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Abstract

The Small Cycle Double Cover Conjecture, due to J.A. Bondy, states
that every simple bridgeless graph on n vertices has a cycle double cover
with at most (n — 1) cycles. There are a number of classes of graphs
for which this conjecture is known to hold; for example, triangulations
of surfaces, complete graphs, and 4-connected planar graphs. In this
article, we prove that the conjecture holds for line graphs of a number of
types of graphs; specifically line graphs of complete graphs, line graphs
of complete bipartite graphs, and line graphs of planar graphs.

1 Introduction

A cycle double cover (CDC) of a graph G is a collection of cycles C such that every
edge of G lies in precisely two cycles of C. An obvious necessary condition for
the existence of a CDC of a graph G is that the graph be bridgeless. It has been
conjectured (see {14], [15]) that this condition is also sufficient. The so-called Cycle
Double Cover Conjecture has been studied by numerous authors (see [1], [7]). In this
article, we focus on a strengthening of this conjecture that involves the number of
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cycles in a CDC: A small cycle double cover (SCDC) of a graph G on n vertices is a
CDC with at most n — 1 cycles. Bondy [2] proposes the following.

SCDC Conjecture: Every simple bridgeless graph has a small cycle double cover.

Various classes of graphs are known to have SCDCs, including complete graphs,
complete bipartite graphs, simple triangulations of surfaces, and 4-connected planar
graphs (see [2], [12], [13]). Because of their structure, line graphs are a natural class
of graphs to study with respect to the SCDC Conjecture. It has been shown ([11], pp.
22-26) that the line graph of any 3-connected planar graph has an SCDC. In what
follows, we extend this result to all planar graphs whose line graphs are bridgeless.
We also prove that the SCDC Conjecture holds for line graphs of complete graphs
and line graphs of complete bipartite graphs.

Similar and further results have been independently obtained by R. Klimmek
in her Ph.D. thesis [9]. The thesis contains a proof that the line graph of any 2-
connected planar graph has an SCDC, and it is remarked that the result can be
extended to planar graphs whose line graphs are bridgeless. By using fairly complex
results about cycle covers and decompositions, Klimmek also proves that the line
graph of any graph with no vertices of degree two has an SCDC. In contrast, we
provide more straightforward constructions of SCDCs of line graphs of complete
graphs and complete bipartite graphs.

Unless otherwise specified, we use the terminology of [4]. Graphs are undirected
and simple; a multigraph is undirected and may have more than one edge between
the same pair of vertices. A bridge in a graph is a l-edge cut in the graph, and a
nontrivial bridge is a bridge whose removal leaves two components, each having more
than one vertex. A bridge that is not nontrivial is a pendant in the graph; ie., a
pendant is incident to a vertex of degree one.

A cycle decomposition of a graph G is a partition of E(G) into cycles. (It is well-
known that a connected graph has a cycle decomposition if and only if the graph is
eulerian.)

A 2-bridge in a graph G is a cut vertex of degree two. Any graph not containing
a 2-bridge is said to be 2-bridge-free. Since a 2-bridge in a graph G corresponds to a
bridge in the line graph L(G), an obvious necessary condition for the existence of a
CDC of L(G) is that G be 2-bridge-free. That this condition is also sufficient would
imply the truth of the cycle double cover conjecture (see Section 2).

Certain path covers of graphs are instrumental in proving our results. A perfect
path double cover (PPDC) of a graph H is a collection of paths, P, such that every
edge of H lies in two paths of P, and every vertex of H occurs precisely twice as an
endpoint of paths in P. It was conjectured by Bondy [3] and proved by Li [10] that
every simple graph has a PPDC. For a PPDC P of a graph H, we define a multigraph
Mp(H), called the associated multigraph of P; Mp(H) has the same vertex set as
H, and for all vertices z,y € V(Mp(H)), zy is an edge of Mp(H) if and only if P
contains a path with endpoints z and y. The PPDC P is called an eulerian perfect
path double cover (EPPDC) if and only if the associated multigraph Mp(H) is a
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cycle. Notice that in general, Mp(H) is a 2-regular multigraph.

Let G be a graph, and let C be a collection of cycles of G. If ¢ € C, then we
denote by ch(c) the number of chords of ¢ in G, and by ch(C) the number of chords
of all the cycles of C.

2 Preliminary Results

Let G be a connected 2-bridge-free graph, and let L(G) be its line graph. Each vertex
z € V(G) corresponds to a clique K (z) in L(G) that we call the vertez clique for z,
and K(z) is called a vertex clique of L(G). The vertex cliques {K(z) : z € V(G)}
partition the edges of L(G).

For n > 3, K, has a CDC (Lemma 1, below) and thus it seems that we can
construct a CDC of a line graph by simply taking the union of CDC’s of all the
vertex cliques. The problem with this, of course, is that a vertex of degree two in
a graph produces K, as a vertex clique in the line graph, and K5 has no CDC. In
fact, proving that the line graph of any 2-bridge-free graph has a CDC is as hard
as proving the CDC Conjecture. To see this, let G be a bridgeless graph, and let
H denote the graph obtained from G by subdividing each edge once. Clearly, H is
2-bridge-free. Now suppose that L(H) has a CDC, C, and let ¢ € C, ¢ = vgv; . . . k.
For 0 <1 < k, we can write v; = (2;y;) where z;y; € E(H), z; is a vertex of G, and
y; is the vertex added to subdivide the edge z;2;.; of G. Then ¢ = zox, ... TE7p is
a cycle in G corresponding to the cycle ¢ in L(H), and we see that

C' = {xory. .. w0 | (woyo)(2191) - - (zkye) (zoyo) € C}

is a CDC of G. Therefore, proving that 2-bridge-free line graphs have CDC’s is at
least as hard as proving the CDC Conjecture. Furthermore, Cai and Corneil [5]
have shown that if a graph has a CDC, then its line graph also has a CDC. These
two results together imply that a proof that line graphs of 2-bridge-free graphs have
CDC'’s is equivalent to proving the CDC Conjecture.

Our interest centers around finding SCDCs. The simplest examples of line graphs
with SCDCs arise by taking line graphs of 2-bridge-free trees. The proof of this relies
on the following fact (see [2], [11]).

Lemma 1 FEvery complete graph K, onn > 3 vertices has a cycle double cover with
(n — 1) Hamilton cycles.
]

Theorem 2 If T is a 2-bridge-free tree, then L(T) has a small cycle double cover.

Proof: Let T be a 2-bridge-free tree on n vertices (i.e., T is a tree with no vertices
of degree two). Then T has (n — 1) edges, so L(T) is a bridgeless graph on (n — 1)
vertices. Every vertex x € V(T') gives rise to a clique K (x) in L(T); the clique K (x)
has d(x) vertices, and, when d(z) > 3, K(z) has an SCDC with (d(z) — 1) cycles.

93




The union of the SCDCs of the vertex cliques of vertices of degree greater than one
gives us a CDC, C, of L(T). The number of cycles in C is

Cl= ¥ (=) -1

zeV(T), d(z)>3

Observe that the sum does not change by taking the sum over all vertices, since
vertices of degree one contribute nothing to the sum, and 7" has no vertices of degree
two. Therefore,

ICl= % (d(=)-1)
2eV(T)
= 3 dz)-n
2EV(T)
=2n—-1)-n
=n—2.

