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Abstract

For a graph G and S ⊂ V (G), if G−S is acyclic, then S is said to be
a decycling set of G. The size of a smallest decycling set of G is called
the decycling number of G. The purpose of this paper is to provide a
review of recent results and open problems on this parameter. Results
to be reviewed include recent work on decycling numbers of cubes, grids
and snakes and bounds on the decycling number of cubic graphs, and
expected bounds on the decycling numbers of random regular graphs. A
structural description of graphs with a fixed decycling number based on
connectivity is also presented.

1 Decycling a Graph

The minimum number of edges whose removal eliminates all cycles in a given graph
has been known as the cycle rank of the graph, and this parameter has a simple
expression: b(G) = ‖G‖ − |G| + ω ([14], Chapter 4) where, as in [12], |G| and ‖G‖
are respectively the number of vertices and the number of edges of G and ω is the
number of components of G. The corresponding problem of eliminating all cycles
from a graph by means of deletion of vertices goes back at least to the work of
Kirchhoff [16] on spanning trees. This problem does not have a simple solution.
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This latter question is difficult even for some simply defined graphs. For general
graph theoretic notations, we follow Diestel [12].

Let G be a graph. If S ⊆ V (G) and G−S is acyclic, then S is said to be a decycling
set of G. The smallest size of a decycling set of G is said to be the decycling number
of G and is denoted by φ(G). A decycling set of this cardinality is said to be a
minimum decycling set . Determining the decycling number of a graph is equivalent
to finding the greatest order of an induced forest and the sum of the two numbers
equals the order of the graph. It was shown in [15], that determining the decycling
number of an arbitrary graph is NP -complete (see Problem 7 on the feedback node
set in the main theorem of [15], which asks for a set S ⊆ V of minimum cardinality in
a digraph G such that every directed cycle of G contains a member of S). In fact, the
computation of decycling numbers of the following families of graphs is shown to be
NP -hard: planar graphs, bipartite graphs, perfect graphs, and comparability graphs
(graphs with a transitive orientation). On the other hand, the problem is known
to be polynomial for various other families, including cubic graphs (see [17, 25]),
permutation graphs (see Liang [18]), and interval and comparability graphs (see
Liang and Chang [19]). These results naturally suggest further investigations as to
good bounds on the parameter and exact results when possible.

In [4], Bafna, Berman and Fujito have found a polynomial time algorithm for a
decycling set of cardinality at most 2φ(G) in an arbitrary graph G (this is referred
to as a 2-approximation).

Clearly, φ(G) = 0 if and only if G is a forest, and φ(G) = 1 if and only if G
has at least one cycle and a vertex is on all of its cycles. It is also easy to see that
φ(Kp) = p− 2 and φ(Kr,s) = r− 1 if r ≤ s. This is easily extendable to all complete
multipartite graphs. For the Petersen graph P , φ(P ) = 3.

All results cited in this section are from [8].

LEMMA 1.1 Let G be a connected graph with degrees d1, d2, . . . , dp in non-increasing
order. If φ(G) = s, then

s∑
i=1

(di − 1) ≥ ‖G‖ − |G| + 1.

COROLLARY 1.1 If G is a connected graph with maximum degree ∆, then

φ(G) ≥ ‖G‖ − |G| + 1

∆ − 1
.

For graphs regular of degree r, one may wonder whether there is a constant c such
that

φ(G) ≤ ‖G‖ − |G| + 1

r − 1
+ c?

This is not the case, even for cubic graphs (graphs that are regular of degree 3). Let
G be any cubic graph of order 2n. Replace each vertex of G with a triangle and
denote the resulting graph by H. Then |H| = 6n and φ(H) ≥ 2n. Thus

φ(H) − ‖H‖ − |H| + 1

2
≥ 2n − 3n + 1

2
≥ 2n − 3n

2
=

n

2
.
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PROBLEM 1.1 Which cubic graphs G with |G| = 2n satisfy φ(G) =
⌈
n + 1

2

⌉
?

PROBLEM 1.2 Which cubic planar graphs G with |G| = 2n satisfy φ(G) =
⌈
n + 1

2

⌉
?

While these problems are still open, a polynomial time algorithm has been ob-
tained in [17] for finding a minimum decycling set of vertices in a cubic graph. Bounds
on the decycling number of cubic graphs and expected bounds on the decycling num-
bers of random regular graphs will be reviewed in Sections 5 and 6.

