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Abstract

We study polar visibility graphs, graphs whose vertices can be repre-
sented by arcs of concentric circles with adjacency determined by radial
visibility including visibility through the origin. These graphs are more
general than the well-studied bar-visibility graphs and are characterized
here, when arcs are proper subsets of circles, as the graphs that embed
on the plane with all but at most one cut-vertex on a common face or
on the projective plane with all cut-vertices on a common face. We also
characterize the graphs representable using full circles and arcs.

1 Introduction

Bar-visibility graphs (BVGs), introduced in [TT1, Wi], have been studied by graph
theorists [MR, T, CJLW] and by theoretical computer scientists interested in graph
drawing. BVGs are graphs that can be represented in the plane, vertices by horizontal
line segments and edges by vertical visibility between segments. Generalizations are
obtained by considering such layouts on the sphere and cylinder [TT2, TT3], on the
torus [MR], and on the Möbius band [D], and also by considering rectangles in the
plane with horizontal and vertical visibilities [BDHS, DH1, DH2, HSV].

In contrast we consider arcs of concentric circles (arcs that are proper subsets
of a circle) with radial visibility, including visibility through the origin, the center
of all the concentric circles. We show that these graphs, though arising naturally
from visibility in the plane, correspond to graphs that embed on the (real) projective
plane, the nonorientable surface of Euler characteristic 1. We call graphs with such
layouts polar visibility graphs (PVGs) and characterize these as the planar graphs
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that can be drawn in the plane with all but at most one cut-vertex on a common face
plus the graphs that can be embedded on the projective plane with all cut-vertices
on a common face. We also consider the variation in which full circles are allowed
along with arcs, and characterize the graphs so representable (CVGs) in terms of
their block-cutpoint tree.

Preliminary results of this work are announced in [H1], and [H2] contains a proof
of a simplified version of Theorem 2.2. Here we create more complex layouts of PVGs
than in [H2] in order to allow extension to CVGs.

2 Background

A bar-visibility graph is one whose vertices can each be represented by a closed
horizontal line segment in the plane, with segments having pairwise disjoint relative
interiors, and with two vertices adjacent in the graph if and only if the corresponding
segments are vertically visible. Two segments are considered vertically visible when
there is a nondegenerate rectangle R such that R intersects only these two segments,
and the horizontal sides of R are subsets of these two segments. These graphs are
characterized in [TT1, Wi] as those planar graphs that can be embedded in the plane
with all cut-vertices on a common face. Figure 1a shows a bar-visibility layout (a
bv layout) of K2,3 with two additional vertices of degree 1 appended, one each to a
vertex of degree two; we call this graph K2,3 +2e. There exist linear-time algorithms
to detect and then layout BVGs; see [O]. We use graph theoretic terminology as in
[We] and topological notions as in [MT].

Figure 1a. K2,3 + 2e as BVG; 1b. same graph as PVG

As was suggested by a Macalester student, Michael McGeachie, we shift from
rectangular to polar-coordinate representations and visibility, using arcs of circles
(and later full circles) all centered at the origin with radial visibility. Throughout
this paper, by an arc we mean a proper subset of a circle. Just as visibility wider
than along a line is required for BVGs, we now ask that radial visibility be available
through a nondegenerate cone, rather than just along a line. Define a (nondegen-
erate) cone in the plane to be a 4-sided region of positive area with two opposite
sides being arcs of circles, centered at the origin, and the other two sides, possi-
bly intersecting, being radial line segments on lines through the origin. Thus, both
{(r, θ) : 1 ≤ r ≤ 2, 0 ≤ θ ≤ π/6} and also {(r, θ) : 0 ≤ r ≤ 1, 0 ≤ θ ≤ π/6 or π ≤
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θ ≤ 7π/6} = {(r, θ) : −1 ≤ r ≤ 1, 0 ≤ θ ≤ π/6} are considered to be cones, re-
spectively, not containing and containing the origin. Given a set of arcs, all centered
at the origin, two of these arcs a1 and a2 are said to be radially visible if there is
a cone that intersects only these two arcs and whose two circular ends are subsets
of the two arcs; the same definition holds for visibility between an arc and a circle
and between two circles. A graph is called a polar visibility graph if its vertices can
be represented by arcs, including endpoints, of circles centered at the origin, having
pairwise disjoint relative interiors, so that two vertices are adjacent if and only if the
corresponding arcs are radially visible. If x is a vertex of a PVG, we typically let ax

denote its arc in the layout, and conversely xa is the vertex corresponding to an arc
a. (If this model is used, but without visibility through the origin, the graphs arising
are one of the cylindrical types characterized in [TT2]. In [D] PVGs are shown to be
equivalent to a layout of bars on the Möbius band.)

In Fig. 1b is a polar visibility layout (or pv layout) of the graph of 1a, and shown
in Figure 2a is a pv layout of K6. Note that for a 2-connected graph there is no loss in
taking arcs as proper subsets of circles since a full circle can be cut down to a smaller
arc, leaving the same visibilities, for otherwise it represents a cut-vertex. Arcs in a
pv layout spanning more than half its circle will provide interesting variations, full
circles even more.

Figure 2a. A pv layout L of K6; 2b. I(L) and I(L)∗ on the projective plane

Figure 2c. For G = K6, I(LG) = (I(L))G on the projective plane
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Similarly a graph is called a circular visibility graph if its vertices can be repre-
sented by arcs and circles with radial visibility between arcs, arcs and circles, and
circles determining edges as for PVGs. When possible we prefer, but do not require,
arcs over circles; that is, in a layout we will decrease a circle to become a proper arc
if no additional visibilities are introduced. As above we let {x, cx} and {xc, c} be
corresponding pairs of vertices and circles in a CVG and its layout. We shall see that
some planar and projective planar graphs with cut-vertices on an arbitrary number
of faces are CVGs, but not PVGs, but that these faces must be nested appropriately.
In Figure 3 is shown such a planar CVG. In that layout the inner circle contains one
arc; if instead, four mutually visible arcs are placed within that circle, encircling the
origin, to form a K5 with the innermost circle, the example becomes a nonplanar
CVG.

Note that in a pv or cv layout L of a graph G, we may draw each arc and circle
on a distinct circle, and we may take these circles to have radii 1, 2, . . . , n where
n = |V (G)|. This naturally leads to another layout of the graph in a disc of radius
n+1 and centered at the origin by inverting each circle and arc through the circle of
radius (n + 1)/2. That is, each point with polar coordinates (r, θ), 0 < r < n + 1, is
mapped by the inversion to the point (n + 1− r, θ). This inversion preserves circles,
arcs, and the angles defining these arcs. If the original layout was L, we denote this
inverted layout by I(L); see Fig. 2b.