Since L(T) has n — 1 vertices, C constitutes an SCDC of L(T).
"

The proofs of our other results are also constructive, and we begin by describing
the general technique used in the constructions. Let G be a graph, and L(G) its
line graph. Assume that G is bridgeless (the case where G is 2-bridge-free but not
bridgeless requires a slight variation that will be dealt with in a later section). To
construct an SCDC of L(G), we require the following:

(i) a CDC of G;
(ii) a PPDC of each vertex clique of L(G).

Moreover, it is necessary that the PPDC’s of the vertex cliques and the CDC of G
be “compatible” (the precise meaning of this will be explained in what follows).

Let z,a and b be distinct vertices of GG, with a and b both adjacent to z. The pair
of edges {ax,zb} is called a transition at vertex z, and any cycle of GG that contains
vertex x induces a transition at z (consisting of the two edges of the cycle that are
incident with ). Thus we see that the CDC C of G induces, at each vertex z of G,
a system of transitions, denoted by T'(x), which is the collection of transitions at x
induced by all the cycles of C. Notice that T'(x) consists of d(x) transitions, and that
every edge incident with z is in exactly two of the transitions of T'(x). Note that the
term “transition system” more typically refers to a partition of the edges incident to
a vertex of a graph into classes of two elements (see [6]).

For each z € V(G), let P(z) denote a PPDC of the vertex clique K(z) in L(G),

and let
P= U P(x).
zeV(G)

Observe that every edge of L(G) lies in exactly two paths of P, so that P is a path
double cover of L(QG).
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The CDC C and the path double cover P are said to be compatible if and only if
for each vertex z of G there is a bijection

fo : T(z) = P(x)

such that for every tramsition {ax,xb} € T'(z), f.({az,zb}) is a path in P(x)
with endpoints ez and zb. We call f, a compatibility function between T'(z) and
P(x). Suppose that z has neighbours N(z) = {y1,y2,...,yx}. The transition multi-
graph, denoted Mp(z), has as its vertex set N(z), with yy; € E(Mr(z)) if and
only if {y;z,zy;} is in T'(z). Observe that Mr(x) is a 2-regular multigraph. The
associated multigraph of the PPDC P(z), denoted Mp(x), has as its vertex set
{zy1, 2Y2, - .. TYx}, but in order to simplify notation, we will denote the vertex set of
Mp{x) by N(z), with vertex zy; corresponding to vertex ;. In this case, we see that
yiy; € E(Mp(z)) if and only if there is a path in P(z) with endpoints zy; and zy,.
The following lemma provides an easy way of recognizing whether or not C and P
are compatible. )

Lemma 3 Let G be a bridgeless graph, C a cycle double cover of G, and P a path
double cover of L(G) consisting of PPDC’s of the vertex cliqgues of L(G); i.e., P =
Usev(eyP (), where P(x) is a PPDC of the vertex clique K(x) for each z € V(G).
Then C and P are compatible if and only if, for each vertex x € V(G), the transition
multigraph Myp(z) is isomorphic to the associated multigraph Mp(z) of the PPDC
P(x).

Proof: Assume that C and P are compatible, and for each v € V(G), fix a
compatibility function f, from T(u) to P(u). Let z € V(G) have neighbours
N(x) = {y1,y2 -, ye}. The compatibility function f; from T'(z) to P(z) induces a
bijection
gz V(Mp(z)) — V(Mp(z))

where, for each y; € V(Mr(z)), ¢.(y:) = yi. It follows immediately from the defini-
tions of f; and the multigraphs My (z) and Mp(z) that y;y; € E(Mr(z)) if and only
if y;y; € E(Mp(x)), thus confirming that g, is an isomorphism.

Conversely, suppose that © € V(G) and that N(z) = {y1,v2,...,¥}; further-
more, suppose that the multigraphs My (z) and Mp(z) are isomorphic, and that g,
is an isomorphism between them. Then

gz V(Mr(x)) — V(Mp(z))

is a bijection such that y;y; € E(My(z)) if and only if g.(y:)g.(y;) € E(Mp(x)).
Recall that P(z) is a PPDC of a complete graph, K (z), and so any permutation of
the names of the vertices still results in a PPDC of K(z). Thus, we may assume
that the PPDC P(z) of K(x) is chosen so that g, is the identity function. It now
follows that C and P are compatible.

=

Cycle double covers C that are compatible with path double covers P play a
crucial role in the proofs of our results. The following lemma provides the basis for
our constructions.
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Lemma 4 Let G be a bridgeless graph, C a CDC of G, and P a path double cover
of L(G), consisting of PPDC’s of the vertez cliques of L(G), and assume that C and
P are compatible. For each uw € V(G), fix o compatibility function f, from T(u)
to P(u). Let ¢ = vovyva. .. 041V be a cycle in C, and for each i, 0 < ¢ < ¢—1,
let f; = fy,. By the definition of a compatibility function, fi({vi-1vi,vivip1}) = B
where P; 1s a path in P(v;) with endpoints v;_1v; and v;v;4, (where subscripts are
taken modulo ¢q). Then

g—1

E.= U F;,

i=0
is an eulerian subgraph of L(G) with mazimum degree at most four. Furthermore, if
for each ¢ € C, D(c) is the set of cycles in a cycle decomposition of E., then

C=J D)
ceC
is a cycle double cover of L(G), and |C| < |C|+¢h(C) (where ch(C) denotes the total
number of chords in all cycles of C).

Before proving this result, one additional lemma is required.

Lemma 5 If H is a simple eulerian graph with k vertices of degree four and all
remaining vertices of degree two, then H has a cycle decomposition with at most
(k+1) cycles.

Proof: The proof is by induction on &, the number of vertices of degree four. The
result is obvious when k = 0. Assume that H is a simple eulerian graph with k£ > 1
vertices of degree four and all remaining vertices of degree two. Let € V(H) be an
arbitrary vertex of degree four in H, and construct an Euler tour of H that starts
and ends at x. This Euler tour can be represented by a sequence of vertices, with
vertices of degree two each occurring once, and vertices of degree four each occurring
twice, with the exception of z, which occurs three times since it is at the beginning
and end of the sequence. For some vertex y € V(H) (possibly y = z), there will be
a subsequence that starts and ends with y such that any vertex in this subsequence
occurs only once (with the exception of y, which occurs twice). This subsequence
corresponds to a cycle, ¢, in H; deleting the edges of ¢ along with any vertices that
become isolated results in an eulerian graph, H' with & — 1 vertices of degree four,
since y has degree two in H'. (An Euler tour in this graph can be obtained from the
sequence we began with by taking the subsequence whose first and last vertex is y,
and replacing it with just the vertex y.) By the induction hypothesis, H' has a cycle
decomposition with at most k cycles; this cycle decomposition of H' along with the
cycle ¢ gives us a cycle decomposition of H with at most & + 1 cycles, as required.
.