Let S ⊆ V (G) and let G|S denote subgraph induced by the set S in G. Define

σ(S) =
∑
v∈S

d(v), ε(S) = ‖G|S‖

Define the outlay of S to be

θ(S) = σ(S) − |S| − ε(S) − ω(G − S) + 1.

LEMMA 1.2 Let G be a connected graph. If S is a decycling set of G, then

θ(S) = ‖G‖ − |G| + 1.

LEMMA 1.3 If G and H are homeomorphic graphs then φ(G) = φ(H).

Denote by α(G) and β(G) the independence and the covering numbers of G respec-
tively. Then these two parameters are related by the equality α(G) + β(G) = |G|.
LEMMA 1.4 For any nonnull graph G, φ(G) ≤ β(G) − 1.

Let G and H be two graphs. Then the cartesian product G×H of G and H is defined
by assigning

V (G × H) = V (G) × V (H),

E(G × H) = {{(x, y), (x′, y′)} : [x = x′ ∧ yy′ ∈ E(H)] ∨ [y = y′ ∧ xx′ ∈ E(G)]}.
THEOREM 1.1 For any graph G,

2φ(G) ≤ φ(K2 × G) ≤ φ(G) + β(G).

The equalities in Theorem 1.1 are satisfied by a graph of each possible order. For
example, if G = Kc

p, then φ(G) = φ(K2 ×G) = 0 and both equalities hold. Also, for
the equality to the lower bound, if p ≥ 2 then φ(K2 × Kp) = 2p − 4 = 2φ(Kp). The
path of order p gives equality to the upper bound.
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2 Cubes

As we have remarked in the previous section, the determination of the decycling
number of an arbitrary graph is NP -complete [14]. However, results on the decycling
number of several classes of simply defined graphs have been obtained in [5, 6, 8].

In [8], upper and lower bounds for the decycling numbers of cubes and grids were
obtained. The results in [5, 8] will be reviewed in this section.

The n-dimensional cube (or n-cube) Qn can be defined recursively: Q1 = K2 and
Qn = K2 ×Qn−1. An equivalent formulation, as the graph having the 2n n-tuples of
0’s and 1’s as vertices with two vertices adjacent if they differ in exactly one position,
gives a coordinatization of the cube. The following result of [8] gives a lower bound
on φ(Qn).

LEMMA 2.1 Let n ≥ 2. Then
(1) φ(Qn) ≥ 2φ(Qn−1).

(2) φ(Qn) ≥ 2n−1 − 2n−1 − 1

n − 1
.

For n ≤ 8, φ(Qn) was determined in [8].

n 1 2 3 4 5 6 7 8
φ(Qn) 0 1 3 6 14 28 56 112

Upper and lower bounds for the decycling nunbers of n-cubes for 9 ≤ n ≤ 13 were
also obtained in [8].

Cubes Lower bounds for φ Upper bounds for φ
Q9 224 312
Q10 448 606
Q11 896 1184
Q12 1792 2224
Q13 3584 4680

These results were improved in [5], from which all results in the remainder of this
section are cited.

LEMMA 2.2 For any bipartite graph G with partite sets of cardinality r and s with
r ≤ s, φ(G) ≤ r − 1.

Since the cartesian product of two bipartite graphs is a bipartite graph, Qn is bi-
partite. With this observation, the above upper bounds can be lowered a little. For
example, they are 255, 511, 1023, 2047 and 4095 respectively. Applying Lemma 2.1
(2), one can lift the lower bound a little as well. That is, these lower bounds can be
lifted to 225, 456, 922, 1862 and 3755 respectively. However, one can still go a little
further.

LEMMA 2.3 If e and f are two adjacent edges of the n-cube Qn, then there is a
unique 4-cycle containing {e, f}.
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COROLLARY 2.1 (1) Every edge of Qn is contained in precisely n − 1 4-cycles;
(2) If n ≥ 3, then Qn has precisely n(n − 1)2n−3 4-cycles.

Denote by ρ(u, v) the distance between points u and v. Let x0 ∈ Qn and define

Vk(Qn, x0) = {x ∈ Qn : ρ(x, x0) = k}.
Then there is a nice connection between sizes of the sets Vk(Qn, x0) and the binomial
coefficients.

THEOREM 2.1

|Vk(Qn, x0)| =

(
n
k

)
, 0 ≤ k ≤ n.

