A note on critical sets

J.A. Bate and G.H.J. van Rees*
Department of Computer Science
University of Manitoba
Winnipeg, Manitoba
Canada R3T 2N2
bate@cs.umanitoba.ca vanrees@cs.umanitoba.ca

Abstract

First, a counterexample to a published theorem on critical sets in Latin squares is given. Second, an example is given showing that a published theorem on critical sets in F-squares cannot be strengthened.

1 Counterexample

A Latin square, L, of order n, is an $n \times n$ array with symbols chosen from a set N of size n, such that each element of N occurs precisely once in each row and column. So L may be thought of as a set of n^{2} triples $(i, j ; k)$, where the cell (i, j) of L contains the symbol k. Latin squares and their properties have been much studied. A partial Latin square, P, of order n, is an $n \times n$ array with entries from a set N of size n, such that each element of N occurs at most once in each row and each column. Again P may be thought of as a set of p triples which correspond to the p filled cells in P where $0 \leq p \leq n^{2}$. One property of interest is the size of the smallest partial Latin square that uniquely defines a Latin square of a specified order. More precisely, a subset of the entries of a Latin square, L, of order n, is called a critical set, C, of L if L is the only Latin square of order n containing all the entries from C and any proper subset of C is contained in at least two distinct Latin squares. A long list of papers studying critical sets can be found in Gower [5]. Cooper, Donovan and Seberry [2] define a strongly critical set of a Latin square, L, with symbols from the set N, to be a critical set with the property that there exists a set $\left\{P_{1}, P_{2}, \ldots P_{f}\right\}$ of partial Latin squares of order n with $f=n^{2}-|C|$ such that:

1. $C=P_{1} \subset P_{2} \subset \ldots P_{f}=L$
2. for any $i, 2 \leq i \leq f$, where $P_{i}=P_{i-1} \cup\left\{\left(r_{i-1}, s_{i-1}, t_{i-1}\right)\right\}$, the set $P_{i-1} \cup$ $\left\{\left(r_{i-1}, s_{i-1}, t_{i-1}^{\prime}\right)\right\}$ is not a partial Latin square for any $t^{\prime} \in N-\{t\}$.

* research supported by NSERC grant OGP \# 0003558

	2		4					
3		1						
4			1		1	2	3	4
:---	:---	:---	:---					
2	1	4	3					
3	4	1	2					
4	3	2	1					

Figure 1: critical set C and Latin square L

1	2	3	4
2		4	
3	4	1	2
4		2	

1	2	3	4
2			3
3			2
4	3	2	1

1	2	3	4
2			
3			
4			

Figure 2: Nest of $\{x\} \quad$ Nest of $\{y\} \quad$ Nest of $\{x, y\}$

Fitina, Seberry and Chaudhry [3] have tried to study these critical sets more deeply. In order to do this they define the nest of a critical set. Let B be a subset of a critical set C in a Latin square, L, of order n. The nest of $B, N(B)$, is defined to be the union of $C-B$ and the largest set that can be uniquely filled from $C-B$. They define a set of triples, A, to be uniquely filled from a set $X \subseteq L$, if A is a subset of every Latin square of order n which contains X. They claim to have proved the following theorem:

Theorem 1.1 If x and y are any two triples in C, a critical set of a Latin square L, then $N(\{x, y\})=N(\{x\}) \cap N(\{y\})$.

Certainly, if x and y are triples in C, then $N(\{x, y\}) \subseteq N(\{x\}) \cap N(\{y\})$ is true as they proved. Unfortunately $N(\{x, y\}) \supseteq N(\{x\}) \cap N(\{y\})$ is false. Consider the critical set C in Figure 1. L is the only Latin square that contains C. Let x be $(4,4 ; 1)$ and let y be $(3,3 ; 1)$, then Figure 2 shows $N(\{x\}), N(\{y\})$, and $N(\{x, y\})$.

Clearly, $N(\{x, y\}) \neq N(\{x\}) \cap N(\{y\})$ and their theorem is not true. This theorem was an important part of their paper. The rest of the paper must be read with care and some scepticism.