Proof of Lemma 4: An Euler tour of E, can be constructed by traversing, for
i=0,1,...,(¢—1), the path P; from v;_yv; to v;v;y1 (subscripts modulo g}, so E, is
certainly eulerian.
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Now suppose that j and m are integers with 0 < j,m < ¢ — 1 and j # m, and
suppose that P; and P, have a vertex in common. We know that P; is a path in the
vertex clique K (v;) and P, is a path in the vertex clique K (v,,), so this implies v;
and v, are adjacent in G. Since G is simple, Uy, 18 the only vertex that P; and P,
have in common; furthermore, no other path, P, (i # j, m), can contain the vertex
ViU, for this would imply that the edge VU, of G is incident to vj, vy, and v;, which
is impossible. Thus the intersection of P; and P, is either

(a) a vertex of degree two, in which case [j — m| =1 (mod q).

(b) a vertex of degree four, in which case the vertex vV corresponds to a chord
VU, of the cycle ¢ in G.

To verify that
C=JD()
ceC
is a CDC of L(G) it is only necessary to verify that every path of P lies in exactly
one E,, for some ¢ € C. This follows immediately from the fact that C and P are
compatible, so there is a one-to-one correspondence between transitions of the cycles
of C and the paths of P.

Finally, we apply Lemma 5 to each E.: since E. is an eulerian graph with maxi-
mum degree four, and the vertices of degree four correspond to chords of ¢ in G, it
follows that E. has a cycle decomposition into at most 1+ ch(c) cycles. Therefore,
O] < [¢] + ch(C).

The preceding lemma gives us a method for constructing a CDC, C of a line
graph L(G), provided that we have a CDC, C, of the original graph G and a path
double cover, P (consisting of PPDC’s of the vertex cliques of L(G)), such that C
and P are compatible. To ensure that C is a small CDC of L(G), it is necessary to
carefully choose the CDC C of G.

3 Line Graphs of Complete Graphs

The first step in proving that the line graph of K,, has an SCDC is to find an “ap-
propriate” CDC of K,. The following theorem provides the basis for this; the reader
will observe that this theorem is simply a restatement of the result of Kirkman [8]
that for all integers n > 3, there exists a Steiner Triple System on n points if and
only if n = 1,3 (mod 6).

Theorem 6 For all integers n > 3, K,, has a cycle decomposition into triangles if
and only if n = 1,3 (mod 6).

Two other results are required before we can proceed with the proof in the main
theorem of this section. Both results concern specific types of PPDC’s of complete
graphs.
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Lemma 7 (i) The complete graph Koy, m > 1, has a PPDC whose associated
maultigraph consists of m digons.

(i) The complete graph Kop1, m > 1, has o« PPDC whose associated multigraph
consists of one triangle and m — 1 digons.

Proof: Let m > 1, and let V = {vg,v1,v9,. .., vam—1} be the set of vertices of Ky,.
(i) For 0 < i < 2m — 1, define the path P; as follows:

Py = 00010 1VipoVion - Vitma1Vigm,
where the subscripts are taken modulo 2m, and let
P={P:0<i<2m—1}.

Then P is a PPDC of Ky, and P, = P;y,, for 0 < i < m — 1. Thus, P consists of
two copies of a decomposition of Ky, into m Hamilton paths (this is a standard con-
struction dates back to the 19th century). It follows that the associated multigraph,
Mp(Ky,) consists of m digons.

(ii) Beginning with the graph K5, and the PPDC described in (i), add a new vertex
Vo and join it to each vertex of V. The paths of P are now modified to produce
a PPDC Q of Kyt as follows: for each path P, 1 < j < 2m — 1, replace the
edge v;vj41 by the path of length two vjva,v;41. Notice that this does not affect
the endpoints of these paths, so that P; and Py, 1 < j < m — 1, still have the
same pair of endpoints and result in a digon in Mg(Komy1). The path Py is simply
extended by adding an edge from vy to vs,,, and thus has endpoints vo, and v,.
One new path, P, must be added:

P* = U V1 VU3 . . . Uogmm—1Vg-

The path P, covers the edges that were “uncovered” by the modifications to the
paths P;, 1 < j < 2m — 1. Since the path P, has endpoints v, and v, as before, the
paths P, P, and P, result in a triangle in Mg(Kay,41), thus completing the proof
in this case.

»

Recall that an eulerian perfect path double cover (EPPDC) of a graph is a PPDC
whose associated multigraph is a single cycle.

Lemma 8 The complete graph K,,, m > 2 has an eulerian perfect path double cover.

Proof: Let m > 2, and let V = {vg,v1,v2,...,Um-1} be the set of vertices of K,
We consider the cases m odd and m even separately.

(i) Suppose that m is odd, m =2k +1. For 0 <4 < m — 1, let

Py = vivi 101 VigoVicg - - Vigk2VigkVick+ 1
where the subscripts are taken modulo m. Then

P={P:0<i<m~-1}
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is a PPDC of K,,,. The edges of the associated multigraph Mp(K,,) are

VoVk+1, V1Vk+2, VoUk43, - - -, UkV0, U101, - -+, U2k Vg,

and these give us the single cycle

VoVk+1 U Vg2V Vk 43 - - - UgVp.

Therefore, P is an EPPDC of K,,.

(ii) Now suppose that m is even, m = 2k. For 0 < i < k — 1, define the path P; as
follows:

P; = Vi1V Vigaliog . - Uitk 1Vidk,

where the subscripts are taken modulo m. Then
P={P:0<i<k-1}

is a decomposition of K, into Hamilton paths, with P, having endpoints v; and v; 4,
0 <1 <k~1 If wedraw K, with the vertices in the cyclic (clockwise) order

VoUr V1 Vg1 V2Vk 42 - - - Vg —2U2k—2Vk—1V2k—1 V0,

and take the paths of the decomposition P and rotate each one clockwise by one
vertex, we obtain a second path decomposition Q, where path @, has endpoints v; 4
and v, 0 <1 <k —2, and Q_; has endpoints vor_; and vg. Then is S =P U Q
is a PPDC of K,,, and the edges of the associated multigraph Ms(K,,) are

VoVk, ViVk41, V2Uk425 « -+ Uk—1V2k—1, UkV1, U102, - . ., U2k Vp.

These edges form the cycle

VUV Vg 41U V42 -+« Up—1VU9k 100,

Therefore, S is an EPPDC of K,,.

We are now ready to prove the main result in this section.
Theorem 9 For alln > 2, L(K,) has a small cycle double cover.

Proof: To prove that L(K,) has an SCDC, we must show that it has a CDC with
less than n{n — 1)/2 cycles. When n =2, L(K,) consists of a single vertex, and the
result is trivially true. In what follows, assume that n > 3. There are a number of
cases to consider.

Case 1. n = 1,3 (mod 6).
By Theorem 6, we know that K, has a cycle decomposition into triangles, and thus
has a CDC, C, consisting of two copies of this cycle decomposition. This implies that

for each vertex x € V(K,), the transition multigraph Mr(z) consists of (n — 1)/2
digons.
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Since n is odd, (n — 1) is even, and so by Lemma 7, each vertex clique of L(K,)
has a PPDC whose associated multigraph consists of (n — 1)/2 digons. Let P be a
path double cover of L(K,) consisting of these PPDC’s of the vertex cliques. Then
C and P are compatible, and we can construct a CDC, C, of L(K,,) as described in
Lemma 4.

Since each ¢ € C is a triangle, the eulerian subgraph E. of L(K,) is a cycle, and
thus |C| = |C|. Therefore, the number of cycles in C is n(n — 1)/3; since L(kK,,) has
n(n — 1)/2 vertices, it is clear that C is an SCDC of L(K,,).

