1 points of \mathcal{K} besides X; call such a set of q-1 points of \mathcal{K} on a line through X a variety. For a variety V (on a line l through X), label the point at infinity of l, namely $l \cap \ell_{\infty}$, by P_V . We shall sometimes refer to P_V as the **point at infinity of the variety** V. Let l be a secant line of K not on X. Then l is incident with q varieties and by II_X^* there exist q-2 further secants of K incident with these same q varieties and concurrent with l in a point P on ℓ_∞ . Call such a collection of q varieties a block b and call the associated point P on ℓ_∞ the point at infinity of the block b and say b is a block of P. #### **Lemma 4.1.1** For a point $P \in \ell_{\infty}$, - (i) Distinct blocks of P are disjoint (they have no varieties in common). - (ii) P is the point at infinity of exactly q blocks. **Proof:** Let P be a point on ℓ_{∞} . - (i) Let b_1 and b_2 be two blocks of P. Suppose b_1 and b_2 intersect in a variety V_1 . Let l_1 be a secant line of \mathcal{K} on P incident with b_1 (and therefore incident with every variety in b_1). Since l_1 is incident with the variety V_1 of block b_2 and l_1 passes through P, then l_1 must be one of the q-1 secant lines of \mathcal{K} on P incident with every variety in b_2 by II_X^* . Since l_1 intersects \mathcal{K} in exactly q points, blocks b_1 and b_2 must coincide. We have shown therefore that distinct blocks of P are disjoint. - (ii) There exist $q^2 q$ secant lines of \mathcal{K} on P besides the line XP. For each block of P there exist q 1 secant lines of \mathcal{K} on P which determine that block and since by (i) distinct blocks of P are disjoint, there are exactly q blocks of P. **Lemma 4.1.2** Let P and Q be two points on ℓ_{∞} and let b_P , b_Q be a block of P, Q respectively. Then the blocks b_P and b_Q intersect in exactly 0, 1, 2 or q varieties. **Proof:** If P = Q then by Lemma 4.1.1 b_P intersects b_Q in 0 or q varieties. If $P \neq Q$, suppose b_P and b_Q have three varieties V_1, V_2, V_3 in common; V_i contained in line l_i , i = 1, 2, 3, incident with X. Let R be a point of \mathcal{K} in V_1 . By II_X^* , the line RP is a secant line of \mathcal{K} incident with P and incident with the varieties in b_P ; also the line RQ is a secant line of \mathcal{K} on Q incident with b_Q . The lines RP, RQ, l_2 and l_3 are four lines of an O'Nan configuration in \mathcal{K} with X as a vertex; a contradiction, as \mathcal{K} satisfies I_X , thus in this case b_P and b_Q have at most 2 varieties in common. #### **Lemma 4.1.3** There are exactly $q^3 + q$ blocks in K. **Proof:** By Lemma 4.1.1 there are q blocks corresponding to each of the $q^2 + 1$ points of ℓ_{∞} and by definition (or the proof of Lemma 4.1.2) a block corresponds to a unique point at infinity. The result follows. **Lemma 4.1.4** Let V_1 and V_2 be two distinct varieties. There exist exactly q-1 blocks containing both V_1 and V_2 . **Proof:** Let V_1 be on line l_1 through X and let V_2 be on line l_2 through X. Let R be a point (of \mathcal{K}) in V_1 . The join of R to each point of V_2 defines q-1 secant lines m_i ($i=1,\ldots,q-1$) of \mathcal{K} , not on X and with distinct points $P_1,\ldots P_{q-1}$ (say) on the line at infinity. The line m_i defines block B_i , containing both varieties V_1 and V_2 , and with point at infinity P_i (for $i=1,\ldots,q-1$). Thus there exist at least q-1 blocks containing both V_1 and V_2 . By II_X^* , for each block B_i there exist q-2 further lines through P_i incident with both V_1 and V_2 , thus giving all the possible (secant) lines joining a point of V_1 and a point of V_2 . Thus there exist exactly q-1 blocks containing both V_1 and V_2 . \square **Lemma 4.1.5** There are exactly q^2 blocks containing a given variety V. **Proof:** Let P_V be the point at infinity of a fixed variety V. For each point P on the line at infinity besides P_V , V lies in a block of P, since there exist secant lines of K on P incident with points in V. Therefore by Lemmata 4.1.1 and 4.1.2, V lies in exactly one block of P ($P \in \ell_{\infty} \setminus \{P_V\}$), with no two distinct points at infinity determining the same block