Recall that the (real) projective plane can be obtained by taking a circular disc
and identifying opposite (or antipodal) points. Thus if we identify opposite points
of the circle of radius n + 1, we create a projective plane. Two arcs in I(L) (or an
arc and a circle or two circles) that were previously radially visible in a cone, not
containing the origin, are still radially visible, and a pair visible in a cone through
the origin are now visible in a “generalized cone” that crosses the boundary of the
projective plane, reemerging on the other side. The coordinates of such a generalized
cone are given by {(r, θ), r∗ ≤ r ≤ n + 1 or − (n + 1) ≤ r ≤ −s∗, θ1 ≤ θ ≤ θ2}
where r∗, s∗, θ1 < θ2 are constants, 0 ≤ r∗, s∗ < n + 1. In addition, the interior of
no two of these new cones intersect. Fig. 2b shows the inverted layout of K6 on the
projective plane with dashed lines indicating a conical area of visibility. The first
proposition is then clear since each inverted arc and circle on the projective plane
can be replaced by a single vertex. Then the visibility cones can each be shrunk and
transformed to a set of nonintersecting edges on the projective plane.

Proposition 2.1 A PVG or a CVG embeds on the projective plane.

Consequently all PVGs and CVGs embed either on the plane or on the projective
plane. For consistency we primarily describe the layouts as arc and circle layouts in
the plane with radial visibility, including visibility through the origin.

In the next section we prove the following, more definitive characterization of
PVGs. Recall that a graph G is said to embed on a surface S if it can be drawn
there without any edge crossing, and that each maximal connected component of
S \ {V (G), E(G)} is called a face of the embedding (we do not require that faces
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be simply connected). A graph is said to be plane (respectively, projective plane) if
it is planar and embedded in the plane (resp., if it can be and is embedded in the
projective plane.) For a plane graph one face is the infinite, exterior face and the
others are finite, interior faces. If the graph were considered to be embedded on the
sphere, all faces would be interior, but in the plane and similarly for pv and cv layouts
in the plane there is one distinguished face, the external and infinite one. For graphs
on the projective plane, all faces are interior though one will be the representative
of the external face of the layout.

Theorem 2.1 A graph G is a PVG if and only if either a) G has an embedding in
the plane with all but at most one cut-vertex on a common face, or else b) G has an
embedding on the projective plane with all cut-vertices on a common face.

Note that condition a) allows for the representation of planar graphs that are not
BVGs; for example K2,3 with three additional vertices of degree 1 appended, one
each to a vertex of degree two (K2,3 + 3e), is a PVG. Similarly K4 + 4e is a PVG
(see Fig. 7); these are the smallest graphs that are not BVGs. Condition b) also
allows for more planar graphs; for example, two vertices joined by three internally
disjoint paths of length three (i.e., three edges each) plus six vertices of degree 1,
each adjacent to a different vertex of degree two, satisfies b), but not a).

Recall that a graph is said to be 2-connected if it contains at least three vertices
and the deletion of any vertex and its incident edges leaves the graph connected.
Then every graph G can be decomposed into its blocks and their connecting cut-
vertices (a block is either an edge or a maximal 2-connected subgraph; see [We]),
and that these connections determine a tree, called the block-cutpoint tree of the
graph, BC(G). This tree has a vertex for each block and for each cut-vertex of G,
and two vertices of BC(G) are adjacent if and only if they correspond to an incident
cut-vertex and block. We call a block planar if it represents a planar graph.

Theorem 2.2 A graph G is a CVG if and only if the vertices of BC(G) can be
partitioned into three sets P , Q, and R, where

0) P = (b1, b2, . . . , b2k+1), k ≥ 0, is a path with each b2i representing a planar
block, i = 1, . . . , k;

1a) Q is a nonempty block adjacent to b1, representing a (2-connected) projective
planar graph, or

1b) Q is a set of one or more (nonempty) planar blocks, all adjacent to b1; and

2) R is an arbitrary tree structure adjacent to b2k+1, such that R ∪ {b2k+1} repre-
sents a planar graph that can be drawn in the plane with all cut-vertices, except
possibly for that representing b2k+1, on a common face.

Note that when k = 0, b1 = b2k+1, and these conditions reduce to those of
Theorem 2.2. On the other hand, it may be that each cut-vertex of G, represented
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by b1, b3, . . . , b2k+1, lies on a different face, as in Figure 3. The example of Fig. 3 is
the first of an infinite family with an increasing number of cut-vertices on different
faces. Draw K4 in the plane with vertices labeled {1, 2, 3, 4}, placing 4 in the interior,
and add a pendant edge to 1, making it a cut-vertex. Subdivide the triangle {2, 3, 4}
with a new vertex 5 adjacent to all of these. Vertex 5 becomes the second cut-vertex
by joining it to all vertices of a triangle on {6, 7, 8}, placed within face {2, 3, 5} with 8
lying inside the triangle {5, 6, 7}. Then add 9 adjacent to all vertices of {6, 7, 8} plus
a pendant edge to 9 giving the graph represented in Fig. 3. If instead 9 is joined to
a triangle on {10, 11, 12} with 12 in the interior of {9, 10, 11}, then 9 is a cut-vertex,
and additions can be made to 12 so that it becomes a cut-vertex, and in this graph
all cut-vertices lie on different faces in any planar embedding. The layout of Fig. 3
is easily extended with concentric layouts to form such a family of CVGs.

Figure 3. A CVG that is not a PVG.

As described in [O, We], planar layouts and the block-cutpoint tree of a graph can
be determined in linear time. Projective planar graphs can also be recognized and
embedded in linear time [M]. It can quickly be determined whether all cut-vertices
of a graph lie on a common simple cycle and, if so, whether there is an embedding
in either surface in which this cycle bounds a face. More details can be found in [M,
MT].

3 Main results on PVGs

Of course, all planar graphs can be embedded in the projective plane, in a con-
tractible region, and we first consider such graphs and their layouts as PVGs with
no visibilities through the origin. Then using arcs that span more than one half of
a circle, we see how to get more planar graphs than those representable as BVGs,
namely those with one additional cut-vertex. The main concern in these cases is to
avoid unwanted visibilities. Finally we turn to the case when the pv layout corre-
sponds to an embedding on the projective plane. We develop theory to be useful
also with CVGs, but study these in detail in Section 4.

We focus on simple graphs, and in Theorems 2.2 and 2.3 we are primarily charac-
terizing the simple graphs that are PVGs and CVGs. More precisely, in our definition
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of radial visibility and its application to PVGs and CVGs, we say two arcs are radi-
ally visible if there is at least one maximal cone providing mutual visibility. Thus we
allow multiple visibility and in some cases self-visibility. One can learn more precise
results for multigraphs by keeping track of distinct multiple and self-visibility as they
arise or are avoided in the various proofs.

First we need more precise topological and geometric definitions. Let L be a pv
or cv layout of a graph G and I(L) the inverse layout on the projective plane. We
let L∗ (respectively, I(L)∗) denote the visibility depiction obtained by shrinking each
maximal visibility cone of L (resp., I(L)) to a distinct line segment by reducing its
angles b1 ≤ θ ≤ b2 to some constant θ = b, b1 < b < b2; strict inequality ensures
distinct visibility segments. For G = K6, I(L)∗ is shown in Fig. 2b.