Case 2. n = 2,4 {mod 6).

In this case, n — 1 = 1,3 (mod 6), and so using the construction in Case 1, K,
has a CDC, €, with (n — 1)(n — 2)/3 triangles, such that for each x € V/(K,,.,), the
transition multigraphs My (z) consists of (n — 2)/2 digons.

Let V(K,-1) = {vo,v1,...,Vn-2}, and construct K, by adding the vertex v,_;
and joining it to each vertex of K. Without loss of generality, we may assume that
the vertices of K,,_; are labeled so that Ty = vyv, 090 is a triangle in €', Furthermore,
there exist (n — 4)/2 distinct triangles T; € ', 1 <4 < 25* (that are also distinct
from Ty), such that vy y1vs42 € E(T3).

The CDC C' of K,_; can be modified to be a CDC C of K, as follows:

(i) Replace the edges vpv; and vy, of Ty with the edges vgv,—; and v,_1vs.
(ii) Fori=1,..., E-;—Q, replace the edge vy 10940 of T; with the edges vy v,
and v, _1v9;42 (so that T; is now a 4-cycle).
(iii) Add the triangles vgv,_1v1, V1Us-102, and for i = 1,.. ., ”—;—4-, add the triangles
V2i4+1Vn-1V2i42-
One can verify that this is a CDC of K, with [(n—1)(n—2)/3]+ 2 triangles and (n—
4)/2 four-cycles. Furthermore, for each vertex z € V(K,,), the transition multigraph
Myp(z) consists of one triangle and (n — 4)/2 digons.

Since m is even, n — 1 is odd, so by Lemma 7 each vertex clique of L(K,) has
a PPDC whose associated multigraph consists of one triangle and (n — 4)/2 digons.
Let P be a path double cover of L(K,,) consisting of these PPDC’s of the vertex
cliques. Then C and P are compatible, and we can construct a CDC, C, of L(K},)
as described in Lemma 4.

For each triangle ¢ € C, the eulerian subgraph E, in L(K))) is a cycle. Since each
4-cycle f € C has two chords, the eulerian subgraph Ey in L(/,) has exactly two
vertices of degree four. By Lemma 5, E; has a cycle decomposition with at most
three cycles. Therefore

;C|S(n—l)3(n~2)+2+3'n~4
1, .
= -{Zn" +on —
622 3 20
n(n—1)
<—“—‘—“2 N

for all n > 0, and thus C is an SCDC of L(K,).
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Case 3. n=0 (mod 6).
In this case, n — 3 = 3 (mod 6), and so using the construction in Case 1, K,_; has
a CDC, (', consisting of (n — 3)(n — 4)/3 triangles, such that for each z € V(K,_;)
the transition multigraph My (z) consists of (n — 4)/2 digons.

Let V/(Kp3) = {vo,v1,...,vn-4}, and construct K, by adding the vertices Up_3,
Un-2, Un-1, and joining each of these to all vertices of K,_s and to each other. The
CDC €' of K,,_3 can be modified to be a CDC C of K, as follows:

(i) Add two copies of the triangle v, _3v,_oUn_1Un_3.

(il) Add the 6-cycle vyv,_ v v, _3090,_2vg, and the three 4-cycles vyv,_301U,_9vg,
V1 Vp—2V2V, 1V, and vavy V¥, 302 (this constitutes a CDC of a K33 with one
G-cycles and three 4-cycles).

(iii) Fori=1,..., ”;6, add the three 4-cycles Vi1 Un—302i 420, _2Vgi11, V9i41Un—2U2 42
Un-1V2i41 and Vg4 U 1Vgi40Un_3v9+1 (this constitutes a CDC of a K, 5 with
three 4-cycles).

We see that C is a CDC of K, with 2+ (n — 3)(n — 4)/3 triangles, one 6-cycle, and
3+ 3(n - 6)/2 four-cycles. Furthermore, for each vertex = € V'(K,,), the transition
multigraph Mr(z) consists of one triangle and (n — 4)/2 digons.

Since n is even, n — 1 is odd, so by Lemma 7 each vertex clique of L(K,) has
a PPDC whose associated multigraph consists of one triangle and (n — 4)/2 digons.
Let P be a path double cover of L(K,) consisting of these PPDC’s of the vertex
cliques. Then C and P are compatible, and we can construct a CDC, C, of L(K,)
as described in Lemma 4.

For each triangle ¢ € C, the eulerian subgraph E, in L(K,) is a cycle. Since
each 4-cycle f € C has two chords, the eulerian subgraph E ¢ in L(K,) has exactly
two vertices of degree four. By Lemma 5, E; has a cycle decomposition with at
most three cycles. Finally, the 6-cycle ¢ € C has nine chords, and thus the eulerian
subgraph Fy has exactly nine vertices of degree four. It follows from Lemma 5 that
E, has a cycle decomposition into at most ten cycles. Therefore

| g2+m(”—32("*4) +3<3+—~—~—~3("2‘6)) +10

b

1
= -6(277? + 13n — 12)
n(n - 1)
<5
2
only if n > 16, and thus C is an SCDC of L(K,) whenever n > 16. Since n = 0
(mod 6), the cases n = 6 and n = 12 require special treatment (see Case 5).

Case 4. n =5 (mod 6).
In this case, n — 2 = 3 (mod 6), and so using the construction in Case 1, K,,_, has
a CDC, (', consisting of (n — 2)(n — 3)/3 triangles, such that for each z € V (K, _,),
the transition multigraph My (z) consists of (n — 3)/2 digons.

Let V(K _2) = {vo,v1, ..., v,_3}, and construct K, by adding the vertices Up 2,
vn-1, and joining each of these to all vertices of K,_, and to each other. The CDC
C' of K,_» can be modified to be a CDC C of K, as follows:
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(i) Add two copies of the triangle vgv,—2vn-1p.

(ii) Fori=0,1,..., "—;‘5, add two copies of the 4-cycle v, 1V 29 9V, 1U0i11.
We see that C is a CDC of K, (in fact, C is simply two copies of a cycle decomposi-
tion of K,), and consists of 2 + (n — 2)(n — 3)/3 triangles and (n — 3) four-cycles.
Furthermore, for each vertex x € V(K,), the transition multigraph My (z) consists
of (n —1)/2 digons.

Since n is odd, n — 1 is even, so by Lemma 7 each vertex clique of L(K,) has a
PPDC whose associated multigraph consists of (n — 1)/2 digons. Let P be a path
double cover of L{K,) consisting of these PPDC’s of the vertex cliques. Then C
and P are compatible, and we can construct a CDC, C, of L(K,,) as described in
Lemma 4.

For each triangle ¢ € C, the eulerian subgraph E, in L(K,,) is a cycle. Since each
4-cycle f € C has two chords, the eulerian subgraph Ey in L(K,) has exactly two
vertices of degree four. Therefore

(n—2)(n-3) N
3
= —zli(n2 + 4n — 15)

n{n — 1)
<5
2

ICl <2+ 3(n — 3)

only if n > 6, and thus C is an SCDC of L(K,) whenever n > 6. Since n = 5
(mod 6), the case n = 5 and requires special treatment.

Case 5. Special cases: n = 5,6 and 12.