Let the two partite sets of Qn be denoted by Xn and Yn. Then |Xn| = |Yn| = 2n−1.
If x ∈ Xn, then the induced subgraph G|{x}∪N(x) is a star S(x) of order n+1 centered
at x. Call a vertex of degree 1 of a tree a leaf .

THEOREM 2.2 For n ≥ 2, let x, x′ ∈ Xn. If S(x) and S(x′) are stars then either
S(x) ∩ S(x′) = ∅ or S(x) and S(x′) have precisely two leaves in common.

THEOREM 2.3 (1) 225 ≤ φ(Q9) ≤ 237;
(2) 456 ≤ φ(Q10) ≤ 493;
(3) 922 ≤ φ(Q11) ≤ 1005;
(4) 1862 ≤ φ(Q12) ≤ 2029;
(5) 3755 ≤ φ(Q13) ≤ 4077.

To obtain the upper bounds given in this theorem, decycling sets of the given cardi-
nality were to be exhibited in each case and Lemma 2.1 (2) is to be applied. For a
proof, the reader is referred to [5].

3 Grids

Another class of graphs for which the decycling number has been studied to some
precision are the grid graphs Pm × Pn, where Pm is the path with m vertices. A
standard notation corresponding to matrix notation is to be adopted for convenience.
Thus the ith vertex in the jth copy of Pm will be denoted vi,j.

If S is a set of vertices in Pm × Pn, then S(j) will denote the vertices of S in the
jth column, and put S(j, k) = S(j) ∪ S(j + 1) ∪ · · · ∪ S(k). Let N(j) = |S(j)| and
N(j, k) = |S(j, k)|.

The following results were obtained in [8]. First is a general lower bound. This
theorem, together with Theorem 3.4, provides general asymptotic bounds for all
grids.

THEOREM 3.1 If m, n ≥ 3, then

φ(Pm × Pn) ≥
⌊
mn − m − n + 2

3

⌋
.
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THEOREM 3.2 For n ≥ 4,

(1) φ(P2 × Pn) =
⌊
n

2

⌋
;

(2) φ(P3 × Pn) =
⌊
3n

4

⌋
;

(3) φ(P4 × Pn) = n;

(4) φ(P5 × Pn) =
⌊
3n

2

⌋
−
⌊
n

8

⌋
− 1;

(5) φ(P6 × Pn) =
⌊
5n

3

⌋
;

(6) φ(P7 × Pn) = 2n − 1.

THEOREM 3.3 Let m = 6q + r and n = 6s + t with 1 ≤ r, t ≤ 6. Then

φ(Pm × Pn) ≤ min {q(2n − 1) + φ(Pr × Pn), s(2m − 1) + φ(Pt × Pm)} .

THEOREM 3.4 For m, n > 2,

φ(Pm × Pn) ≤ (m + 4)(2n − 1)

6
=

mn

3
+

8n − m − 4

3
.

THEOREM 3.5 Suppose that n ≡ 0 (mod 2) and m = 3r + 1. Then

φ(Pm × Pn) = rn − r + 1.

THEOREM 3.6 If S is a minimum decycling set of Pm × Pn with

φ(Pm × Pn) =
⌈
mn − m − n + 2

3

⌉

and
T = {vij : i = 2, 4, · · · , 3m − 2; j = 2, 4, · · · , 2n − 2}

then S ∪ T is a minimum decycling set of P2m−1 × P2n−1.

THEOREM 3.7 For any positive integers r and s

φ(P6r+1 × P4r−1) = 8rs − 4r + 1.

This theorem, obtained in [5], covers some cases other than that covered by Theo-
rem 3.5.

The problem of determining the decycling numbers of the remaining cases of the
grid graphs is open. For the cartesian products Cm × Cn, the following problem is
also open.

PROBLEM 3.1 φ(Cm × Cn) =?
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4 Snakes

In this section, a chordless cycle is referred to as a cell . A snake can be defined
recursively as follows. A snake with two cells consists of two cycles with one common
edge, one of the two cells will be designated the head and the other the tail . A snake
with n + 1 cells is obtained from a snake with n cells by identifying an edge of a new
cell with an edge of the tail of the old snake that lies on no other cell. The tail of
the new snake is the new cell, and the head remains the same. The length of a snake
is the number of its cells.