Also let LG (resp., I(L))G) denote the graph obtained from L∗ (resp., I(L)∗), as
in the proof of Prop. 2.1, by replacing each arc or circle by a vertex, and transforming
each visibility line segment to an edge that intersects no other edge except possibly
at the origin (resp., an edge that intersects no other edge on the projective plane).
Thus (I(L))G is a graph embedded on the projective plane; see Fig. 2c for an example
when G = K6. Note that L∗, I(L)∗, LG, and (I(L))G have visibility segments and
edges for each distinct, maximal visibility cone so that multiple edges and loops may
be present in these depictions; however, a pair of multiple edges will not form an
embedded interior digon (a 2-sided face) with empty interior. We shall see that there
can be loops incident with at most one vertex in a PVG or CVG.

Note that the complement of the arcs, circles, and lines of L∗ divide up the plane
into faces; similarly I(L)∗ divides up the projective plane. One face of L∗ is the
infinite, exterior face, possibly containing the origin; this exterior face is the one in
which most cut-vertices of a PVG and their blocks can be placed. We say that an
arc or circle of a layout L lies on the exterior face if it lies on the exterior face of L∗.

In a simple graph G, the contraction of an edge e = {x, y} produces the graph
G/e with x and y identified to become a new vertex x∗, with e removed, and any
set of multiple edges replaced by a single edge. In a multigraph an edge e = {x, y}
is said to be simple (respectively, multiple) if vertices x and y are not (resp., are)
joined by an additional edge. If G is a multigraph embedded on any surface and e
a nonloop edge, G/e is the multigraph embedded on the same surface, obtained by
contracting e on the surface to become a new vertex x∗ and removing e. Depending
on the situation, multiple edges at x∗ (formed when e lies on a 3-cycle) are retained or
eliminated by deleting multiple edges. No new loops are introduced in the formation
of G/e if and only if e is a simple edge.

We need the following variation on an elementary (non-topological) lemma, whose
proof appears in [H2] and is similar to that of [MT, Lemma 1.4.5]; a similar contrac-
tion proof for general 2-connected graphs is even more easily found; see [We, p. 174,
Exer. 4.2.15].

Lemma 3.1 Let G be a loopless, 2-connected graph with at least 4 vertices, embedded
in the plane (respectively, on the projective plane) with at most one interior digon
face. Then G contains an edge e such that G/e is loopless, 2-connected, and plane
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(resp., projective plane) with at most one interior digon face.

We apply Lemma 3.1 in Proposition 3.6 to embedded loopless multigraphs on
the plane or projective plane, and with the exceptions described there, we delete
any multiple edge that forms a digon with empty interior after the contraction of e,
occurring when e lies on a triangular face.

We use the following combinatorial description of an embedded graph and of a
pv or cv layout. If a graph is embedded on any surface, then for each vertex there is
naturally defined a local cyclic rotation of its incident edges, given by the order, say
clockwise, of its edges in the embedding; such a collection of rotations, one for each
vertex, is called a rotation system. (See, for example, [MT, Wh] where it is shown that
an embedding in an orientable surface is equivalent to a rotation system.) Two graphs
embedded on the same orientable surface are said to be equivalent if at each vertex the
corresponding rotations agree. For graphs on the (nonorientable) projective plane
it is not possible to assign an orientation consistently throughout the surface. In
any one depiction of a graph on this surface (with all vertices located within the
disc representing the projective plane), a clockwise direction can be assigned at each
vertex to give a rotation system, but there are other “equivalent” representations of
this embedding. In addition, a signature is needed, an assignment of ±1 to each edge
— for example, in the disc depiction we may assign +1 to each edge contained wholly
within the disc and −1 to each edge that crosses the boundary of the disc. Then in
general an embedding in any surface is equivalent to a set of rotations of incident
edges, one at each vertex, and a signature assignment to edges representing local
consistency [MT]. An edge e = {x, y} is assigned +1 (respectively, −1) if in a local,
contractible neighborhood of e the rotation orientation at x and y agree (resp., are
reversed). Such an assignment is called an embedding scheme. Two graphs embedded
on the same surface are said to be equivalent if, by a series of local reversals at a
vertex and its incident edges, the embedding scheme of one can be transformed into
the other’s. (See [H2] and [MT] for more details.)

We obtain similar embedding schemes for layouts of PVGs and CVGs. Given a
pv layout L in the plane (respectively, an inverse layout I(L) in the projective plane),
one can define the arc-rotation scheme to be the set of cyclic rotations of neighbors
about each arc of its visibilities to other arcs plus the assignment of +1 or −1 to each
visibility cone according as it does not or does pass through the origin (resp., does
not or does cut across the disc boundary); note that the rotations at the arcs of L
and of I(L) are inverses of each other. We say that an embedding of a PVG graph G
in the plane or on the projective plane and its polar visibility layout L are equivalent
if the arc-rotation scheme of I(L), when translated into a set of vertex-neighbor
cycles and an edge-signature, yields the embedding scheme of the embedded graph;
see Fig. 2. Given a circle in a cv layout L or I(L), the neighbors divide into two
cyclic rotations of the inner and outer visibilities, called the circle-rotation scheme.
Then a drawing of a CVG and its layout L are equivalent if the arc/circle-rotation
scheme of I(L) agrees with that of the embedded graph. These embedding schemes
and their equivalences will be needed in Proposition 3.6.
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Proposition 3.2 A connected graph has a polar visibility layout with no visibilities
through the origin if and only if the graph is a BVG.

Proof. If G is a BVG with a (rectangular) layout L in the plane, we may as-
sume without loss of generality that the layout lies within the rectangular region R
bounded by 0 ≤ x ≤ 1 and 0 ≤ y ≤ n + 1 where n = |V (G)|; see Fig. 1a. The
resulting PVG is easily obtained by mapping horizontal lines y = r, r = 1, 2, . . . , n,
(and the bars on them) into circles (and their subarcs) of radius r. Specifically, map
each point (x, y) in R to the point with polar coordinates (r, θ) = (y, (1 − x)π/2),
giving a pv layout in the first quadrant; see Fig. 1b. The resulting layout has no
visibility through the origin.