Suppose n = 5, and let V(K5) = {vg, vy, vo,v3,v4}. Then V(L(K5)) = {x;;]vv; €
E(Kjs)}. One can verify that the following four cycles in L(K),) constitute a cycle
decomposition of L(K,):

Co = Tp,1L1,2%2,373,4L0,4T0,1
C1 = 71,471,320,3%0,2%2,4%1,4

Co = Tp,1L0,2T1,271 30237243 420,3004T14L0,1

fl

C3 = Z0,101,303,42L1,401,2%24%0,420,222,3L0,3%0,1

Let C denote the collection of cycles obtained by taking two copies of each ¢;, 0 <
1 < 3. Then C is a CDC of L{K3) with eight cycles; since L(Kj) has ten vertices, C
is an SCDC.

When n = 6, there is a CDC, C, of K with triangles as follows. Let V(Kj) =
{vg,v1, 02, U3, 4, 5}, and take the collection of cycles consisting of vyviv2vg, VoU2v3v0,
VoU3V4Vg, VgU4Vs5Vg, VglUsV1Vg, V1UUgqV1, UaU3UsVg, UzVyaV1Vs, UVgUsUyV4, UsU1U3Vs5. Again)
one can verify that C is a CDC of Kg with triangles, and that the transition multi-
graph Mr(v;), 0 < ¢ <5 is a cycle of length five. By Lemma 8, there is a PPDC of
K(v;), 0 <1 <5 so that the resulting path double cover, P, of L(K,) and the CDC
C are compatible. Thus a CDC, C, of L(K,) can be constructed as in the proof
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of Lemma 4. Each triangle in C yields a cycle in C, and so |C| = |C| = 10. Since
10 < (j) — 1, Cis an SCDC of L(Kg), as required.

Finally, we consider the case n = 12. Let G;, 0 < i < 2 be a complete graph on
four vertices, with V(G;) = {vai, vai+1, Vais2, Vaigs }. We construct K, by taking the
disjoint union of Gy, Gy and Gs, and then adding the edges of a complete 3-partite
graph, H, whose parts are V(Gy), V(G1) and V(G»). Each G;, 0 < i < 2, has a CDC
with triangles: simply take the cycles va;vg;41v45004, Vg Vai41V4i4+3040, VagVaio2V15 1304
and Vg1 V4iroVsicaVair. The edges of H can be decomposed into 16 triangles:

Vo V4V8Vy VU5V Vg VoVe V10V TVoV7U11 YV
V1V4Uq¥1 V1V5V10V1 V1VeV11V] VU7V,
VoVg V102 VoVUsV11 Vs Vol UgVo Vo U7U9U9
V3l4U11V3 V3Us Vg V3 V3Ve V9 V3 V3V7V10V3

One can verify that two copies of this cycle decomposition of H, along with the
CDC’s of Gy, Gy, and G, gives us a CDC, C, of K, with 44 triangles. Furthermore,
for each v;, 0 < i < 11, the transition multigraph My (v;) consists of one triangle and
four digons. By Lemma 7, K (v;), 0 < i < 11, has a PPDC so that the resulting path
double cover, P, of L(K,) is compatible with the CDC C. Thus a CDC, C, of L(K,)
can be constructed as in the proof of Lemma 4, with each triangle in C yielding a
cycle in C, and hence |C| = |C] = 44. Since 44 < (122) —~1, Cis an SCDC of L(K)3)
as required.

3

4 Line Graphs of Complete Bipartite Graphs

The technique used in the previous section to prove the SCDC Conjecture for line
graphs of complete graphs can also be applied to line graphs of complete bipartite
graphs.

Theorem 10 The line graph of every complete bipartite graph Kpn withm,n > 1
has a small cycle double cover, except when {m,n} = {1,2}.

Proof: To prove that L(K,,,) has an SCDC, we must show that it has a CDC with
at most mn — 1 cycles. If m or n is equal to one, say, without loss of generality that
m =1, then K, is a tree; furthermore, if n # 2, then this tree is 2-bridge-free,
and the result follows from Theorem 2. Thus, from now on we will assume that
m > 2and n > 2. Let K, have bipartition (X,Y) with |X|=m and |Y] =n. We
consider two cases: either at least one of m and n is even, or both m and n are odd.

Case 1. First assume that at least one of m and n is even; without loss of gen-
erality, suppose that m is even, say m = 2p for some integer p > 1. Let X =
{mﬂv L1, T2, .- 71'27)—*1} and YV = {y()v Yi,Y2,- -4, yn—1}~ For each integer ia 0 S i < P_l
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and for each integer j, 0 < j < n — 1, define the 4-cycle C;; = T9Y;Toi1Yj+1%2i,
where the subscripts for the y’s are taken modulo n. One can verify that

C={Ci0<i<p-10<j<n~—1}

is a CDC of K,,, with mn/2 cycles of length four. For each vertex = € X, the
transition multigraph Mr(z) that is induced by the cycles of C is a cycle of length
n = d(z), and for each vertex y € Y, the transition multigraph My (y) that is induced
by the cycles of € consists of d(y)/2 = p digons.

For each vertex z € X, let P(z) be an EPPDC of K, and for each y € Y,
let P(y) be a PPDC of Kj, whose associated multigraph consists of p digons; the
existence of these is guaranteed by Lemmas 7 and 8. Set

P=(J P)u(lUPw);
zeX yeY
then P is a path double cover of L(K,,,), and it follows from Lemma 3 that C and
P are compatible. We can now apply Lemma 4 to obtain a CDC, C, of L(K,,,),
with |C| < |C} + ¢h(C). However, since K, is bipartite and the cycles of C are all
of length four, it follows that ch(C) = 0, and thus |C| = |C| = mn/2 < mn — 1.
Therefore, C is an SCDC of L(K,, ).

Case 2. We may now assume that both m and n are odd, with m,n > 3; then
m=2p+1and n = 2¢+ 1 for some p,q¢ > 1. Let X = {zo,21,%2,...,20p}
and Y = {yo,¥1,Y2,-..,Yz}. Partition X into two sets, X' = {22, 2, Top—1,T2p}
and X" = X\X'; similarly, partition Y into Y’ = {yaq-2,Y2q-1, %2} and Y" =
Y\Y". Then K, is the union of four edge-disjoint bipartite graphs: (i) a K3
with bipartition (X', Y); (ii) a K3 2,-2 with bipartition (X', Y"); (iii) a Ky, o3 with
bipartition (X", Y"); (iv) a Kup_22-2 with bipartition (X",¥"). A CDC C of K,
can be constructed by taking CDC’s of each of these four graphs.

For the graph K33 with bipartition (X',Y”), the collection C; consisting of the
cycles

Lop—2Y2q-2L2p—-1Y29-1T2p-2 Top-1Y2g—1L2pY2¢T2p—1
TopYoqLop—2Y2g-2T2p Lop-2Y2q—1T2pY2g—2L2p-1Y2¢L2p—2
is a CDC with three 4-cycles and one 6-cycle.

