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Abstract

A set D of vertices in a graph G is a distance-k dominating set if
every vertex of G either is in D or is within distance k of at least one
vertex in D. A distance-k dominating set of G of minimum cardinality
is called a minimum distance-k dominating set of G. For any graph G
and for a subset F of the edge set of G the set F is an edge dominating
set of G if every edge of G either is in D or is adjacent to at least one
edge in D. An edge dominating set of G of minimum cardinality is
called a minimum edge dominating set of G. We characterize trees with
unique minimum distance-k dominating sets, which is a generalization
of a result of Gunther, Hartnell, Markus, and Rall. Further, we give
a characterization of trees with unique minimum edge dominating sets,
which contains some results of Topp.

1 Terminology and Introduction

For any graph G the vertex set and the edge set of G are denoted by V (G) and
E(G), and n(G) = |V (G)| and m(G) = |E(G)|. The number of components of G
is denoted by κ(G). For any subset A ⊆ V (G) we define the induced subgraph
G[A] as the graph with vertex set A and edge set {ab ∈ E(G) | a, b ∈ A}. For
any set A ⊆ V (G) and any vertex x ∈ V (G) we define G − A = G[V (G) \ A]
and G − x = G − {x}. For two vertices x and y in a connected graph G the
distance d(x, y) between x and y is the minimum number of edges of a path in
G from x to y. If we define e(v) = maxw∈V (G) d(v, w), then the diameter of G is
diam(G) = maxv∈V (G) e(v) and the radius of G is rad(G) = minv∈V (G) e(v). For
any vertex x ∈ V (G) the open k-neighborhood of x, denoted Nk(x), is the set
Nk(x) = {y ∈ V (G) | y �= x and d(x, y) ≤ k} and the set Nk[x] = Nk(x) ∪ {x}
is called the closed k-neighborhood of x. If A ⊆ V (G), then Nk(A) =

⋃
x∈A Nk(x)

and Nk[A] = Nk(A) ∪ A. For a subset D of V (G) and a vertex x ∈ D the set
Pk(x, D) = Nk[x] \Nk[D \ {x}] is called the private k-neighborhood of x with regard
to D and a vertex y ∈ Pk(x, D) is called a private k-neighbor of x with regard to D.
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A set D ⊆ V (G) is a distance-k dominating set of G if Nk[D] = V (G). The minimum
cardinality of a distance-k dominating set is called the distance-k domination number
denoted by γ≤k(G). A distance-k dominating set D of G with cardinality γ≤k(G)
is called a γ≤k-set or a minimum distance-k dominating set. Note that the case
k = 1 leads to the ordinary domination. There are several publications on distance
domination as e.g. [1], [2], [13], [14] and the chapter ‘Distance domination in graphs’
by M.A. Henning in [11].
For any subset B ⊆ E(G) we define the subgraph G(B) as the graph with edge set
B and vertex set {v, w ∈ V (G) | vw ∈ B}. For any set B ⊆ E(G) and any edge
e ∈ E(G) we define G − B = G(E(G) \ B) and G − e = G − {e}. Notice that the
subgraphs G−B and G− e contain no isolated vertices. A subset F of the edge set
E(G) is an edge dominating set of G if every edge in G either is in F or is adjacent to
at least one edge in F . The edge domination number γ′(G) is the smallest cardinality
of all edge dominating sets and an edge dominating set of cardinality γ′(G) is called
a minimum edge dominating set of G. The edge domination is studied in numerous
publications as e.g. in [3], [4], [12], [15], and in [18].
For other graph theory terminology we follow [10].

2 Unique minimum distance domination in trees

Theorem 2.1 Let T be a tree of order at least 3, let D be a subset of V (T ), and let
k be a positive integer. Then the following conditions are equivalent:

(i) D is the unique γ≤k-set of T .

(ii) D is a distance-k dominating set of T such that every vertex in D has at least
two private k-neighbors v and w with d(v, w) = 2k.

(iii) D is a γ≤k-set of T such that γ≤k(T − x) > γ≤k(T ) for every vertex x ∈ D.