Conversely if G is a PVG laid out with no visibilities through the origin, then
we may suppose the arcs of the layout lie on circles of radius r = 1, 2, . . . , n where
n = |V (G)|. Then (perhaps after a rotation of the entire layout) there are angles
0 < θ1 < θ2 < . . . < θ2k+1 ≤ π such that all arcs of the layout span angles lying in
[0, θ1]∪ [θ2, θ3]∪ . . .∪ [θ2k, θ2k+1]∪ [π+θ1, π+θ2]∪ [π +θ3, π +θ4]∪ . . .∪ [π+θ2k+1, 2π]
with no arcs in the intervening angles. But notice that this layout can be redrawn,
depicting the same graph, by reflecting the arcs lying within [π, 2π] through the
origin. Hence in this case we may assume that arcs of the layout span angles lying
between 0 and π. Then the inverse map of the one above, taking each point (r, θ) to
(x, y) = (1 − θ/π, r), will map the pv layout into a BVG representation within the
rectangle bounded by 0 ≤ x ≤ 1 and 0 ≤ y ≤ n + 1. �

Of course there are planar graphs with layouts as PVGs including visibilities
through the origin and with arcs representing cut-vertices on the exterior face. Note
that whenever there are visibilities through the origin in a layout L, then the equiva-
lent graph (I(L))G is embedded on the projective plane. It turns out that in some pv
layouts there is a (sneaky) hiding place for a cut-vertex and its connecting blocks, but
the resulting graphs turn out to be planar. In a pv layout we call an arc a∗ a long arc
if its angular span is greater than π. Suppose a∗ = {(r∗, θ), 0 ≤ θ ≤ π+x}, for some
x, 0 < x < π. Then the cone defined by C(a∗) = {(r, θ), −r∗ ≤ r ≤ r∗, 0 ≤ θ ≤ x}
is an area in which interior arcs can see the arc a∗ and possibly no others. (For an
example, see Fig. 7.) If C(a∗) is empty, a∗ has self-visibility (and so a loop could be
added to xa∗ to depict this); if C(a∗) is nonempty, the arcs within can be extended
to block self-visibility for a∗.

Let a∗ be a long arc at radius 1, spanning θ1 ≤ θ ≤ θ1+π+x for some x > 0. Arcs
a∗ and b∗ are called a long-arc pair at the origin if they are mutually visible, together
they span at least 2π, and if b∗ lies at radius r∗ > 1, no arcs intersect the long-arc
cone {(r, θ) : 0 ≤ r < r∗, θ1 + π + x < θ < θ1 + 2π}. (For example, when r∗ = 2, no
arcs can meet the designated cone when all arcs have integral radii.) Similarly if a∗

is a long arc at the outermost radius n = |V (G)|, spanning θ2 ≤ θ ≤ θ2 + π + y for
some y > 0, then a∗ and b∗ are a long-arc pair at infinity if they are mutually visible,
together span 2π, and if b∗ lies at radius r∗ < n, no arcs intersect the long-arc cone
{(r, θ) : r∗ < r < n, θ2 + π + y < θ < θ2 + 2π. For examples, see Fig. 5. The arc
a∗ of a long-arc pair at the origin always has visibility to itself, but later we will be
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using this configuration when arcs are to be added to C(a∗). Notice that in long-arc
pairs the long arc at radius 1 or at radius n could be extended to form a full circle
without changing visibilities; such extensions will be needed for our representation
of CVGs.

Proposition 3.3 Let G be laid out as a PVG L including a long arc a∗ that repre-
sents a cut-vertex x∗, not lying on the exterior face, and let B be a block of G incident
with x∗ and whose representation lies within C(a∗) in L. Then G is a planar graph
and can be drawn in the plane with one face including all vertices whose arcs lie on
the exterior face of L.

Proof. Since a∗ represents a cut-vertex xa∗ to which B is connected, then within
C(a∗) lies a cone C ′ = {(r, θ), −r∗ ≤ r ≤ r∗, x1 ≤ θ ≤ x2, with 0 < x1 < x2} in
which lie only arcs representing vertices of B. Note that in I(L) the arc I(a∗) will also
be a long arc, and in forming (I(L))G, a∗ and the cone C ′ are transformed into vertex
xa∗ and a “generalized” cone on the projective plane; more specifically the projective
plane is divided by xa∗ and C ′ into two connected regions as shown in Figure 4 with
no vertex or edge of (I(L))G lying on or crossing the regional boundary. A graph
so represented is clearly planar, and the corresponding planar embedding has a face
that was derived from the face containing the origin in I(L), which corresponds to
the exterior face of L, but may include additional vertices. �

Figure 4. A division of the projective plane into two planar pieces

If G and L are as in Prop. 3.3, note that the embedding of G that is equivalent
to L is actually an embedding of G in the projective plane, but this proof shows how
the embedding can be redone, giving a planar embedding of G.

For the layout of graphs with cut-vertices we need the following special sorts of
layout, as given by the algorithm described in [O] for 2-connected graphs.

Proposition 3.4 Let G be an edge or a 2-connected, loopless, plane graph with no
interior digon face, and c a designated vertex on the exterior face F . If d is a neighbor
of c with edge (c, d) lying on F , then there is a bar-visibility layout L equivalent to
G with bottom-most bar representing c, top-most bar representing d, with both bars
extending the entire width of the layout, and with F represented as the external face
of L. In addition if F = (c, d, x1, . . . , xk), k ≥ 1, the bars representing the vertices
on F can all have collinear right (respectively, left) endpoints, and visibility between
c and d is along their left (resp., right) endpoints.
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The importance of this proposition is that only bars c and d have visibilities to the
outside of the layout. And such a bv layout can be transformed into a pv layout as
in the proof of Prop. 3.2, spanning whatever angle is needed, and with F becoming
the exterior face of the layout.

Proposition 3.6 will be the necessary topological argument needed to characterize
planar and projective planar PVGs (and later CVGs); it is a contraction proof similar
to that of [H2, MR, T] and is the central result that allows for the PVG and CVG
characterizations. For this result we consider special classes of multigraphs, those
embedded in the plane (respectively, on the projective plane) with at most one (resp.,
with no) interior digon face with empty interior as designated below. In embedded
graphs equivalent to pv or cv layouts there are three types of possible multiple edges:
those bounding the infinite face of the plane, those bounding an interior region with
nonempty interior, and a noncontractible 2-cycle on the projective plane. For these
classes of multigraphs we achieve layouts with a 1–1 correspondence between distinct,
maximal visibility cones and edges of G with possibly a loop created by a long arc
at the origin in some cases. The layouts are unusual with the presence of the long-
arc pairs, pairs needed for extension to CVGs; in [H2] less constrained pv layouts
are obtained for 2-connected planar and projective planar graphs. Note that a pv
layout L may have (a1, b1) as a long-arc pair at the origin or at infinity though
vertices xa1 and xb1 lie on all non-digon faces; e.g., if a1 spans 0 ≤ θ ≤ 3π/2 and b1

17π/12 ≤ θ ≤ 2π, the arcs for the other vertices on a face incident with xa1 and xb1

can be incident with the line θ = 2π.

There is flexibility in the layout of PVGs, although sometimes there seems to
be less. It is not hard to see (by experimentation or as in [H2] or [LMW]) that a
bar-visibility or polar visibility representation of an interior face with four or more
edges, must have bars or arcs with repeated or collinear endpoints. For example,
the layouts of Fig. 1a and b have, respectively, collinearities among the bars (resp.,
arcs) with y-coordinates (resp., radii) 2, 3, and 4, for these represent vertices lying
on a face of four edges in the embedded graphs, but the collinearities between the
bars (resp., arcs) with y-coordinates (resp., radii) 1 and 5 can be easily eliminated
by extending or contracting the corresponding elements. In fact, collinearities on
the external face can always similarly be eliminated, but collinearities must always
arise to represent an interior face with more than three edges. To prepare for one
problematic type of collinearity [S], we prove the following.