For the Kj394-2 with bipartition (X', Y”), let Cy be the collection of cycles con-
sisting of, for j =0,1,...,9— 2,

Y25 Top—2Y25+1T2p—-1Y25
Y25 Top—1Y25+1T2pY25
Y25 LopY2j+1T2p—2Y25-
Then C, is a CDC with 3{g — 1) cycles of length four.
Similarly, for the Ky, 23 with bipartition (X”,Y”), let C3 be the collection of
cycles consisting of, for i =0,1,...,p — 2,

L2iY2q—2T2i+1Y2g—1T24
T2iY2g—1L2i4+1Y2¢T 24
T2iY2¢T2i+1Y29—2T2i-
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Then C3 is a CDC with 3(p — 1) cycles of length four.
Finally, for the Ky, 53,2 with bipartition (X", V"), let

C* = {otajTain1Yoj4r®e 0 0<1<p—2,0<j7<q—2}

Then C* is a cycle decomposition with (p — 1)(g — 1) cycles of length four, and two
copies of this, which we will call C4, constitutes a CDC with 2(p — 1)(g — 1) cycles of
length four.

The union of Cy, Cy, Cy and C4 thus gives us a CDC, C. of K n with 2pg+p+q—1 =
(mn — 3)/2 cycles of length four and one cycle of length six. Furthermore, for each
vertex u € V(K ,), the transition multigraph My (u) induced by the CDC C consists
of one triangle and (d(u) — 3)/2 digons.

For each vertex z € X, let P(z) be a PPDC of K, such that the associated
multigraph Mp(x) consists of one triangle and (n — 3)/2 digons, and for each y € Y,
let P(y) be a PPDC of K,, whose associated multigraph Mp(y) consists of one
triangle and (m — 3)/2 digons. Such PPDC’s exist by Lemma 7. Set

P=({ P)u(l Pw);

zeX yey
then P is a path double cover of L(K,,,), and it follows from Lemma 3 that C and
P are compatible. We can now apply Lemma 4 to obtain a CDC, C, of L(K ),
with |C| < |C| + ch(C). Since K,,, is bipartite, the only chords of C occur in the
single cycle of length six, which has three chords, and thus

-1
}C|§[6’|+3:mn2 +3:mn2+5§mn~1

whenever mn > 7. Since m,n > 3, this condition is satisfied, and therefore C is an
SCDC of L(K ).

5 Line Graphs of Planar Graphs

One of the keys to constructing SCDCs for the line graphs of complete graphs and
line graphs of complete bipartite graphs is the existence of CDC’s of complete graphs
and complete bipartite graphs for which we can exactly describe the transition multi-
graphs. Planar graphs provide another class of graphs with CDC’s for which we can
exactly describe the transition multigraphs.

Theorem 11 If G is a 2-bridge-free planar graph, then L(G) has a small cycle
double cover.

The basic technique that we will use is the same as that used for line graphs of
complete graphs and complete bipartite graphs, but requires some modification to
allow for bridges and cut vertices in the graph. (An important part of our previous
constructions was a CDC of a graph G, which exists only if G is bridgeless.)

One preliminary observation is that it suffices to prove Theorem 11 for connected
graphs; the next lemma allows us to further restrict the graphs we must consider.
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Lemma 12 Suppose G is a connected 2-bridge-free graph, and suppose that zy €
E(G) is a nontrivial bridge in G. Let Hy and Hy, be the two components of G — {zy};
without loss of generality, « € V(H,) andy € V(H,). Define G; = H U {y} U {zy}
and Gy = HyU {z} U{zy}. If L(G;1) and L(G>) both have small cycle double covers,
then L(G) has a small cycle double cover.

Proof: The definitions of G, and Gy ensure that L(G) = L(G;) U L(G,), with
L(G1) N L(G) consisting of the single vertex in L(G) that corresponds to the bridge
xy of G.

Let m denote the number of edges in G. Suppose that L(G;) has m; vertices,
j = 1,2; then m; +my = m + 1, where m is the number of vertices in L(G) (since
G has m edges). Since L(G;) has an SCDC, there is a CDC, Cj, of L(G;) with
1G] < (mj—1),5=1,2.

The structure of L(G) guarantees that C = €, UCy is a CDC of L(G), and

ICl = ICi] + IC2]
< (= 1)+ (ma = 1)
=m - 1.

Therefore, C is an SCDC of L(G).

As a consequence of this lemma and our previous comment, it suffices to prove
Theorem 11 for connected graphs whose only bridges are pendants. Notice that such
a graph is either a tree (in particular, a star), or it is a graph in which any vertex
of degree greater than one has at least two non-pendant incident edges. Since we
have already proved this result for trees (see Theorem 2), we need only consider the
second case. Finally, observe that we need only prove the theorem for plane graphs
(i.e., planar graphs embedded in the plane).

Let G be a connected plane graph with blocks G1,Gy, ... Gy, For 1 <4 < p, if
[V(G;)| > 3, then we define F; to be the set of facial cycles of Gj; if |V(Gy)| < 3,
then F; = 0. The facial cycle double cover (FCDC) of G is defined as

Observe that F is a collection of cycles such that every edge of GG that is not a bridge
lies in two of the cycles, and any edge of G that is a bridge lies in none of the cycles.
Also, observe that if G is 2-connected, then the number of cycles in F is simply the
number of faces of G.

Let G be a connected, 2-bridge-free plane graph with no non-trivial bridges, and
let F denote the FCDC of G. As is the case for a CDC of a bridgeless graph, the
FCDC F of G induces, at each vertex z of G, a system of transitions, T'(x). If =
is incident to k pendants, then T(z) consists of d(x) — k transitions, no transition
containing a pendant incident with x, and containing every other edge incident to z
in two of the transitions. The transition multigraph, Mr(x) is defined as before.
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To construct a SCDC of L(G), we require, for each vertex z € V(G) with d(x) >
2, a double cover of the edges of the vertex clique K (z) with paths and cycles, such
that the paths are compatible with the FCDC, F, and such that the total number
of cycles is not “too large”.

For each z € V(G) with d(z) > 2, let Z(z) be a path and cycle double cover
(PCDC) of K(z): a collection of paths and cycles of K(z) such that every edge
of K(x) lies in two elements of Z(z). Note that if d(z) = 1, then K(z) has no
edges, and hence no PCDC of K (z) is required. The associated multigraph of Z(x),
denoted Mz(x), is defined as before. Define

Z= U Z(x).

V(G d(z)>2

Then Z is a path and cycle double cover of L(G). The FCDC F and the PCDC Z
are compatible if and only if for each vertex z of G there is a bijection

fo: T(x) = Z(x)

such that for every transition {ax,zb} € T(z), fz({az,xb}) is a path in Z(z) with
endpoints az and xzb. This is analogous to our earlier definition of compatibility for
CDC’s and PPDC’s, and the following lemma is analogous to Lemma 3, providing
an easy tool for checking compatibility.

Lemma 13 Let G be a connected plane graph with no non-trivial bridges, F the
facial cycle double cover of G, and

2= Uz,

zeV(G),d(x)>2

where Z(x) is o PCDC of the vertex clique K(z) for each x € V(G). Then F and
Z are compatible if and only if, for each vertez x € V(G), the transition multigraph
My (x) is isomorphic to the associated multigraph Mg (z) of Z(z).

]

The next lemma is analogous to Lemma 4, and details how a FCDC F of G that
is compatible with a PCDC Z of L(G) can be used to construct a CDC of L(G). For
Z a PCDC of L(G), let C(Z) denote the cycles of Z.