containing V. Since there are q^2 points on ℓ_{∞} besides P_V , there exist exactly q^2 blocks containing the variety V. Let \mathcal{V} be the set of varieties and \mathcal{B} be the set of blocks and with incidence \mathbf{I} the natural containment relation. We define an incidence structure $\mathcal{I}' = (\mathcal{V}, \mathcal{B}, \mathbf{I})$. **Lemma 4.1.6** The incidence structure $\mathcal{I}' = (\mathcal{V}, \mathcal{B}, \mathbf{I})$ is a 2- $(q^2 + 1, q, q - 1)$ design with parameters $v' = q^2 + 1$, k' = q, $b' = q^3 + q$, $r' = q^2$ and $\lambda_2' = q - 1$. **Proof:** Lemmata 4.1.1, 4.1.2, 4.1.3, 4.1.3, 4.1.4 and 4.1.5 determine the parameters of \mathcal{I}' . Next we define a new incidence structure $\mathcal{I} = (\mathcal{V}, \mathcal{C}, \mathbf{I})$ based on \mathcal{I}' . Let the set of varieties \mathcal{V} of \mathcal{I}' be the points \mathcal{P} of \mathcal{I} and let $\mathcal{C} = \{\{\text{varieties in a block } B_P \text{ of a point } P\} \cup \{\text{the variety contained in the line } XP\} : \text{ for all blocks } B_P \text{ of a point } P, \text{ for all points } P \text{ on } \ell_{\infty}\}.$ Call the elements of \mathcal{C} circles and call \mathcal{C} the set of circles in \mathcal{I} . There is a natural one-to-one correspondence between blocks of \mathcal{I}' and circles of \mathcal{I} since each block of \mathcal{I}' is contained in a unique circle and conversely each circle of \mathcal{I} contains a unique block of \mathcal{I}' . **Lemma 4.1.7** The incidence structure $\mathcal{I} = (\mathcal{V}, \mathcal{C}, \mathbf{I})$ is a 2- $(q^2+1, q+1, q+1)$ design with parameters $v = q^2+1$, k = q+1, $b = q^3+q$, $r = q^2+q$ and $\lambda_2 = q+1$. **Proof:** Now $v = v' = q^2 + 1$ and $b = b' = q^3 + q$ using the definition of \mathcal{I} and the natural one-to-one correspondence between circles and blocks. The number k of varieties in a circle is one more than the number k' of varieties in a block, therefore k = k' + 1 = q + 1. For a variety V with point at infinity P, the number of circles containing V equals the number of blocks containing V plus the number of blocks of P, therefore $r = r' + q = q^2 + q$. Lastly, consider two varieties V_1 and V_2 with points at infinity P_1 and P_2 respectively. Variety V_1 lies in a unique block of P_2 and similarly variety V_2 lies in a unique block of P_1 and there are q-1 blocks containing both V_1 and V_2 . Therefore the number λ_2 of circles containing both V_1 and V_2 is $\lambda_2 = \lambda_2' + 2 = q + 1$. Corollary 4.1.8 The following four statements are equivalent for the incidence structure \mathcal{I} : - (i) three distinct varieties are contained in at least one circle; - (ii) three distinct varieties are contained in at most one circle; - (iii) the design \mathcal{I} has parameter $\lambda_3 = 1$; - (iv) the design \mathcal{I} is a finite inversive plane. **Proof:** If three distinct varieties are contained in a unique circle, for any choice of three distinct varieties, then \mathcal{I} is a 3- $(q^2 + 1, q + 1, 1)$ design with the parameters given in Lemma 4.1.7 together with $\lambda_3 = 1$, that is, \mathcal{I} is a finite inversive plane. Let λ_{3_i} , $i = 1, \ldots, {v \choose 3}$, be the number of circles containing three given (distinct) varieties V_1, V_2, V_3 , for all ${v \choose 3}$ possible choices of V_1, V_2, V_3 . We now count in two ways the number of 3-flags of \mathcal{I} $$\sum_{i=1}^{\binom{v}{3}} \lambda_{3_i} = b \binom{k}{3}.$$ Thus the average number $\lambda_{3_i ave}$ of circles on three varieties is given by $$\lambda_{3_i \text{ave}} = b \binom{k}{3} / \binom{v}{3}$$ = 1 Therefore if $\lambda_{3_i} \geq 1$ for all i then $\lambda_{3_i} = 1$ for all i. Similarly if $\lambda_{3_i} \leq 1$ for all i. **Lemma 4.1.9** Let V_1 and V_2 be two distinct varieties in a block b_P of a point P $(P \in \ell_{\infty})$. Let l_i be the lines on X containing V_i , with the point at infinity of l_i denoted by Q_i , i = 1, 2. If a Baer subplane B of π_{q^2} contains P, Q_1, Q_2 and X then either B contains no points of V_1 or V_2 or B contains the same number of points of V_1 as of V_2 . **Proof:** Let R be a point of