Lemma 3.5 Let L be a polar visibility layout, equivalent to a plane or projective
plane graph G, and suppose there are arcs A = (a1, . . . , ak) that are consecutive and
collinear along a ray θ = θ∗. Then there is an ε > 0 so that L and the arcs of A can
be altered to have collinearities along the line θ = θ∗ + ε or θ∗ − ε.

Proof. We may assume that A is a maximal collection of collinear arcs, and we do
not assume that all arcs of A lie on the same side of the ray. For a sufficiently small
angle ε, if there are no arcs in the (infinite) cone C∗ = {(r, θ), θ∗ ≤ θ ≤ θ∗ + ε}, then
the arcs can each be extended or contracted (depending on which side of the ray they
lie) by ε so that they remain collinear along the ray θ = θ∗ + ε, without changing any
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other visibilities. Otherwise there is an arc a0 that enters and crosses the cone C∗ at
radius less than that of a1 or an arc ak+1 that similarly crosses C∗ at radius greater
than that of ak. Again the arcs of A can each be extended or contracted by ε to
become collinear along the ray θ = θ∗ + ε. Arc a1 cannot gain unwanted visibility to
a0 by expansion, for then A was not a maximal collection, and cannot lose visibility
to a0 by contraction when ε is chosen sufficiently small. Similarly arc ak will not
become incorrectly visible or invisible to ak+1. This same alternation may also be
done to move the collinearity to the line θ = θ∗ − ε for ε sufficiently small. �

Proposition 3.6

(i) Let G be a loopless 2-connected plane multigraph with exterior face F (possibly
a digon), and let c be a vertex of G. When c does not lie on F , G may have
at most one interior digon face, which must then be incident with c. Then
G′ = G plus a loop at c has a polar visibility layout L′ in which all vertices of
F are represented on the exterior face of L′ and (ac, ak) is a long-arc pair at
the origin for some neighbor xk of c. In addition, G′ has an embedding on the
projective plane that is equivalent to L′.

(ii) Let G be a loopless 2-connected plane multigraph with v1 and v2 designated,
distinct vertices and with no interior digon face. Then G′ = G plus a loop at
v2 has a polar visibility layout L′ with vi represented by arc ai, i = 1, 2, with
(a1, b1) a long-arc pair at infinity, and with (a2, b2) a long-arc pair at the origin,
where for i = 1 and 2, arc bi corresponds to some neighbor of vi. Also G′ has
an embedding on the projective plane that is equivalent to L′.

(iii) Let G be a loopless 2-connected multigraph with a 2-cell embedding on the pro-
jective plane with face F and with no digon face except possibly for F (respec-
tively, with no digon face and with v1 a designated vertex). Then G has a polar
visibility layout L that is equivalent to the embedding of G with exterior face
corresponding to F (resp., with v1 represented by arc a1 with (a1, b1) a long-arc
pair at infinity and with arc b1 corresponding to a neighbor of v1.)

Proof of (i). Let G be as given and suppose c lies on F = (c, d, x1, . . . , xk), k ≥ 0.
The graph G is a BVG and by Prop. 3.4 and Prop. 3.2 can be laid out as a PVG
in the first quadrant with ac at radius 1, with ak representing xk visible to ac along
the ray θ = 0, and with exterior face corresponding to F . Without loss of generality
suppose ac spans 0 ≤ θ ≤ π/2 and is visible to ak through 0 ≤ θ ≤ x. Then ac can
be shifted and extended to span x ≤ θ ≤ 3π/2 and ak can be extended to include
the span −π/2 ≤ θ ≤ x so that we have (ac, ak) retain the same number of mutual
visibilities and become the needed long-arc pair at the origin with long-arc cone
spanning −π/2 ≤ θ ≤ x.

Otherwise c does not lie on F and we proceed by induction on n. When n = 3,
the graph can have at most 5 edges, and layouts of all possibilities are either in
Figure 5 or are close variations to these. In general suppose n ≥ 4 and let F ′ be the
face incident with c with the fewest boundary edges, possibly only two. By Lemma
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3.1, there is a simple edge e = {x, y} of G so that G/e is 2-connected. We contract
e to form a new vertex x∗. Set F ∗ (respectively, F ′∗) to be F or F/e if e lies on F
(resp., F ′ or F ′/e if e lies on F ′). Let c∗ = c or x∗ if x or y is c. If e lies on a 3-sided
face {x, y, z}, other than F or F ′, in G/e, x∗ and z are joined by a single edge, but
on F/e or F ′/e this face becomes a digon.

Figure 5. Layouts of planar PVGs with n = 3.

Then G/e satisfies the inductive hypothesis with face F ∗ and vertex c∗ and so
has a pv layout Le with vertices of F ∗ on the exterior face, and long-arc pair (ac∗, ak)
at the origin for some neighbor xk of c∗ in G/e. Let G′′ be G/e plus a loop at c∗,
embedded on the projective plane equivalent to Le. Let a∗ be the arc representing x∗

at, say, radius r. First suppose a∗ �= ac∗ or ak so that a∗ is not part of Le’s long-arc
pair at the origin, and consider the arc-rotation at a∗. Arc a∗ will be replaced by two
mutually visible arcs ax and ay at radii r− .5 and r + .5 (or vice versa), representing
vertices x and y of G, so that together they span the same angle as did a∗, their
visibilities give all edges incident with x and y and preserve the arc-rotations at x
and y in G: consider a∗ as shown in Figure 6a. There the visibilities to ax are shown
with dashed lines and those to ay with solid lines. In that example ax would be
placed at radius 3.5, spanning (roughly) π/4 to π/2, and ay at radius 2.5 spanning
0 to π/3. In general, because the embeddings of G′′ and Le are equivalent, the lines
of visibility to arcs representing vertices adjacent to x in G are consecutive in the
rotation of visibility lines about a∗.

There is one possibly difficult case in determining the splitting points for ax and
ay and their overlap [S]; these were π/4 and π/3 in Fig. 6a. Note that, as in Fig. 6a,
it may be that both ax and ay have visibility to another arc, there an arc at radius
5, and so there is choice throughout an interval of where one’s visibility outwards
ends and the other’s begins, and overlap between ax and ay can be achieved within
that interval. If in contrast as in Fig. 6b, ax had visibility to an arc like a4 at radius
4, but not to a5 at radius 5, whereas ay had visibility to a5, but not to a4, then the
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division point for a∗ is uniquely determined at some fixed angle θ∗. If on both sides
of a∗, inward and outward as shown in Fig. 6b, the division point between ax and
ay, dictated by their visibilities, is exactly θ∗, then a∗ must be divided into ax and
ay with no overlap between the two new arcs. In fact, such precise division happens
when the edge (x, y) in G lies on two faces, each of four or more vertices so that in
the layout of G, collinearities must exist among the corresponding arcs to achieve
these two faces. If (by bad luck) the collinearities on both sides of a∗ lie on the same
line θ = θ∗, we apply Lemma 3.5, and move the collinearities on one side to, say,
θ = θ∗ + ε. Then the new arcs ax and ay can be drawn to overlap through an angle
of ε, from θ∗ to θ∗ + ε. This alteration and then positioning of ax and ay gives us the
desired pv layout L for G. Furthermore, whether or not e lies on F , all vertices of F
are represented by arcs on the exterior face. The long-arc pair (ac∗ , ak) = (ac, ak) at
the origin is as needed, and the graph so represented is G plus a loop at c.