Proof.
(i) ⇒ (ii): Let D be the unique γ≤k-set of T . Then, we have |Pk(x, D)| ≥ 2 for every
vertex x ∈ D. Suppose there is a vertex x ∈ D such that d(a, b) < 2k for every pair
of vertices in Pk(x, D). If d(a, x) < k for every vertex a in Pk(x, D), then for some
arbitrary, fixed z ∈ N1(x) we have d(a, z) ≤ k for every vertex a in Pk(x, D), and
(D \ {x}) ∪ {z} is a γ≤k-set of T different from D, which is a contradiction. Hence,
there is a vertex a ∈ Pk(x, D) with d(x, a) = k. Let z ∈ N1(x) with d(z, a) = k − 1.
Suppose there is a vertex b ∈ Pk(x, D) with d(z, b) > k. Then d(x, b) = k and
the vertex x lies on the unique path from a to b. This yields the contradiction
d(a, b) = d(a, x) + d(x, b) = 2k. Therefore d(z, b) ≤ k for every b ∈ Pk(x, D) and
(D \ {x}) ∪ {z} is a γ≤k-set of T different from D, which again is a contradiction.
(ii) ⇒ (i): We prove this by induction on the order n(T ). If a tree T has a distance-
k dominating set D as in (ii), then the diameter of T is greater or equal 2k and
n(T ) ≥ 2k + 1. First, let T be a tree of order n(T ) = 2k + 1, that has a distance-k
dominating set D as in (ii). Since the diameter of T is greater or equal 2k, the tree T
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is isomorphic to the path x1x2 . . . x2k+1 and D = {xk+1}. Obviously, D is the unique
γ≤k-set of T . Assume the claim holds for every tree T ′ of order 2k + 1 ≤ n(T ′) < n.
Now, let T be a tree of order n(T ) = n, and let D be a distance-k dominating set of
T as in (ii). Suppose there exists a γ≤k-set of T different from D. Let D′ �= D be a
γ≤k-set of T such that |D ∩ D′| is maximal. There is at least one vertex x ∈ D \ D′

and there are two vertices y1, y2 ∈ Pk(x, D) with d(y1, y2) = 2k. Hence, we have
d(x, y1) = d(x, y2) = k and x lies on the unique path from y1 to y2 in T . Let
T1, T2, . . . , Tκ be the components of T − x such that yi ∈ V (Ti) for i = 1, 2. Further,
let Di = D ∩ V (Ti) and D′

i = D′ ∩ V (Ti) for i = 1, 2. Since Di does not distance-
k dominate the vertex yi but D′

i dominates Ti, there is a vertex zi ∈ D′
i \ Di with

d(zi, yi) ≤ k for i = 1, 2. The set D′′ = (D′\(D′
1∪D′

2))∪(D1∪D2∪{x}) is a distance-
k dominating set of T , which implies |D′′| ≥ |D′| and |D1| + |D2| + 1 ≥ |D′

1| + |D′
2|.

If |D′
1| > |D1| and |D′

2| > |D2|, then we obtain a contradiction. Hence, without loss
of generality, we have |D′

1| ≤ |D1|. Let P be the unique path in T from x to y2 and
let T ′ = T [V (T1)∪ V (P )]. It is easy to see that D1 ∪ {x} is a distance-k dominating
set of T ′ that fulfils (ii). If n(T ′) = n(T ), then T2 = P − x and Nk[z2] ⊆ Nk[x].
Hence, D′′ = (D′ \ {z2}) ∪ {x} is a γ≤k-set of T with |D′′ ∩ D| > |D′ ∩ D|. Since
z1 ∈ D′′ \ D, we have D′′ �= D, and this is a contradiction to the maximality of
|D′ ∩ D|. Hence, let n(T ′) < n(T ). Then, by the induction hypothesis, the set
D1 ∪ {x} is the unique γ≤k-set of T ′. But D′