V_1 in B. Since PR and l_2 are lines of B, the point $PR \cap l_2$ is a point of B. Since l_1 and l_2 lie in the block b_P of P, by II_X^* , the point $PR \cap l_2$ of B is a point on l_2 of the maximal arc K, that is $PR \cap l_2$ is a point of V_2 . The same argument holds if we suppose R is a point of V_2 in B. It follows that either B contains no points of V_1 and V_2 or B contains the same number of points of V_1 as of V_2 . In the following lemmata, a linear Baer subplane of π_{q^2} is a Baer subplane of π_{q^2} which is represented in $\operatorname{PG}(4,q)$ by a (transversal) plane of $\operatorname{PG}(4,q)\backslash\Sigma_{\infty}$ which intersects Σ_{∞} in a line which is not a line of the spread \mathcal{S} of Σ_{∞} ; a linear Baer subline is a Baer subline of a line of π_{q^2} which is represented by a line of $\operatorname{PG}(4,q)\backslash\Sigma_{\infty}$. Note that a linear Baer subplane of π_{q^2} necessarily contains ℓ_{∞} as a line. **Lemma 4.1.10** Each linear Baer subline which contains X and contains further points of K contains a constant number n points of K besides X. Moreover, $1 \le n \le q-1$ and n divides q-1. **Proof:** There exists a linear Baer subline in π_{q^2} containing X and which contains at least one further point of K. Let l_1 be a line on X containing a linear Baer subline l_{B1} , where l_{B1} contains X and say n points of K besides X. Let $l_2 \neq l_1$ be any other line containing a linear Baer subline l_{B2} , with $X \in l_{B2}$, and such that l_{B2} contains further points of K. There exists a linear Baer subplane B of π_{q^2} containing l_{B1} and l_{B2} . Note that the line at infinity is a line of B. Let l be a line not through X and such that l contains a point of \mathcal{K} in l_{B1} and a point of \mathcal{K} in l_{B2} , then l is a line of B and intersects ℓ_{∞} in a point P of B. Thus, as l is a secant line of \mathcal{K} on P and hence the varieties in l_1 and l_2 lie together in a block of P. Now by Lemma 4.1.9, Baer sublines l_{B1} and l_{B2} contain the same number (n) of points of \mathcal{K} besides X. It follows that the linear Baer sublines of π_{q^2} which contain X contain either 0 or n further points of \mathcal{K} , where $1 \leq n \leq q-1$ is a fixed integer. Moreover, since each secant line of \mathcal{K} incident with X contains exactly q-1 points of \mathcal{K} distinct from X, the integer n divides q-1. Next we show that if π_{q^2} is the Desarguesian plane, then the parameter n found in Lemma 4.1.10 satisfies $n \neq 1$. **Lemma 4.1.11** If π_{q^2} is the Desarguesian plane $PG(2,q^2)$, then each linear Baer subline of π_{q^2} which contains X contains either 0 or n further points of K, where $1 < n \le q-1$ is a fixed integer such that n divides q-1. **Proof:** If π_{q^2} is the Desarguesian plane PG(2, q^2), then by [3] and since π_{g^2} contains a maximal arc K we have that q is even. Moreover in the André/Bruck and Bose representation of π_{q^2} in PG(4, q) the 1-spread \mathcal{S} of $\Sigma_{\infty} = \text{PG}(3, q)$ is then a regular spread. By Lemma 4.1.10 we have that each linear Baer subline of π_{q^2} which contains X contains exactly 0 or n further points of K, where $1 \le n \le q-1$ is a fixed integer and n divides q-1. Since q>2 and q is even, we have $q\geq 4$. Consider two distinct varieties V_1 and V_2 of \mathcal{I}' contained in lines ℓ_1, ℓ_2 of π_{q^2} respectively. By definition ℓ_1 and ℓ_2 intersect in the point X of K. Denote by P_1 and P_2 the points at infinity of ℓ_1 and ℓ_2 respectively. In the André/Bruck and Bose representation, the points P_1, P_2 on ℓ_{∞} correspond to distinct elements P_1^*, P_2^* of the regular spread \mathcal{S} of Σ_{∞} . In \mathcal{I}' , there exist q-1 distinct blocks which contain the varieties V_1 and V_2 ; denote the points at infinity of these blocks by $Q_1, Q_2, \ldots, Q_{q-1}$. In the André/Bruck and Bose representation the points Q_i correspond to q-1 distinct elements of the spread \mathcal{S} ; denote these spread elements by Q_i^* , $i=1,\ldots,q-1$. There exist q+1 reguli in S containing P_1^* and P_2^* , therefore there exists at least one regulus R of lines of S