Determining a minimum decycling set for a snake is algorithmically straightfor-
ward and in [6], an exact formula for the decycling numbers of snakes was given.
Given a snake G, let v be a vertex on the head with largest possible degree. Put v
in the decycling set, then delete it along with all vertices which lie only on cells that
contain v. What remains is either a shorter snake or a single cell. Either repeating
this process on the snake which remains (where the new head is the cell originally
adjacent to the old head) or choosing any vertex from a single cell clearly results in a
decycling set S of G. That S has the minimum cardinality follows from the fact that
each vertex in S is on some cell that has none of its other vertices in S. Thus, G has
a set of |S| vertex disjoint cycles. Hence φ(G) = |S| and S is a minimum decycling
set.

Let G be a snake. A major pair is a pair of vertices of degree 3 such that the
edge joining them lies on two cells. A minor pair is a pair of vertices of degree 3 in a
cell which contains exactly two vertices of degree 4. A minor pair will be said to lie
between the two vertices of degree 4. A vertex of degree at least 4 is called a major
vertex.

Note that adding a new tail cell to an existing snake increases the degree of two
of its vertices of the old tail by 1 each. Since the new tail cell can be incident with
at most one vertex of degree at least 3 in the old snake, its addition either creates a
new major vertex, adds 1 to the degree of an old major vertex, or creates a major
pair. This idea gives a natural order, from head to tail, (u1, u2, · · · , us) to the set of
major vertices, major pairs and minor pairs. Define the name of a snake G to be the
sequence (n1, n2, · · · , ns) where

ni =

⎧⎪⎨
⎪⎩

2 if ui represents a minor pair
3 if ui represents a major pair
d(ui) if ui is a major vertex.

With this definition, there may be several snakes with the same name even if the
cells are of uniform length. It is easily seen that every finite sequence of integers
greater than or equal to 2 is the name of some snake.

Given a snake G and its name N(G) = (n1, n2, · · · , ns), define the nickname C(G)
of G (as a subset of {1, 2, · · · , s}) as follows.

(1) 1, s ∈ C(G).
(2) Assume that for i < s − 1 it has been determined whether or not each of

1, 2, · · · i is in C(G). Then
(i) If ni+1 ≥ 6, then i + 1 ∈ C(G);
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(ii) If ni+1 = 5, then i + 1 ∈ C(G) if and only if i �∈ C(G);
(iii) If ni+1 = 4 then i + 1 ∈ C(G) if and only if either ni ≥ 5 and i �∈ C(G), or

ni = 4 and i, i − 1 �∈ C(G).
With this definition, it can be shown that the decycling number of a snake whose

cells are all 4-cycles is the cardinality of its nickname. From this result the following
theorem of [6] follows.

THEOREM 4.1 Let G be a snake with nickname C(G). Then φ(G) = |C(G)|.
A subsnake of a snake G is a subgraph of G that is itself a snake. A straight segment
of a snake whose cells are all squares is a subsnake in which the vertices of each of the
shared edges is a major pair. A maximal straight segment T of a square-celled snake
G is a straight segment of G such that for each cell s �∈ T , T ∪ s is not a straight
segment of G. A square-celled snake G is said to be nonsingular if each its maximal
straight segment has at least three cells; otherwise it is said to be singular . The
segment sequence of a square-celled snake G is the sequence of lengths of maximal
straight segments of G ordered from head to tail. The following theorem was also
proved in [6].

THEOREM 4.2 If (d1, d2, · · · , dk) is the segment sequence of a nonsingular snake G,
then

φ(G) =
k∑

i=1

⌈
di

2

⌉
− k + 1.

The decycling number of a singular snake is certainly related to that of a nonsin-
gular one by means of a certain transformation (surgery) of the snake. The decycling
numbers of snakes with cell size not equal to 4 are related to those of snakes with
cell size 4 by means of simple transformations. It is therefore possible to consider
the decycling problem with restriction to square-celled snakes only.

A snake with triangular cells is a special type of triangulation of a polygon, namely
that in which every triangle contains at least one edge of the polygon. This raises
the question of decycling triangulations of polygons, or equivalently, the maximal
outerplanar graphs. In general, this seems to be considerably more complicated
than decycling snakes. At present, we content ourselves with bounds (cited from
[6]).

THEOREM 4.3 If G is a maximal outerplanar graph of order n, then

1 ≤ φ(G) ≤
⌊
n

3

⌋
.

Even an algorithm similar to that described at the beginning of this section is not
known for the computation of the decycling number of a triangulation of a polygon.
An interesting open problem is to determine the decycling number of outerplanar
graphs.