1 ∪ {x} is also a distance-k dominating
set of T ′ with |D′

1 ∪ {x}| ≤ |D1 ∪ {x}| and z1 ∈ D′
1 \ D1, which is a contradiction to

the uniqueness of D1 ∪ {x}.
(i) ⇒ (iii): Let D be the unique γ≤k-set of T , let x ∈ D arbitrary, let κ = κ(T − x)
and let T1, T2, . . . , Tκ be the components of T−x. Further, let D′ be a γ≤k-set of T−x
and for every 1 ≤ i ≤ κ let Di = D∩V (Ti), and D′

i = D′∩V (Ti). For every 1 ≤ i ≤ κ
the set D′′

i = (D \ Di) ∪ D′
i is a distance-k dominating set of T , which implies that

either Di = D′
i or |Di| < |D′

i|. By (i) ⇒ (ii), the vertex x has at least two private k-
neighbors x1, x2 in T with d(x1, x2) = 2k. Without loss of generality, let x1 ∈ V (T1)
and x2 ∈ V (T2). Then, for i = 1, 2, the set Di is not a distance-k dominating set of
Ti, in contrary to the set D′

i. Hence, we have Di �= D′
i and |Di| < |D′

i| for i = 1, 2,
which implies γ≤k(T − x) = |D′| =

∑κ
i=1 |D′

i| ≥ 2 +
∑κ

i=1 |Di| = 1 + |D| > γ≤k(T ).
(iii) ⇒ (i): Let D be a γ≤k-set of T such that γ≤k(T − x) > γ≤k(T ) for every vertex
x ∈ D. Suppose that there is a γ≤k-set D′ �= D of T . Since there exists at least
one vertex x ∈ D \ D′, the set D′ is distance-k dominating set of T − x. Hence,
γ≤k(T − x) ≤ |D′| = γ≤k(T ) for some x ∈ D, which is a contradiction. �

For k = 1, Theorem 2.1 yields immediately the next corollary.

Corollary 2.2 [Gunther, Hartnell, Markus, Rall [9]] Let T be a tree of order at least
3. Then the following conditions are equivalent:

(i) T has the unique γ-set D.

(ii) T has a γ-set D for which every vertex in D has at least two private neighbors
other than itself.

(iii) T has a γ-set D for which γ(T − x) > γ(T ) for every vertex x ∈ D.
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Remark 2.3 Since the problem of finding a minimum dominating set (i.e. a min-
imum distance-1 dominating set) in an arbitrary graph is NP-complete, this is also
NP-complete for minimum distance-k dominating sets.

Let Gk denote the k-th power graph of G with the vertex set V (G) and the edge set
{uv | u, v ∈ V (G), dG(u, v) ≤ k}. It is easy to see that γ≤k(G) equals γ≤1(G

k) =
γ(Gk). Further, G.J. Chang and G.L. Nemhauser [2] have proved that γ≤k(T ) =
α(T 2k) = θ(T 2k) for any tree T , where α(G) denotes the cardinality of a maximum
independent set of G and θ(G) denotes the minimum number of cliques in G that
cover G. Hence, in view of [2], the following problems are equivalent:
a) The problem of finding a minimum distance-k dominating set of any tree.
b) The problem of finding a minimum (distance-1) dominating set of a graph G
which is the k-th power graph of some tree.
c) The problem of finding a maximum independent set of a graph G which is the
2k-th power graph of some tree.
d) The problem of finding a minimum clique covering of a graph G which is the
2k-th power graph of some tree.
Lubiw [17] has shown that powers of strongly chordal graphs are also strongly chordal.
Trees are strongly chordal, and G.J. Chang and G.L Nemhauser have noticed in [2]
that we can construct the strongly chordal graph T k in O(n3) time for any tree T
of order n. They have also mentioned that therefore we can use every algorithm for
finding the cardinality of a minimum dominating set, a maximum independent set,
or a minimum clique covering on strongly chordal graphs to determine the distance-k
domination number of a tree in polynomial time. There are efficient such algorithms
by M. Farber [5], A.W.J. Kolen [16], A. Lubiw [17], A. Frank [6], and F. Gavril
[8]. For example, the algorithm of M. Farber [5] solves the domination problem for
strongly chordal graphs, and the algorithm of A. Frank [6] solves the independent
problem for chordal graphs, both in linear time.

Remark 2.4 We are able to check in polynomial time whether a given tree T has
a unique minimum distance-k dominating set or not by constructing T k (or T 2k,
respectively) and by using one of the mentioned algorithms and Theorem 2.1.

