A note on critical sets

J.A. Bate and G.H.J. van Rees^{*}

Department of Computer Science University of Manitoba Winnipeg, Manitoba Canada R3T 2N2 bate@cs.umanitoba.ca vanrees@cs.umanitoba.ca

Abstract

First, a counterexample to a published theorem on critical sets in Latin squares is given. Second, an example is given showing that a published theorem on critical sets in F-squares cannot be strengthened.

1 Counterexample

A Latin square, L, of order n, is an $n \times n$ array with symbols chosen from a set N of size n, such that each element of N occurs precisely once in each row and column. So L may be thought of as a set of n^2 triples (i, j; k), where the cell (i, j) of L contains the symbol k. Latin squares and their properties have been much studied. A partial Latin square, P, of order n, is an $n \times n$ array with entries from a set N of size n, such that each element of N occurs at most once in each row and each column. Again P may be thought of as a set of p triples which correspond to the p filled cells in P where $0 \le p \le n^2$. One property of interest is the size of the smallest partial Latin square that uniquely defines a Latin square of a specified order. More precisely, a subset of the entries of a Latin square, L, of order n, is called a *critical set*, C, of L if L is the only Latin square of order n containing all the entries from C and any proper subset of C is contained in at least two distinct Latin squares. A long list of papers studying critical sets can be found in Gower [5]. Cooper, Donovan and Seberry [2] define a *strongly* critical set of a Latin square, L, with symbols from the set N, to be a critical set with the property that there exists a set $\{P_1, P_2, \ldots, P_f\}$ of partial Latin squares of order n with $f = n^2 - |C|$ such that: 1. $C = P_1 \subset P_2 \subset \ldots P_f = L$

2. for any $i, 2 \leq i \leq f$, where $P_i = P_{i-1} \cup \{(r_{i-1}, s_{i-1}, t_{i-1})\}$, the set $P_{i-1} \cup \{(r_{i-1}, s_{i-1}, t_{i-1})\}$ is not a partial Latin square for any $t' \in N - \{t\}$.

Australasian Journal of Combinatorics 25(2002), pp.299-302

^{*} research supported by NSERC grant OGP # 0003558

	2		4	1	2	3	4
				2	1	4	3
3		1		3	4	1	2
4			1	4	3	2	1

Figure 1: critical set C and Latin square L

1	2	3	4	1	2	3	4	1	2	3	4
2		4		2			3	2			
3	4	1	2	3			2	3			
4		2		4	3	2	1	4			

Figure 2: Nest of $\{x\}$ Nest of $\{y\}$ Nest of $\{x, y\}$

Fitina, Seberry and Chaudhry [3] have tried to study these critical sets more deeply. In order to do this they define the nest of a critical set. Let B be a subset of a critical set C in a Latin square, L, of order n. The nest of B, N(B), is defined to be the union of C - B and the largest set that can be uniquely filled from C - B. They define a set of triples, A, to be uniquely filled from a set $X \subseteq L$, if A is a subset of every Latin square of order n which contains X. They claim to have proved the following theorem:

Theorem 1.1 If x and y are any two triples in C, a critical set of a Latin square L, then $N(\{x, y\}) = N(\{x\}) \cap N(\{y\})$.

Certainly, if x and y are triples in C, then $N(\{x, y\}) \subseteq N(\{x\}) \cap N(\{y\})$ is true as they proved. Unfortunately $N(\{x, y\}) \supseteq N(\{x\}) \cap N(\{y\})$ is false. Consider the critical set C in Figure 1. L is the only Latin square that contains C. Let x be (4,4;1) and let y be (3,3;1), then Figure 2 shows $N(\{x\})$, $N(\{y\})$, and $N(\{x, y\})$.

Clearly, $N(\{x, y\}) \neq N(\{x\}) \cap N(\{y\})$ and their theorem is not true. This theorem was an important part of their paper. The rest of the paper must be read with care and some scepticism.

2 An example

Another type of square that has been studied is the Frequency square or F-square. An *F*-square of type $F = F(n; \alpha_0, \alpha_1, \ldots, \alpha_{v-1})$ is an $n \times n$ array with symbols chosen from the set $N = \{0, 1, \ldots, v-1\}$ such that each element *i* occurs α_i times in each row and in each column where $n = \alpha_0 + \alpha_1 + \ldots + \alpha_{v-1}$. As in Latin squares, an F-square can be thought of as a set of triples (i, j; k) where cell (i, j) contains element or symbol *k*. Again, as in Latin squares, researchers are interested in the size of the smallest set of entries that uniquely defines an F-square of a specified type.

				5	1	2	3	4	Сл
	1	4			2	1	4	5	3
3					3	4	5	1	2
4		2			4	5	2	3	1
			2		5	3	1	2	4

Figure 3: critical set C and Latin square L

2	4	1	3	5	1	2	3	4	5
5	1	4	3	2	2	1	4	5	3
3	2	5	4	1	3	4	5	1	2
4	5	2	1	3	4	5	2	3	1
1	3	5	2	4	5	3	1	2	4
1	2	3	4	5	2	3	1	4	5
1 2	2 1	3 4	4 5	5 3	2 5	3 1	1 4	4 3	5 2
1 2 3	2 1 4	3 4 1	4 5 5	5 3 2	2 5 3	3 1 2	1 4 5	4 3 1	5 2 4
1 2 3 4	2 1 4 3	3 4 1 2	4 5 5 1	5 3 2 1	2 5 3 4	3 1 2 5	1 4 5 2	4 3 1 5	5 2 4 3

Figure 4: The F-square M

Define a critical set of an F-square to be a non-empty subset S of an F-square, FF of type $F=F(n; \alpha_0, \alpha_1, \ldots, \alpha_{\nu-1})$ if FF is the only F-square of type F which has element k in position (i, j) for each $(i, j; k) \in S$ and every proper subset of S is contained in at least two F-squares of type F. One way to find critical sets in larger F-squares is by using products of Latin squares and products of critical sets. Let Lbe a Latin square of order n and let J_2 be the two by two square of all ones. Then $L \times J_2$ is the F-square of order 2n consisting of 4 copies of L and $C \times J_2$ is a partial square of $L \times J_2$ as is shown in the following:

L	L	С	С
L	L	С	С

Fitina and Seberry [4] proved the following theorem.

Theorem 2.1 If C is a strongly critical set of a Latin square L, then $C \times J_2$ is a critical set of F-square-(n; 2, 2, ..., 2), $L \times J_2$.

It would be nice if the word 'strongly' could be deleted from the theorem. But this is impossible as the next example shows. In Figure 3, C is a critical set of a Latin square L. This example is taken from Adams and Khodkar [1]. Now, $C \times J_2$ is embedded in the F-square $L \times J_2$ but also in the F-square M shown in Figure 4.

References

- P. Adams and A. Khodkar, Smallest weak and smallest totally weak critical sets in the latin squares of order at most seven, Ars Combinatoria, 61 (2001), 287–300.
- [2] J. Cooper, D. Donovan and J. Seberry, Latin squares and critical sets of minimum size, Australasian Journal of Combinatorics, 4 (1991), 113–120.
- [3] L.F. Fitina, J. Seberry and G.R. Chaudhry, Back circulant Latin squares and the influence of a set, Australasian Journal of Combinatorics, 20 (1999), 163–180.
- [4] L.F. Fitina and J. Seberry, On F-squares and their Critical Sets, Australasian Journal of Combinatorics, 19 (1999), 209–230.
- [5] R.A.H. Gower, Critical sets in products of latin squares, Ars Combinatoria, 55 (2000), 293–317.

(Received 9 Mar 2001)