Lemma 14 Let G be a 2-bridge-free plane graph with no nontrivial bridges, F the
FCDC of G, and Z a PCDC of L(G), such that F and Z are compatible. For each
u € V(G), fix a compatibility function f, from T(u) to Z(u). Let ¢ = vgvivy ... v4_17p
be a cycle in F, and for each i, 0 < i < g —1, let f; = f,,. By the definition of
a compatibility function, fi({vioyvi, vvip1}) = P, where P, is a path in Z(v;) with
endpoints vi_1v; and v;vi (where subscripts are taken modulo q). Then




is an eulerian subgraph of L(G) with mazimum degree at most four. Furthermore, if
for each c € F, D(c) is the set of cycles in a cycle decomposition of E,, then

C= (U D(c)) ue(z)
ceF
is a cycle double cover of L(G), and |C| < |F|+ ch(F) + |C(Z)].

For a vertex z € V(G), the transition multigraph, Mp(z), has one of the following
three forms, depending on whether or not z is a cut vertex, and on whether or not
z has any incident pendants.

(1) If z is not a cut vertex of G, then Mr(z) is a single cycle of length d(x).

(2) If x is a cut vertex so that G — {z} has one nontrivial component and & > 0
trivial components, then My (z) consists of a single cycle of length d(z) — &,
and k isolated vertices

(3) If = is a cut vertex such that G — {z} has ¢ > 2 nontrivial components
X1, Xy ..y Xy, with k; > 2 edges from z to X;, 1 < 1 < ¢, and d(z) —
(ky + kg + - -+ + k,) trivial components, then Mrp(z) consists of ¢ cycles with
lengths ki, ko, .. ., kg, and d(z) — (k) + ko + - - - + k) isolated vertices.

In each of these cases, we must construct a PCDC, Z(z), of the complete graph
on d(z) vertices so that Mz(z) is isomorphic to My(z). This motivates the following
definition.

For g > 1, let ky, kg, ..., k, be integers with k; > 2,1 < i <q. A (ki, ko, ..., kq)-
path-and-cycle double cover ((ky, ko, ..., ky)-PCDC), Z, of the complete graph on m
vertices, Ky, is a collection of ki +ko+ - -+k, paths and m— (ky +ka+ - -+ kg)+(g—1)
cycles such that

(a) every edge of K, lies in exactly two elements of Z;

(b) for 1 < i < g, there exists X; C V(Ky,) with |X;| = k; such that the X; are
pairwise disjoint, and there exists Z; C Z, with |Z;| = | X,], such that every
vertex of X; is the endpoint of precisely two paths of Z;.

If ¢ = 1, then we write k;-PCDC instead of (k1)-PCDC. Notice that if ¢ = 1 and
ki = m, then Z is simply a PPDC of K,; i.e., an m-PCDC of K, is a PPDC of K,,.

Lemma 15 Let m > 2, and let ki, ko, ..., kg, ¢ > 1, be integers with k; > 2,
1<i<gq, andky + ko + - kg <m. Then K,, has a (k1, ko, ..., k,)-PCDC.

Proof: Let V(K,;) = {vo,v1,02,...,Um-2,VUs}. Foreach j, 0 < j <m — 2, define
the cycle Cj as follows:

C = V05410 4m-2V542V51m—3 - - - Uj+(m—2)/2Vj+m/2Vo0V; if m is even;
J ViV 41V 4m—2Vj42V54m—3 « - - Vjt (m+1)/2Vj+(m—1)/2VeoVj if m is odd,
where the subscripts are taken modulo m — 1. One can verify that the collection of
cycles C={C;: 0<j <m—2}isa CDC of Ky, with m — 1 Hamilton cycles.
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Let r="Fky +ky+---+ky Define by = 0; forall j, 1 < j < ¢, let

and then set
)(]- = {'Ua(j), Ua(j)+1)7"a(j)+2a ceey Un(j)+kj~l.}7

with one exception: in case r = m, set

Xq = {1)0((1)7 Va(g)+1s Valg)+25 - - -5 Ver(g)+ky—25 Uoo}-

Notice that |X}| = k;, and that the X are pairwise disjoint.
We modify the cycles of C to obtain a (ki ks, ..., k,)-PCDC, Z, as follows: for
each 7, 1 < j < ¢, and for each i, 0 <4 < k; — 2,
o let Pogysi = Caggyri — {Va()+iVa)+it1
e in the case where r = m, then for 7 = ¢ and ¢ = kg — 2, let Pygyrk,—2 =
Cotay+kg—2 = {Valg) 4k, 2000 15
o let Pogiyrk;—1 = Va()Va()+1%()42 - - - Va(i)+;-2Va()+k; 13
e in the case where r = m, then for j = ¢ and ¢ = k, — 2, let Pogy+hy—1 =
7,)(,,(,’)T1a(q)+1’va(q)+2 N 'Ua(q)+lcq~2voo~
Then Z; = {Pag), Pagiy+1, Pag)+2, - - Pagj)+k; -1} is a collection of paths that covers
the same edges, with the same multiplicities, as the cycles {Caiiys Cotiy+1> Cayez, - -
Cagy+k; -2} Also, |25 = | Xj| = kj, and every vertex of X is the endpoint of exactly
two paths of Z;. It is a straightforward exercise to verify that Z does consist of r
paths and m —r + (¢ — 1) cycles, and is thus a (k, ks, ..., k,)-PCDC, Z, as required.
»

The next result follows immediately from the construction described in Lemma 15.

Corollary 16 Let m > 2, and let ky, kg, ..., kq, ¢ > 1, be integers with k; > 2,
V<4 <q, and ky+ky+ kg <m. Then Ky, has a (ky, ks, ..., k,)-PCDC, Z, such
that the associated multigraph, Mz(K,,), consists of q cycles of lengths ki, ko, . . ., ky,
and m — (ky + ko -+ ... + k) isolated vertices.

"

This corollary ensures that we can find a PCDC Z of L(G) that is compatible
with the FCDC F of G. The next result guarantees that the CDC of L(G) that we
construct using Lemma 14 has the required number of cycles.

Lemma 17 If G is a connected bridgeless plane graph with m > 0 edges and b blocks,
then the facial cycle double cover of G, F, is a cycle double cover with the property
that

[Fl+ ch(F)+b<m.
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Proof: Let G be a connected bridgeless plane graph with n vertices, m edges, and
b blocks. It follows immediately from the definition of the FCDC that F is a CDC
of G.

The proof of the rest of the result is by induction on the number of vertices, n.
When n = 3, G is a cycle of length three (so m = 3), and two copies of this cycle
constitute the FCDC F of (7. In this case, the cycles of F are chordless, and b = 1,
80 |F|+ ch(F)+b=2+0+1=3=m, and hence the result holds.

Suppose now that G is a connected bridgeless plane graph with n > 4 vertices,
b blocks, and m edges, and that the result holds for all connected bridgeless planar
graphs on less than n vertices. There are three of cases to consider.

Case 1. Suppose that G has a cut vertex, x. Then there exist connected subgraphs
G, and Gy of G such that GUG, = G and G1NGy = {z}. Let m; and b;, respectively,
denote the number of edges and blocks in G, i = 1,2; then m; +my = m and
by + by = b. Since |V(G;)| < n, ¢+ = 1,2, we may apply the induction hypothesis, and
so the FCDC F; of G, has the property that |F;| -+ ch(F;) +b; < m,;. We see that the
FCDC F of G is simply the union of F| and F», and that ch(F) = ch(F) + ch(F).
Therefore,

|F| + ch(F) +b = |Fi| + | Fa| + ch(F) + ch(Fa) + by + b
= (|7 + ch(F1) + b)) + (IF2] + ch(F2) +ba)

my +mey = 1m.

