





G = (V, E) relative to an r-colouring X of E which uses colours ¢y, ¢y, ..., ¢,, say, where
r>2. Let § be the strong partial completion of W in G relative to Y and let T = E\ S.
Then,

(i) the set Sy of edges of S which are adjacent to edges of T must jointly use at least
r—1 colours and so, a fortiori, |S| > r-1;

(i1) for each edge e € T, the edges of S adjacent to e cannot jointly use more than r—2
colours;

(1ii) each edge e € T is adjacent to at least one other edge ¢’ of T: moreover, the colour
assigned by X'to one (at least) such edge e’ must be distinct from those assigned to
¢ and to the edges of S which are adjacent to ¢;

(iv) each edge e € T which is not assigned colour ¢; (1 <i < r) by Zis adjacent to at
least one edge (not necessarily in 7) which is assigned colour c; by %,

Proof. Statement (i). In the contrary case, there are at least two colours, say ¢; and ¢,,
which are not used on any edge of S. If these colours both occur on the edges of 7" when
the colouring X has been completed, a colouring completion alternative to X exists in
which ¢ and ¢, are exchanged on those edges of T which use these two colours, while all
other edges of G have the same colours as before. This contradicts the hypothesis that W
is weakly completable. If, on the other hand, colour ¢, (and/or ¢,) has not been used to
colour any edge of T when the colouring X has been completed, a colouring completion
alternative to Zexists in which some colour ¢; (i # 1, 2) is exchanged for the colour ¢, (or
¢;) on all those edges of T which are assigned colour ¢; by Z. Again, all other edges of G
(including those of W and S) have the same colours as in X, and so the hypothesis that W
is uniquely completable is again contradicted.

Statement (ii). If the edges of § adjacent to e used r colours, there would be no
colour available for e. If they used r—1 colours, the colour of e would be forced,
implying thate €S.

Statement (iii). Let edge ¢ € T. If no edge ¢’ €7 and adjacent to e exists then,
since the edges of S adjacent to ¢ use at most r—2 colours, there is an alternative colour
available for e in the completion of the colouring of W to a colouring of G, contrary to
hypothesis.

Statement (iv). Suppose that e €7, that e is assigned a colour different from c¢; by
2 and that no edge of G adjacent to e is assigned colour ¢; by 2. Then colour ¢; is
available for e so there exist two different completions of W to a colouring of G, contrary
to hypothesis.

The following lemma, due to Mahmoodian et al[M1], will be used in Theorem 4.2 of
the next section:

Lemma 3.2: Let U be a uniquely completable set of vertices of a simple graph G =
(V, E) relative to an r-colouring X of the vertices of G. Then:

lEl 2 (r=D)(IVI-IUD).

Proof: Let the colours be denoted by ¢y, ¢y, ..., ¢, and let the number of vertices which
have colour ¢; in V, U (under the colouring X) be denoted by v;, u; respectively. Let Gy
be the subglaph of G which is induced by the vertices of G Wthh are coloured ¢; or cj
under 2. Since U must contain at least one vertex of each connected component of G,],
the number of connected components of Gy; is at most u+u;. Now, the number of edges

37




in each connected component K is at least equal to one less than the number of vertices of
K. Summing this over all the components of G;;, we deduce that the total number of
edges of G,-j is at least (v; +vj)~(ui +uj). Further, the vertices of G which are coloured ¢;
occur in r—1 of the subgraphs G;; since there are r colours all together. Hence, taking the
sum of the edges in all of the subgraphs G, we find that El = (r—D(1 V-1 U}) because
each v; —u; occurs r~1 times in the sum.

Another result which will be useful later is due to Mahdian and Mahmoodian [M2]
who have recently introduced a new concept related to unique completability of a graph
G = (V, E). If there exists a set S = {L,, L,, ..., L,} (n= V1) of lists of size at least two
(i.e. |L;] 2 2) and associated one-to-one with the vertices of G for which the colours for
one and only one proper colouring of the vertices of G can be selected, then clearly there
exists such a set of lists of size exactly two (we simply remove from each of our lists all
but one of the colours which are not used in the proper colouring). In this case, G is said
to be uniquely 2-list colourable.

Lemma 3.3: A graph is uniquely 2-list colourable if and only if at least one of its blocks
is not a cycle, a complete graph, or a complete bipartite graph.

Proof: See [M2].

Corollary: A graph with less than four vertices is not uniquely 2-list colourable.
Moreover, up to isomorphism, the only graph on four vertices which is uniquely 2-list
colourable is that formed by removing an edge from the complete graph on four vertices.