PROBLEM 4.1 Is there a fast algorithm for computing the decycling numbers of (max-
imal) outerplanar graphs?
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PROBLEM 4.2 Determine the decycling numbers of 2-dimensional trees.

Albertson and Berman [1] conjectured that every planar graph has an induced
acyclic subgraph with at least half the vertices.

CONJECTURE 4.1 If G is a planar graph, then φ(G) ≤ |G|
2

.

This is related to a theorem of Borodin [11] on the acyclic chromatic number of
a graph, defined to be the minimum number of colours in a proper colouring of the
graph so that no cycle has only two colours. From [11], we have

THEOREM 4.4 If G is a planar graph, then φ(G) ≤ 3|G|
5

.

5 Cubic Graphs

While Questions 1.1 and 1.2 remain open, bounds on the decycling number of cubic
graphs have been investigated for some time.

For a connected cubic graph G with g(G) = g, Speckenmeyer obtained in [24]
that

φ(G) ≤ g + 1

4g − 2
|G| + g − 1

2g − 1
.

This improved upon his earlier result in [23]. Zheng and Lu showed in [27] that if G
is a connected cubic graph without triangles and |G| �= 8, then

φ(G) ≤
⌈ |G|

3

⌉

thus settling a conjecture by Bondy, Hopkins and Staton in [10] in the affirmative.
A sharp upper bound for the decycling number of cubic graphs has been obtained

in [21] by Liu and Zhao and that for connected graphs with maximum degree 3 has
been obtained in [3]. Let G denote the family of cubic graphs obtained by taking
cubic trees and replacing each vertex of degree 3 by a triangle and attaching a copy
of K4 with one subdivided edge at every vertex of degree 1.

THEOREM 5.1 Let G be a cubic graph with g(G) = g. Then

φ(G) ≤ g

4(g − 1)
|G| + g − 3

2g − 2

if G �∈ {K4, Q3, W} ∪ G where Q3 is the 3-cube and W is the Wagner’s graph.
If G ∈ G, then

φ(G) =
3

8
|G| + 1

4
.
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COROLLARY 5.1 If g(G) ≥ 3 then φ(G) ≤ 3

8
|G| for G �∈ {K4} ∪ G. If G is a

connected cubic graph with g(G) ≥ 4 and G �= Q3 or W , then φ(G) ≤ |G|
3

.

THEOREM 5.2 Let G be a connected graph of maximum degree 3. If G �= K4 then

φ(G) ≤
⌊ |E(G)| + 1

4

⌋
.

The family G of graphs show the sharpness of this result.
A polynomial time algorithm to decide the decycling number of any cubic graph

has been found by Li and Liu in [17].

6 Random Regular Graphs

Working with random regular graphs using differential equation method, Bau,
Wormald and Zhou have recently studied the expected bounds on the decycling
numbers of random regular graphs. It was a little surprising that the expected upper
and lower bounds for the decycling number of random cubic graphs are the same
and the value is much smaller than the upper bound given by Liu and Zhao (see
Section 5) and are essentially the one predicted in Problem 1.1. For general random
regular graphs the expected upper and lower bounds are also strikingly close. All
results in this section are cited from [7]. In the following statements, P{E} denotes
the probability of event E.

THEOREM 6.1 Let G be a random cubic graph. Then

P

{
φ(G) =

⌈ |G|
4

⌉}
→ 1 as |G| → ∞.

Let br and Br be the numbers given in the following table.

r br Br

3 0.25 0.25
4 0.3787 0.411145
5 0.3786 0.507895
6 0.423 0.5739
7 0.461 0.6223

The upper bounds Br given in this table were obtained by demonstrating the almost
certain existence of an induced forest of order |G| −Br in a random r-regular graph
G. Differential equation method for random algorithms developed by Wormald (see
[26]) has been used to give the values of Br. The lower bounds br were obtained by
confirming that the expected number of induced forests in G with order greater than
|G|− br is asymptotically almost surely smaller than 1. The following theorem is the
special case for small values of r of one of the main results of [7].
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THEOREM 6.2 Let G be a random r-regular graph. Then for r = 3, 4, 5, 6, 7, we have

P {br|G| ≤ φ(G) ≤ Br|G|} → 1 as |G| → ∞.

7 Connectivity and Decycling

In this section, the dependency of decycling number of a graph on its connectivity
number will be considered.