The same substitution and possible alteration can be made if a∗ = ak, except
that a long-arc pair may not be created. If a∗ lies at radius r, the visibilities of
ax and of ay dictate which should be placed on the inner radius r − .5 and which
on r + .5. Since all visibilities from a∗ in the angular span of the long-arc cone are
outward except for the ac−ak visibility, the inner arc, say ax, can be extended within
ay to form a long-arc pair at the origin. If ay loses needed visibility to ac, ac can be
extended and ax contracted within the angular span of the long-arc cone to create
this visibility radially, not through the origin, keeping (ac, ax) a long-arc pair.

If a∗ = ac∗ , then the division of a∗ into ax and ay probably won’t leave a long arc
or a long-arc pair at the origin. Again since all but one visibility from a∗ in Le is
outward, either the inner arc, say ax, can take the place of ac∗ and ay can be extended
inside ak to form a long-arc pair (ax, ay) at the origin, if y and xk are adjacent, or,
if not, since x and xk are then adjacent, ax can be extended inside ak so that again
(ax, ay) form the correct long-arc pair.

a* a*

Figure 6. The visibilities of a∗, (a) without collinearities and (b) with collinearities

(ii) This case is similar with v2 playing the role of c in case (i). Suppose that
v1 and v2 lie on a common face, and if they are not adjacent, add an edge joining
them so that they now lie on F = (v1, v2, x1, . . . , xk), k ≥ 1. Then by Prop. 3.4 and
Prop. 3.2 the graph has a a pv layout in the first quadrant with a1 the outermost arc,
a2 the innermost arc, representing v1 and v2, respectively, with both arcs spanning
0 ≤ θ ≤ π/2 and with F represented as the exterior face. Since all interior facial

254



cycles of the graph have length at least three, there are arcs b1, . . . bk representing
x1, . . . , xk with a2 and b1 visible along θ = 0, and also bk and a1 visible along θ = 0;
possibly b1 = bk. Arcs a1 and a2 are mutually visible along θ = π/2. First expand the
whole layout to span 0 ≤ θ ≤ 3π/2, then extend all the bi to include −π/2 ≤ θ ≤ 0.
If b1 spans −π/2 ≤ θ ≤ x for some x > 0, then delete the interval 0 ≤ θ ≤ x from
a2’s span so that (a2, b1) retain the same number of mutual visibilities. If v1 and v2

were not originally adjacent in G, other arcs can be extended to the line θ = 3π/2 to
block a1 − a2 visibility. This gives the desired layout of G′ and of G. (If the infinite
face is a digon, determined by v1 and v2 and a pair of multiple edges joining them,
the same procedure works, only a1 can be extended to −π/4 and a2 to 7π/4.)

Otherwise we proceed by induction. When n = 3, the graph is a triangle or a
triangle with one edge doubled to form an exterior digon with different choices for v1

and v2. These are represented as one of the layouts in Fig. 5 or as minor variations
of these. For n > 4, by Lemma 3.1 we find e = {x, y} so that G/e is 2-connected
with new vertex x∗. If x or y is v1 (respectively, v2) set v1 = x∗ (resp., v2 = x∗). If
e lies on a triangular face {x, y, z}, the face becomes the single edge {x∗, z} so that
no interior digon face is formed. By induction G/e has a pv layout Le with long-arc
pair (av1 , b1) at infinity and long-arc pair (av2 , b2) at the origin for xb1 a neighbor of
v1 and xb2 a neighbor of v2, and let arc a∗ represent vertex x∗. If x∗ is not part of
a long-arc pair, we may proceed as in the proof (of the easiest case) of (i) to split
a∗ into arcs ax and ay possibly altering the layout to avoid collinearities so that the
desired pv layout L of G is obtained.

Suppose a∗ is one of the arcs in a long-arc pair, a∗ε{av1 , av2 , b1, bk}. If a∗ = b1

(respectively, b2), the same substitution can be made as above, and if the needed
long-arc pair is not created, we proceed as we did in case (i). Since all visibilities
are inward (resp., outward) within the span of the long-arc cone, the arc ax can
be placed on the greater (outer) radius (resp., lesser (inner) radius) and extended
outside (resp., inside) ay so that av1 (resp., av2) is part of a long-arc pair at infinity
(resp., at the origin). If ay has lost needed visibility, av1 (resp., av2) can be extended
and ax contracted to replace this visibility, keeping the long-arc pair. This procedure
works even when b1 = b2 since the final adjustments are made independently. If
a∗ = av1 (respectively av2), then av1 �= av2 , and as in (i) either ax or ay can become
a long arc, paired with b1 (resp., b2).

(iii) If G is embedded on the projective plane with a region that is not a 2-cell,
then G is embedded in a contractible region of the projective plane and case (i)
applies. Otherwise the main statement is essentially equivalent to that proved in
[H2, Theorem 1b], and the variation needed for the designated vertex v1 is covered
just as the proof for (i) was varied to give (ii). �

Proposition 3.7 If G has a polar visibility layout L, then the embedding (I(L))G of
G on the projective plane has cut-vertices on at most two faces. If the embedding has
cut-vertices on two faces, then on one face there is only one cut-vertex, represented
in L by a long arc.

Proof. Let the layout have exterior face E, and in the graph (I(L))G on the
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projective plane suppose E has become E ′, a face containing the origin. Suppose in
(I(L))G there are two additional faces F1 and F2 containing, respectively, cut-vertices
v1 and v2 that do not lie on E ′ or on F3−i, i = 1 or 2, respectively. In L both F1

and F2 correspond to interior faces bounded by arcs and radial lines. Then arcs,
corresponding to vertices within a block incident with vi and lying within Fi, will see
at least two boundary arcs unless one boundary arc is a long arc. Suppose both a1

and a2 are long arcs representing v1 and v2, respectively, not lying on E, and lying at
radius r1 and r2 with r1 < r2. Then arcs corresponding to a block incident with v2

will see at least two arcs, a contradiction. If there is one additional face F , besides
E ′, it can contain at most one cut-vertex since this must be represented as a long
arc in L on the face corresponding to F . �

Corollary 3.8 If G has a polar visibility layout L with a long arc a∗, representing a
cut-vertex x∗ and not lying on the exterior face, then G has a planar embedding with
all cut-vertices except for x∗ lying on a common face.

Proof. By Prop. 3.3, G is planar, and by Prop. 3.7 all other cut vertices of G
lie on a common face E ′ in the embedding of (I(L))G on the projective plane with
E ′ corresponding to the exterior face E of L. Then Prop. 3.3 shows that G can be
drawn in the plane with E ′ as a face. �

Theorem 3.9 A simple planar graph G has a PVG representation if it has a planar
embedding with all but at most one cut-vertex on a common face.