2 An example

Another type of square that has been studied is the Frequency square or F-square. An F-square of type $F=F\left(n ; \alpha_{0}, \alpha_{1}, \ldots, \alpha_{v-1}\right)$ is an $n \times n$ array with symbols chosen from the set $N=\{0,1, \ldots, v-1\}$ such that each element i occurs α_{i} times in each row and in each column where $n=\alpha_{0}+\alpha_{1}+\ldots+\alpha_{v-1}$. As in Latin squares, an F-square can be thought of as a set of triples $(i, j ; k)$ where cell (i, j) contains element or symbol k. Again, as in Latin squares, researchers are interested in the size of the smallest set of entries that uniquely defines an F-square of a specified type.

1	2	3	4	5
2	1	4	5	3
3	4	5	1	2
4	5	2	3	1
5	3	1	2	4

Figure 3: critical set C and Latin square L

2	4	1	3	$\mathbf{5}$	1	2	3	4	$\mathbf{5}$
5	$\mathbf{1}$	$\mathbf{4}$	3	2	2	$\mathbf{1}$	$\mathbf{4}$	5	3
$\mathbf{3}$	2	5	4	1	$\mathbf{3}$	4	5	1	2
$\mathbf{4}$	5	$\mathbf{2}$	1	3	$\mathbf{4}$	5	$\mathbf{2}$	3	1
1	3	5	$\mathbf{2}$	4	5	3	1	$\mathbf{2}$	4
1	2	3	4	$\mathbf{5}$	2	3	1	4	$\mathbf{5}$
2	$\mathbf{1}$	$\mathbf{4}$	5	3	5	$\mathbf{1}$	$\mathbf{4}$	3	2
$\mathbf{3}$	4	1	5	2	$\mathbf{3}$	2	5	1	4
$\mathbf{4}$	3	$\mathbf{2}$	1	1	$\mathbf{4}$	5	$\mathbf{2}$	5	3
5	5	3	$\mathbf{2}$	4	$\mathbf{1}$	4	3	$\mathbf{2}$	1

Figure 4: The F-square M

Define a critical set of an F-square to be a non-empty subset S of an F-square, $F F$ of type $F=F\left(n ; \alpha_{0}, \alpha_{1}, \ldots, \alpha_{v-1}\right)$ if $F F$ is the only F -square of type F which has element k in position (i, j) for each $(i, j ; k) \in S$ and every proper subset of S is contained in at least two F-squares of type F. One way to find critical sets in larger F-squares is by using products of Latin squares and products of critical sets. Let L be a Latin square of order n and let J_{2} be the two by two square of all ones. Then $L \times J_{2}$ is the F-square of order $2 n$ consisting of 4 copies of L and $C \times J_{2}$ is a partial square of $L \times J_{2}$ as is shown in the following:

Fitina and Seberry [4] proved the following theorem.
Theorem 2.1 If C is a strongly critical set of a Latin square L, then $C \times J_{2}$ is a critical set of F-square- $(n ; 2,2, \ldots, 2), L \times J_{2}$.

It would be nice if the word 'strongly' could be deleted from the theorem. But this is impossible as the next example shows. In Figure 3, C is a critical set of a Latin square L. This example is taken from Adams and Khodkar [1]. Now, $C \times J_{2}$ is embedded in the F-square $L \times J_{2}$ but also in the F-square M shown in Figure 4 .

References

[1] P. Adams and A. Khodkar, Smallest weak and smallest totally weak critical sets in the latin squares of order at most seven, Ars Combinatoria, 61 (2001), 287-300.
[2] J. Cooper, D. Donovan and J. Seberry, Latin squares and critical sets of minimum size, Australasian Journal of Combinatorics, 4 (1991), 113-120.
[3] L.F. Fitina, J. Seberry and G.R. Chaudhry, Back circulant Latin squares and the influence of a set, Australasian Journal of Combinatorics, 20 (1999), 163-180.
[4] L.F. Fitina and J. Seberry, On F-squares and their Critical Sets, Australasian Journal of Combinatorics, 19 (1999), 209-230.
[5] R.A.H. Gower, Critical sets in products of latin squares, Ars Combinatoria, 55 (2000), 293-317.