Let H and J be graphs, S ⊆ V (H) and T ⊆ V (J) with |S| ≤ |T |. Let f : S → T
be an injection. An identification of H and J via f is a graph G denoted H ◦f J
obtained by identifying H and J via f and maintaining the adjacencies in the rest
of H and J . As for the adjacencies in S and T , keep all the edges E(H|S)∪E(J |T ).
Formally, for each x ∈ S, identify x and f(x), thus embedding S into T via inclusion
f . Now for G = H ◦f J ,

V (H ◦f J) = V (H) ∪ V (J),

E(H ◦f J) = E(H) ∪ E(J).

LEMMA 7.1 Let S be a (minimum) decycling set of H and T be a (minimum) decy-
cling set of J. If f : S −→ T is an injection, then T is a (minimum) decycling set
of H ◦f J.

Proof : Since S and T decycle H and J , T is a decycling set of H ◦f J . H ◦f J −T is
a forest that is the union of forests H − S and J − T . If S is a mimimum decycling
set of H and T is a minimum decycling set of J , then T is a minimum decycling set
of H ◦f J . To see this, let T ′ be any decycling set of H ◦f J such that |T ′| < |T |.
Then since φ(J) = |T |, T ′ cannot decycle J . Let C be a cycle of J − T ′. Then C
must also be a cycle of H ◦f J −T ′ since J−T ′ is an induced subgraph of H ◦f J −T ′.
The proof is complete.

Denote by κ(G) the connectivity of G.

LEMMA 7.2 If φ(G) = k then κ(G) ≤ k + 1.

Proof : Let S be a decycling set of G with cardinality k = φ(G). If κ(G) ≥ k + 2,
then G − S is 2-connected, and hence G − S is not a forest. This contradicts the
choice of S. Hence κ(G) ≤ k + 1, and the lemma follows.

Let G be a (k + 1)-connected graph with φ(G) = k. Since G is not (k + 2)-
connected, κ(G) = k + 1. Let S be a minimum decycling set of G. Then G − S is a
connected acyclic graph, i.e., a tree. Thus G can be obtained by joining a set S to
a tree of order at least k in a way so as to make G a (k + 1)-connected graph.

THEOREM 7.1 Let φ(G) = k. Then κ(G) = k + 1 if and only if for each S ⊂ V (G)
with |S| = k, G − S is a tree.
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Proof : Let κ(G) = k +1 and S be a minimum decycling set of G. Since G is (k +1)-
connected and φ(G) = k, G − S is connected. Since S is a decycling set, G − S is
acyclic. Hence G − S is a tree. On the other hand, assume that G − S is a tree for
each S ⊂ V (G). Then since G − S, being a tree, is connected, hence κ(G) ≥ k + 1.
By Lemma 7.2, κ(G) ≤ k + 1 since φ(G) = k. Therefore κ(G) = k + 1 and the proof
is complete.

8 Decycling and Codes

The capacity of error correction of a code is measured by a certain distance defined
over the set of codewords (see [20] or [22]). Nonlinear codes are used in order to
obtain a largest possible number of codewords with a given minumum distance (in
this, nonlinear codes have advantages over linear ones). An (n, M, d)-code is a set
of M vectors of length (dimension) n in a vector space V (F) over a division ring F
such that the (Hamming) distance between any two vectors is at least d, and d is
the smallest number with this property. A binary code is obtained if F = GF (2).

A binary vector (a1, · · · , an) of length n is just a vertex of the n-cube Qn. An
(n, M, d)-code C is a subset of V (Qn). A code with a good error correction capacity
is a choice of as many vertices as possible from Qn while the distance between every
pair of vertices in C is as large as possible. This is a packing problem: if the code
has minimum Hamming distance d, the Euclidean distance between codewords is
≥ √

d. Finding an (n, M, d)-code is equivalent to finding M non-overlapping spheres

of radius

√
d

2
with centers at vertices of Qn. It should be clear from the definition of

Qn that the Hamming distance between two codewords is just the distance between
the two vertices in Qn. If a set of vertex disjoint stars in Qn can be obtained from
Qn − S where S is a minimum decycling set of Qn, then the centers of these stars
give rise to an (n, M, d)-code C with a reasonable d and a large M . For example,
in Theorem 2.3, φ(Q9) ≤ 237 and there is a decycling set S of 237 vertices such
that Q9 − S consists of 19 vertex disjoint stars. The set of the centers of these stars
provide a (9, 19, 4)-code. This is a nonlinear binary code with 19 codewords each
having length 9 that corrects any one error in the digits.
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