Proof. Let G be drawn in the plane with cut-vertices lying on the exterior face F1

and an additional cut-vertex c lying on F2; if c does not exist, then G is a BVG and
by Prop. 3.2 has a pv layout. Consider the block-cutpoint tree BC(G) of G; c may
lie on several blocks, but at least one, call it B0, contains a cut-vertex c′ �= c lying
on F1. Both of the faces Fi are bounded by a facial walk Wi, and each Wi contains
a unique simple subcycle Ci, lying in B0 and containing c′ and c, respectively. If
G has cut vertices c1, . . . , ci lying on F1, we label the blocks other than B0 incident
with c1, . . . , or ci, B1, B2, . . . , Bj , and the blocks incident with c, D1, . . . , Dk. We
prove by induction on j that there is a pv layout L of G with F1 represented by the
exterior face of L, with (ac, ad) a long-arc pair at the origin for some neighbor d of
c, and with the blocks incident with c represented within C(ac). (Note that when
n = 8, G = K4 + 4e can be so laid out with one of the added edges represented with
double visibility, as shown in Figure 7a, as can K2,3 + 3e. The smallest simple PVGs
that are not BVGs and are represented with exact visibility are K4 + 3e + t and
K2,3 + 2e + t where t is a triangle of three edges incident with one degree-2 vertex of
the first graph; see Fig. 7b.)

With the base case of j = 0 when there is no cut-vertex on F1 and G has only one
cut-vertex c, we begin our layout technique even though alternatively G is a BVG
and so a PVG. We remove the vertices and the edges of blocks D1 \ {c}, . . . , Dk \ {c}
leaving the 2-connected graph, call it B0, with new face F ′

2 formed by the removal
of blocks Di from F2. We apply Prop. 3.6(i) with F = F1 to get the desired layout
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L′ of B′ = B0 plus a loop at c, with F corresponding to the exterior face and with
(ac, ad) a long-arc pair at the origin for some neighbor d of c. For each block Di,
i = 1, . . . , k, we use Prop. 3.4 to obtain a bv layout of Di for some neighbor di of
c, with c represented by the top-most bar and di as the bottom-most bar. Then we
use Prop. 3.2 to obtain pv layouts Li of Di. These can each be added to exactly
fill the angular span C(ac) of the long arc ac by placing each arc representing c as a
consecutive subarc of ac so that the appropriate arcs see ac and nothing else; the arc
from the bottom-most bar sees ac through the origin. This gives the desired layout
of G.

Otherwise j ≥ 1, and we may renumber so that Bj is a leaf in the block-cutpoint
tree of G, incident with cut-vertex ci. We delete all vertices and edges of Bj \ {ci},
and by induction lay out the remaining graph as L′ so that L′ has exterior face F ′

1

containing the arc ai representing ci, with the long-arc pair (ac, ad) at the origin for
some neighbor d of c, and with the bv layouts for the blocks at c filling the angular
span of C(ac). We use Prop. 3.4 to obtain a bv layout of Bj with ci represented by
the bottom-most bar, and then use Prop. 3.2 to obtain the corresponding Lj . Here
Lj is added to the exterior face of L′ placing ci’s arc as a subarc of ai in L′ so that
appropriate arcs see ai and no others. This gives the desired layout of G. �

Notice that when any of the blocks Di consists of a single edge, then it will be
represented with double visibility. If a block has at least 3 vertices, then it is possible
to use Prop. 3.4 and Prop. 3.2 to layout the block minus an edge from c to a neighbor
and to have that missing visibility achieved through the origin; e.g., see Fig. 7.

Theorem 3.10 If a simple graph has an embedding on the projective plane with all
cut-vertices on a common face, then it is a PVG.

Proof. Let G have an embedding on the projective plane P with all cut-vertices on
a common face F . When n = |V (G)| < 5, the graph has a bv layout and so a PVG
one by Prop. 3.2; each such graph containing a cycle also has a 2-cell embedding on
the projective plane and an equivalent pv layout. We prove by induction on n ≥ 5
that G has a pv layout with arcs representing cut-vertices on the exterior face and
with its embedding equivalent to that of G.

If G has no cut-vertex, then we apply Prop. 3.6(iii) for graphs on the projective
plane to get the pv layout of G. If G has a cut-vertex, consider the block-cutpoint
tree BC(G) of G, and, if possible, let c be a cut-vertex incident with a leaf of BC(G)
with that leaf-block planar and embedded in a contractible region of P ; call this
block B. Deleting the vertices and edges of B \ {c} leaves G′ on the projective plane
with face F now a face F ′, containing all remaining cut-vertices. By induction, G′

has a pv layout L′ that is equivalent to G′ and with exterior face representing F ′. By
Prop. 3.4 there is a bv layout of B with the bar representing c bottom-most, and by
Prop. 3.2, B has a corresponding pv layout LB. Then ac in LB can be inserted as a
subarc of ac on the exterior face of L′ so that LB together with L′ gives the desired
layout of G.
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Otherwise every leaf-block B is embedded in a noncontractible region of P and
contains a noncontractible cycle in its embedding. If blocks B and B′ are two such
leaves, they must intersect at a cut-vertex c since every pair of noncontractible cycles
on P intersect. If there are additional blocks, there are additional leaves which must
also all meet at c so that BC(G) is a star K1,i with the degree-i vertex of BC(G)
representing c, the only cut-vertex of G, and each block is embedded in a wedge of
P , all wedges meeting at, say, the origin. Such a graph is planar with one cut-vertex
c and so by Theorem 3.9 is a PVG. �

Figure 7. K4 + 4e as a PVG; K4 + 3e + t as a PVG.

Proof of Theorem 2.2 for simple graphs. By Theorems 3.9 and 3.10 the graphs de-
scribed are PVGs. Conversely if L is a layout of a PVG G, then G has an embedding
on the projective plane by Prop. 2.1 with embedding (I(L))G. If L has no visibility
through the origin, then by Prop. 3.2 G is a BVG and so embeds in the plane with
all cut-vertices on a common face. Otherwise, if L contains a long arc, satisfying the
conditions of Cor. 3.8, then G embeds in the plane with all but one cut-vertex on a
common face. Otherwise G embeds in the projective plane with all cut-vertices on a
common face by Prop. 3.7. �

4 Results on CVGs

As the example in Fig. 3 and its extensions demonstrate, cut-vertices on many faces
can be achieved using circles in layouts. We characterize CVGs in this section, as
given in Theorem 2.3.