which contains P_1^* and P_2^* but which contains no spread element Q_i^* . Let \mathcal{R}' denote the opposite regulus of \mathcal{R} in Σ_{∞} . In PG(4, q), the lines ℓ_1 and ℓ_2 correspond to planes ℓ_1^* and ℓ_2^* in PG(4, q) respectively; both planes contain X and a line P_1^* , P_2^* respectively of \mathcal{S} . Since n=1, the q points of \mathcal{K} in ℓ_1 are represented in $\operatorname{PG}(4,q)$ by the point X and q-1 further points of $\ell_1^* \setminus \{P_1^*\}$ on distinct lines of ℓ_1^* through X. Similarly for the points of \mathcal{K} incident with ℓ_2 . In $\operatorname{PG}(4,q)$, since $q \geq 4$ there exists a line m in the opposite regulus of \mathcal{R} such that the plane $B = \langle m, X \rangle$ contains a point of \mathcal{K} in ℓ_1^* besides X and a point of \mathcal{K} in ℓ_2^* besides X; denote these two points of \mathcal{K} in B, which are distinct from X, by Y_1^* , Y_2^* respectively. Each point Y_i^* corresponds to a point Y_i in π_{q^2} incident with the variety V_i for i=1,2. The line Y_1Y_2 is distinct from ℓ_∞ and intersects ℓ_∞ in a point Q which is necessarily the point at infinity of a block containing both varieties V_1 and V_2 . In PG(4, q), Q corresponds to a spread element Q^* contained in the regulus \mathcal{R} of \mathcal{S} ; a contradiction, since the regulus \mathcal{R} contains no element which is the André/Bruck and Bose representation of a point of infinity of a block containing the varieties V_1 and V_2 . Hence $n \neq 1$ and therefore n > 1 as required. Note that a *Mersenne prime* is a prime number which can be written in the form $2^p - 1$ for some positive integer p which is necessarily prime (see [11, Theorem 18]). There are 31 known Mersenne primes and it is conjectured that there exist an infinite number of Mersenne primes. Corollary 4.1.12 Suppose K is a maximal $\{q^3 - q^2 + q; q\}$ —arc in the Desarguesian plane $PG(2, q^2)$ satisfying properties I_X and II_X^* for some point X in K. If q-1 is (Mersenne) prime, then K is a Thas maximal arc with base point X and axis line ℓ_{∞} . ### References - [1] V. Abatangelo and B. Larato, A characterisation of Denniston's maximal arcs, *Geom. Dedicata* **30** (1989), no. 2, 197–203. - [2] J. André, Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe, *Math. Z.* **60** (1954), 156–186. - [3] S. Ball, A. Blokuis and F. Mazzocca, Maximal arcs in Desarguesian planes of odd order do not exist, *Combinatorica* 17 (1997), 31–41. - [4] A. Barlotti, Sui $\{k, n\}$ —Archi di un Piano Lineare Finito, Boll. Un. Mat. Ital. **11** (1956), 553–556. - [5] S.G. Barwick and C.M. O'Keefe, Unitals and inversive planes, J. Geom. 58 (1997), 43–52. - [6] A. Blokhuis, N. Hamilton and H. Wilbrink, On the non-existence of Thas maximal arcs in odd order projective planes, European J. Combin. 19 (4) (1998), 413–417. - [7] R.H. Bruck and R.C. Bose, The construction of translation planes from projective spaces, J. Algebra 1 (1964), 85–102. - [8] R.H. Bruck and R.C. Bose, Linear representations of projective planes in projective spaces, J. Algebra 4 (1966), 117–172. - [9] P. Dembowski, Finite Geometries, Springer, New York, 1968. - [10] N. Hamilton and T. Penttila, A characterisation of Thas maximal arcs in translation planes of square order, J. Geom. 51 (1994), no.1-2, 60-66. - [11] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Fourth Ed., Clarendon Press, Oxford, 1960. - [12] J.W.P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford University Press, Oxford, 1985. - [13] C.M. O'Keefe, Ovoids in PG(3, q): a survey, Discrete Math. **151** (1996) 175–188. - [14] S.E. Payne and J.A. Thas, Finite generalized quadrangles, Pitman, London (1984). - [15] J.A. Thas, Some results concerning $\{(q+1)(n-1); n\}$ -arcs and $\{(q+1)(n-1)+1; n\}$ -arcs in finite projective planes of order q, J. Combin. Theory. **A19** (1974), 228-232. - [16] J.A. Thas, Construction of maximal arcs and dual ovals in translation planes, European J. Combin. 1 (1980), 189–192. - [17] H. Wilbrink, A characterization of the classical unitals, Finite geometries, Lecture Notes in Pure and Applied Math. 82 (1983), 445–454. (Received 5/7/2000; revised 28/6/2001)