3 Unique minimum edge domination in trees

First, we need some further definitions. For any graph G and any edge e ∈ E(G)
we define N ′(e) = {f ∈ E(G) | f adjacent to e} and the set N ′[e] = N ′(e) ∪ {e}. If
B ⊆ E(G), then N ′(B) =

⋃
e∈B N ′(e) and N ′[B] = N ′(B) ∪ B. For a subset F of

E(G) and an edge e ∈ F we define the set P ′(e, F ) = N ′[e] \N ′[F \ {e}], and we call
an edge f ∈ P ′(e, F ) a private adjacent edge of e with regard to F .
The first lemma contains a simple necessary condition for unique minimum edge
dominating sets in graphs. It is a generalization of a result of Topp (Proposition 2.8
in [18]).

120



Lemma 3.1 Let G be a connected graph of order at least 3 and let F be a unique
minimum edge dominating set of G. Then the set F is independent, and every edge
e ∈ F contains at least two non adjacent edges in P ′(e, F ).

Proof. Let e ∈ F be arbitrary. Since F is minimal, we have P ′(e, F ) �= ∅. If
P ′(e, F ) = {e}, then we can take any edge f adjacent to e and (F \ {e}) ∪ {f} is
a minimum edge dominating set of G different from F , which is a contradiction. If
f ∈ P ′(e, F ) \ {e} �= ∅ and every edge in P ′(e, F ) \ {f} is adjacent to f , then again
(F \ {e}) ∪ {f} is a minimum edge dominating set of G different from F , which
is a contradiction. Hence, for every edge e ∈ F the set P ′(e, F ) contains two non
adjacent edges. This also implies that no two edges in F are adjacent. �

The next theorem is a characterization of trees with unique minimum edge domi-
nating sets similar to the characterization in Corollary 2.2. One part of this theorem
says that, for trees, the necessary condition in Lemma 3.1 is also sufficient. The con-
verse does not hold in general, as we can see with the simple graph G with vertex set
V (G) = {u, v, w, x}, edge set E(G) = {uv, uw, ux, vw} and with the two minimum
edge dominating sets {uv} and {uw}.
Theorem 3.2 Let T be a tree of order at least 3 and let F be a subset of E(T ).
Then the following conditions are equivalent:

(i) F is the unique minimum edge dominating set of T .

(ii) F is an edge dominating set of T such that every edge e in F has at least two
non adjacent edges in P ′(e, F ).

(iii) F is an independent edge dominating set of T such that every edge e in F has
at least two non adjacent edges in P ′(e, F ).

(iv) F is a minimum edge dominating set of T such that γ′(T −e) > γ′(T ) for every
edge e ∈ F .

Proof.
(i) ⇒ (iii): Follows immediately from Lemma 3.1.
(iii) ⇒ (ii): Obviously.
(ii) ⇒ (i): Let F be an edge dominating set of T as in (ii). For any subset B of the
edge set of T we define V (B) = {u, u′ ∈ V (T ) | uu′ ∈ B}. Thus, for every edge
e = vw ∈ F there are two edges vv′ and ww′ with v′ �= w′ and v, v′, w, w′ �∈ V (F \{e}).
Hence, no two edges in F are adjacent. Suppose there is a minimum edge dominating
set F ′ �= F of T . Then, |F \ F ′| ≥ |F ′ \ F |. Let the set B = (F \ F ′) ∪ (F ′ \ F ) and
H = T [V (B)]. Let F ′

1 = {vw ∈ F ′ \ F | v, w ∈ V (F \ F ′)}, F ′
2 = {vw ∈ F ′ \ F |

|{v, w}∩V (F \F ′)| = 1}, and F ′
3 = {vw ∈ F ′ \F | v, w �∈ V (F \F ′)}. The set F ′ \F

is the disjoint union of F ′
1, F

′
2 and F ′

3. We get for the vertex set of H

|V (H)| = |V (B)| ≤ 2|F \ F ′| + |F ′
2| + 2|F ′

3|.
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By (ii), for every vertex v ∈ V (F \ F ′) there is an edge vw ∈ F \ F ′ and an
edge vv′ �= vw such that v, v′ �∈ V (F \ {e}). Since F ′ is an edge dominating set
of T , we get that v or v′ is in V (F ′). If v ∈ (V (F ) \ V (F ′)) ⊆ V (F \ F ′), then
v′ ∈ (V (F ′) \ V (F )) ⊆ V (F ′ \ F ) and vv′ ∈ E(H) \ B. This implies that

|E(H) \ B| ≥ |V (F ) \ V (F ′)| ≥ 2|F \ F ′| − 2|F ′
1| − |F ′

2|.
Hence, we obtain for the cardinality of E(H)

|E(H)| = |F \ F ′| + |F ′ \ F | + |E(H) \ B|
≥ 2|F ′ \ F | + (2|F \ F ′| − 2|F ′

1| − |F ′
2|)