Suppose G has a layout L with circles c1, c2, . . . , ck at radii r1 < r2 < . . . < rk

respectively and with no circle replaceable by an arc so that the same visibilities
are achieved; that is, in L, circles have been replaced with an arc or long arc when
possible, leaving k > 0 circles. The circles ci divide up the plane into annular regions
and one projective planar region; note that neither the interior of c1, denoted int(c1),
nor the exterior of ck, ext(ck), is empty in L since neither circle can be replaced by
an arc. Then the corresponding vertices v1, v2, . . . , vk of G are cut-vertices, and G
is the union of graphs whose layouts lie in the annular regions plus the innermost
region: G = G1 ∪ G2 ∪ . . . ∪ Gk ∪ Gk+1 where G1 is the subgraph whose layout in L

258



lies on c1 ∪ int(c1), Gk+1 lies on ck+1 ∪ ext(ck+1), and for i = 2, . . . , k, Gi lies on the
annulus given by ci−1 ∪ ci ∪{int(ci)∩ ext(ci−1)}. Thus G2, . . . , Gk+1 are each planar.
In addition for i = 2, . . . , k, Gi is 2-connected since each block of Gi contains some
vertices adjacent to vi−1 and some to vi. Thus the block-cutpoint tree for G, BC(G),
contains a path of 2k − 1 vertices, representing consecutively v1, G2, v2, . . . , Gk, vk.
What sorts of graphs are possible for G1 and for Gk+1, and what additional tree
structure in BC(G) is possible at the two ends of this path?

Consider G1, laid out on c1 ∪ int(c1), with c1 opened up to become an arc so that
this is a pv layout of G1 with a1 on the exterior face. If G1 is planar, by Prop. 3.7,
G1 can have at most one cut-vertex that is represented by a long arc a∗ at the origin
(possibly a∗ = a1). If there is no long arc a∗ besides a1, then v1 may be attached to
an arbitrary positive number, say i1, of planar blocks. If there is a long arc a∗ �= a1,
then each block represented between a∗ and a1 sees these two arcs and so there is
only one block lying in this annular region. Inside and attached to a∗ may be any
number ia ≥ 0 of 2-connected, planar graphs, but in any case, BC(G) has attached
to the path-end v1 either i1 > 0 leaves (when a∗ = a1), or else one additional block
vertex b, representing part or all of G1, then a vertex for a∗ that is also adjacent
to ia > 0 vertices of degree one. (Thus the latter case corresponds to having v3

represented by c1 and v1 by a∗.) If G1 is not planar, by Prop. 3.7 and Cor. 3.8 it is
2-connected so that the path of BC(G) is extended at v1 by one additional vertex
representing G1.

The layout for the planar graph Gk+1 lies in the infinite region, ck ∪ ext(ck). In
this layout of Gk+1 the circle ck can be opened up to a long arc with empty interior
to form a pv layout; by Prop. 3.7, Gk+1 has all its cut-vertices on a common face, the
exterior face, and so can have arbitrarily many cut-vertices with arbitrarily many
connected blocks, provided all cut-vertices lie on the infinite face. Thus attached
to vk in BC(G) is any tree representing a planar graph with all cut-vertices, except
possibly for vk, on a common face. These remarks prove the necessity of Theorem 2.3.

Lemma 4.1 Let L be a layout of a PVG G with n vertices and with a long-arc pair
at infinity or at the origin (or both). Then G can be laid out as a CVG with a circle
on the exterior face at radius n or a circle about the origin at radius 1 (or both).

Proof. Since the paired arcs span 2π and have an empty long-arc cone, a long arc
at radius 1 or at n can be extended to a full circle, changing no visibilities. �

Theorem 4.2 A simple graph G is a CVG if the vertices of BC(G) can be partitioned
into three sets P , Q, and R, where

0) P = (b1, b2, . . . , b2k+1), k ≥ 0, is a path with each b2i representing a planar
block, i = 1, . . . , k;

1a) Q is a nonempty block adjacent to b1, representing a (2-connected) projective
planar graph, or

1b) Q is a set of one or more (nonempty) planar blocks, all adjacent to b1; and
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2) R is an arbitrary tree structure adjacent to b2k+1, such that R ∪ {b2k+1} repre-
sents a planar graph that can be drawn in the plane with all cut-vertices, except
possibly for that representing b2k+1, on a common face.

Proof. Suppose G has BC(G) satisfying 0), 1a), and 2) so that BC(G) is (b0, b1, b2, . . .
b2k+1, R) where for i = 1, . . . , k, each b2i−1 represents a cut-vertex vi of G, each b2i

represents a 2-connected planar graph, b0 is a 2-connected projective planar graph,
and R represents a plane graph with all cut-vertices on a face F . It is not hard to
see that such a graph embeds on the projective plane; that result follows also from
our cv layout of G. In the layout each cut-vertex vi will be represented by a circle ci.

By Prop. 3.6(iii) the projective planar subgraph of G corresponding to b0 has
a pv layout L′

0 with the arc a1 representing v1 as long-arc pair at infinity, paired
with some neighbor of v1. By Lemma 4.1, L′

0 can be changed to the CVG L0 so
that a1 becomes a circle surrounding L0. By Prop. 3.6(ii) the planar subgraph of
G corresponding to b2 can be represented as a PVG L′

1 with a1, representing v1,
part of a long-arc pair at the origin and with a2, representing v2, part of a long-arc
pair at infinity. By Lemma 4.1 L′

1 can be changed to the CVG L1 so that a1 and
a2 each become circles inside and surrounding L1 respectively. Then L1 is joined
with L0 by identifying the two copies of a1, placing L1 wholly outside of L0. This
process of expansion can be repeated for b4, . . . , b2k. Finally by Prop. 3.6(i) R can
be laid out as a PVG with vk represented by ak, part of a long-arc pair at the origin.
Again by Lemma 4.1 ak can be extended to a full circle inside of R’s layout and can
be identified with the circle representing ak on the exterior of the layout previously
constructed. In this way G is laid out.

Suppose BC(G) satisfies 1b) and 2). Begin by laying out the planar block cor-
responding with b2, as in the preceding paragraph, to get L1 with circles c1 and c2,
representing v1 and v2, as bounding inner and outer circles. Extension on the exte-
rior of c2 to layout the graph represented by b3, b4, . . . , R is also done just as in the
preceding paragraph; it’s the interior of c1 where the difference occurs. Since v1 is
incident with one or more planar blocks, we can lay these out in radial segments as
within the angular span of a long arc at the origin. Each planar block is represented
as a BVG with v1 represented top-most and a neighbor bottom-most, then as a PVG
via Prop. 3.2, and then inserted with v1’s arc as a subarc of c1 within a distinct
wedge of, say, 0 ≤ θ ≤ π, giving the desired visibilities. Also the pv layouts can be
expanded to fill this whole interval so that c1 is not self-visible. Thus in all cases the
graph can be laid out as a CVG. �

These observations and Theorem 4.2 prove Theorem 2.3 for simple graphs, and
more details on multigraphs can be deduced from the proofs.

260



5 Concluding thoughts

It is clear that more complex graphs can be achieved in the polar visibility model
by allowing visibility through the origin and diagonally across the boundary of a
disc with antipodal points identified. These correspond naturally to graphs that
embed on the Klein bottle, the nonorientable surface of Euler characteristic 0. Some
preliminary results in this context are given in [H1]. Also there and in [H2] some
comments are given on the algorithmic aspects of laying out PVGs and CVGs.
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