IN

Case 2. Suppose that G is 2-connected, but that no 2-vertex-cut of G is an edge.
In this case, the FCDC F of G is simply the CDC of G by facial cycles; since no
2-vertex-cut of G is an edge, the facial cycles are chordless, and thus ch(F) = 0;
also, b = 1. Therefore,

|[FIl+ch{F)+b=f(G)+1
=m — n+ 3, by Euler’s formula,
<m, since n > 3.

Case 3. Finally, suppose that G is 2-connected, but that G has a vertex cut {z,y}
such that zy is an edge of G. In this case, b = 1 and there exist 2-connected subgraphs
G and G5 of G such that G, U Gy = G, and G| N G4 consists of the vertices x, vy,
and the edge zy. Without loss of generality, we may assume that G is embedded so
that zy is an edge of the outer (infinite) face of Gy and of Gy. Let m; denote the
number of edges of G;, i = 1, 2; then my + my = m + 1. Also, if b; is the number of
blocks of G;, then b; = 1,4 = 1,2. Let F; denote the FCDC of GG, i = 1,2, and let
C; € F; be the cycle corresponding to the outer face of G;.
The FCDC F of G can be described as follows:

F=(F ~{CHU (Fo — {Ca}) U{C1AC,},

where C;AC, denotes the symmetric difference of Cy and C,. Thus we have |F| =
[Fi] + |Fol = 1. Also, zy is now a chord of the cycle CYAC, of F, and hence
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ch(F) = ch(Fy) + ch(F2) + 1. Since |V(G;)| < n, i = 1,2, we apply the induction
hypothesis to obtain |F;| + ch(F;) < m; — 1. Therefore,

[Fl+ch(F)+b=([Fi|+|Fa| = 1) + (ch(FL) + ch(Fp) + 1) + 1
(IFs +ch(F1)) + (1] + eh(F2)) + 1
<(mp—1)+(my—1)+1

1.

il

Il

This completes the proof of the Lemma.

The next corollary follows immediately from this result.

Corollary 18 If GG is a connected plane graph with no non-trivial bridges, having
m > 0 edges and b blocks, then the facial cycle double cover of G, F, has the property
that

[Fl+ch(F)+b<m.

Proof of Theorem 11: It suffices to prove this result for connected plane graphs.
In addition, Lemma 12 ensures that we need only prove the theorem for graphs with
no nontrivial bridges; i.e., graphs whose only bridges are pendants. Thus, let G be
a connected 2-bridge-free plane graph with no nontrivial bridges.

Let m denote the number of edges of G, and let F denote the FCDC of G. Let
v € V(G), d(z) > 2; as remarked earlier, the associated multigraph My(z) of the
transitions T'(z) induced by F is one of the following.

(i) Mr(z) is a single cycle of length d(z), provided that z is not a cut vertex of G.

(ii) My(x) consists of a single cycle of length d(z) — k, and k isolated vertices,
provided z is a cut vertex so that G — {z} has one nontrivial component and
k > 0 trivial components.

(iii) Mgz (z) consists of ¢ cycles with lengths ky, ko, ..., k,, and d(z) — (k; + ks +
-+ + ky) isolated vertices, provided that z is a cut vertex such that G — {z}
has ¢ > 2 nontrivial components Xy, Xy, ..., X,, with k; > 2 edges from z to
Xi, 1 <i<q, and d(x) — (k1 + ko + - - - + k,) trivial components.

In the first case, (i), let Z(z) be an EPPDC of K(z); this exists by Lemma 8, and
also by Corollary 16, and thus ensures that Mz(z) is isomorphic to Mz(z). In the
second case, (ii), let Z(x) be a k-PCDC of K(z) with the property that Mz(z) is
isomorphic to My (x); the existence of such a PCDC is guaranteed by Corollary 16.
Finally, in the third case, (iii), let Z(x) be a (ki ks,...,k,)-PCDC of K(z) with
the property that Mz(z) and Mz (z) be isomorphic; again, such a PCDC exists by
Corollary 16.
We now define

Z = U Z(z).

T€V(G),d(z)>2
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Since each Z(z) is a PCDC of K (z), it follows that Z is a PCDC of L(G). By
Lemma 13, F and Z are compatible, and thus, we can apply Lemma 14 to construct
a CDC, C, of L(G). It also follows from Lemma 14 that

|C| < |F| + ch(F) +[C(Z)},

where ch(F) is the number of chords of the cycles of F, and |C(Z)| is the number of
cycles in Z.

To show that C is, in fact, an SCDC of L(G), we must first evaluate |C(Z)[. Let
z € V(G), d(z) > 2, and denote by 7, the number of non-pendant edges incident to
z and by ¢, the number of nontrivial components of G — {x}. It follows from the
definition of a (ki ky, . .., k,)-PCDC that Z(x) consists of 7, paths and d(z) — 1 —
75 + ¢, cycles. Therefore, the number of cycles in Z is simply

lc@)l= >  (dx)=re+(e-1)

zeV(G),d(z)>2

= Y @) -+ Y (-1

2eV(G) d(z)22 reViO =

Since d(z) — r; is the number of pendants incident to z, it follows that

> (d(z) ~ ry)
zeV(G),d(z)>2
is simply the total number of pendant edges in the graph G.
To evaluate
(e — 1),
TeV(G)d(z) 22

first observe that g, does not change if the pendants incident with z are deleted.
Therefore, first delete all pendant edges, along with the degree one vertices incident
with those pendants from the graph G. What remains is a bridgeless graph, G’ with
b blocks, each block corresponding to a block of G that is not a pendant. The blocks
of G form a tree, T, with b’ edges corresponding to the blocks of G" and b’ +1 vertices
corresponding to the cut vertices of G'. If z is not a cut vertex of G (and hence of
G"), or a cut vertex so that G — {z} has just one nontrivial components, then g, = 1,
and z contributes nothing to the sum. However, if x is a cut vertex of G such that
G — {z} has at least two nontrivial components (and hence is a cut vertex of G,
then ¢, is equal to the degree of  in the tree T. This implies that

Z ((Iw"‘]-): z (g — 1),

2€V(G),d(z)>2 zeV(T)

Z g = 2V

zeV(T)

and,

Therefore, since T is a tree,

S (-1 =26~ (¥ +1)

zeV(T)

=V -1
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It now follows that

> (. — 1) =1V ~1.

z€V(G),d(x)>2

But b is just the number of blocks of G that are not pendants (single edges), and
thus
Z (d(m)—'rz‘f'((h—l»:b_la

zeV(G),d(z)>2

where b is the number of blocks in G. Therefore, |C(Z)] = b — 1.
It now follows from Lemma 14 that the CDC C of L(G) has at most | F|+ch(F)+
(b — 1) cycles. However, by Corollary 18, |F| + ch(F) + b < m, and thus

ICl=|F|+ch(F)+(b-1)<m-1.

Therefore, C is an SCDC of L(G).
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