= 2(|F ′
1| + |F ′

2| + |F ′
3|) + (2|F \ F ′| − 2|F ′

1| − |F ′
2|)

= |F ′
2| + 2|F ′

3| + 2|F \ F ′|
≥ |V (H)|.

But, since H is a forest, we have m(H) = n(H) − κ(H) < n(H), which is a contra-
diction.
(i) ⇒ (iv): Let F be the unique minimum edge dominating set of T , let e = v1v2 ∈ F
be arbitrary, and let T1 and T2 be the components of T − e where vi ∈ V (Ti) for
i = 1, 2.

Further, let F ′ be a minimum edge dominating set of T − e and for i = 1, 2
let Fi = F ∩ E(Ti) and F ′

i = F ′ ∩ E(Ti). By (i) ⇒ (ii), the edge e is adjacent
to at least two edges v1w1 ∈ E(T1) and v2w2 ∈ E(T2) that are not adjacent to
any other edge in F . Hence, the set Fi is not an edge dominating set of Ti, con-
trary to F ′

i for i ∈ {1, 2}. Thus, we have Fi �= F ′
i for i = 1, 2. Since the set

F ′′
i = (F \ Fi) ∪ F ′

i �= F is an edge dominating set of T , we get |Fi| < |F ′
i |. This

yields γ′(T − e) = |F ′| = |F ′
1| + |F ′

2| ≥ |F1| + |F2| + 2 = |F | + 1 > γ′(T ).
(iv) ⇒ (i): Let F be a minimum edge dominating set of T such that γ′(T−e) > γ′(T )
for every edge e ∈ F . Suppose that there is a minimum edge dominating set F ′ �= F
of T . There exists at least one edge e ∈ F \F ′ and the set F ′ is an edge dominating set
of T −e. Hence, γ′(T −e) ≤ |F ′| = γ′(T ) for some e ∈ F , which is a contradiction. �

As a corollary of Theorem 3.2 we obtain a characterization of caterpillars with
unique minimum edge dominating sets by Topp (Corollary 3.1 in [18]). Further, we
get the following corollary, that also contains a result of Topp (Theorem 2.11 in [18]).

Corollary 3.3 Let T be a tree of diameter at least 3, let F be a minimum edge
dominating set of T , and let e ∈ F arbitrary. Then F is the unique minimum edge
dominating set of T if and only if every component of the forest H = T −N ′[e] is of
order at least 4 and H has the unique minimum edge dominating set F \ {e}.
Proof. Let F be a minimum edge dominating set of T and let e ∈ F be arbitrary.
First, let F be unique. Hence F fulfils (ii) in Theorem 3.2, and this implies that
F \ {e} fulfils (ii) for the forest H. Thus each component of H is of order at least 4.
If we use Theorem 3.2 on these components, then we get that H has the unique mini-
mum edge dominating set F \{e}. Now, let F \{e} be the unique edge dominating set
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of H and every component of H be of order at least 4. By Theorem 3.2, the set F \{e}
fulfils (ii). This implies that F fulfils (ii) for T . Thus F is unique, by Theorem 3.2. �

Remark 3.4 There are some algorithms known to determine minimum edge domi-
nating sets in special classes of graphs ([3],[4],[7],[12],[15]). For trees a linear time
algorithm to determine minimum edge dominating sets is given by S. Hedetniemi
and S. Mitchell [12], and a linear time algorithm to determine minimum indepen-
dent edge dominating sets is given by F. Gavril and M. Yannakakis [7]. Further,
G.J. Chang and S.-F. Hwang [3] found a linear time algorithm to determine min-
imum edge dominating sets in block graphs. Hence, we can inspect in linear time
whether a given tree has a unique minimum edge dominating set or not, by using one
of these algorithms and Theorem 3.2.
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