IV. VERTEX COLOURINGS.

Theorem 4.1: Let G be a simple graph and W a weakly completable subset of its vertex
set V relative to an r-colouring X. Let S be the strong partial completion of W in G and
let T=V\S. Then |T| 2 4.

Proof: Let G’ = (T, E’) be the subgraph of G induced by the vertices of 7. Then G'is
uniquely 2-list colourable, the appropriate list of colours for each vertex v of T being
those of X which are not used by X to colour the vertices of S which are adjacent to v (by
Lemma 3.1(ii)). Hence the result of the theorem follows from the Corollary to Lemma
3.3.

Theorem 4.2: Let G be a simple graph and W a weakly completable subset of its vertex
set Vrelative to an r-colouring Zof V (> 3). Then G has at least r+3 vertices and 4(r—1)
edges.

Proof: Let S be the strong partial completion of W in G and let 7= V\ S. Then T has at
least four vertices by Theorem 4.1. Also, || 2 r—1 by Lemma 3.1(i) and so

[V = IS1+IT! 2 (r=1)+4 = r+3.
Since S is a uniquely completable subset of the vertices of the graph G relative to the
r-colouring %, it follows from Lemma 3.2 that
E] = (=D VI=ISD = (=DIT] 2 4(r—1).

Theorem 4.3: For every r > 3, there is at least one connected graph with r+3 vertices and
4(r—1) edges for which a weakly completable subset of vertices relative to an r-colouring
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exists.
Proof. We prove the result constructively. For r2 3, let I}, = (V,, E,) be the graph with
V.={1,2, .., r+3} and E, such that
Ey={[1, 2], [1, 3], [1, 4], (2, 4], [2, 5], [3, 4], {4, 51, [5, 6]} and, forr=4,
E,=E, ) O{[1, r+3), [2, r+3], [4, r+3], [5, r+3]}. (Hence IV, = r+3 and IE,} = 4(r—1).)
We illustrate this graph in Fig. 4.1 for the cases r = 3, 4, 5 and 6.

I L

Fig. 4.1.

Let 2, be an r-colouring of I (using colours ¢y, ¢y, ..., ¢,) which assigns colour ¢; to
vertex 3, colour ¢; to vertex 6 and, if r = 4, for each k such that 7 < k < r+3, colour Cr-3 to
vertex k. Let W3 = (3, 6} and, for r > 4, W, = W,_;u{r+3}. Then W, is not a strongly
completable subset of V, relative to X, since, after the assignment of the colours of Z. to
the vertices of W,, each of the uncoloured vertices (i.e. 1, 2, 4 and 5) is such that those
coloured vertices which are adjacent to it use, between them, no more than r~2 colours.
(The fact that this is true for » = 3 implies that it is true for r =4, r = 5 successively, and
so on.)

However W, is a uniquely completable subset of V, relative to 5. This can be seen as
follows: After the vertices of W, have been coloured in the colours of %, the pair of
adjacent vertices (1, 4) must be coloured (cy, ¢3) or (3, ¢3). In either case, vertex 2 must
be coloured c¢;. This implies that vertex 5 must be coloured c3 and so the pair (1, 4) can
only be coloured (c3, ¢3). It follows that W, is a weakly completable subset of V, relative
to the 3-colouring Z, thus defined.
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Note: We thank the referee for pointing out that “it is not an accident” that, for each r,
the graph I, and its r-colouring %, used to prove Theorem 4.3 are such that the subgraph
of I, induced by the vertex set T, = VAW, (as defined therein) is the complete graph on
four vertices with an edge removed. By the Corollary to Lemma 3.3, this is the only
graph with less than five vertices which is uniquely 2-list colourable.

V. EDGE COLOURINGS.
Next, we obtain theorems analogous to Theorems 4.2 and 4.3 for edge-colourings.

We first prove a lemma and we shall again suppose that the colours prescribed by 2
are ¢y, €y, «ov , Cpe

Lemma 5.1: Let G be a simple graph and W a weakly completable subset of its edge set
E relative to an r-colouring X (r = 3). Let S be the strong partial completion of Win G
and let 7= E\ S. Suppose, if possible, that such a graph exists with less than 2r edges.
Then the colouring given by X is such that there exists exactly one edge with the property
that it is the only edge of G to be assigned a particular colour. Moreover, that edge is in §
and every edge of T is adjacent to it. Hence all the other colours are assigned to exactly
two edges and | E| =2r-1.

Proof: Let r > 3 and suppose that |E| < 2r. If every colour occurs on at least two edges
of G then |El = 2r, so this is not the case. Thus, there exists at least one colour, say ¢y,
which is assigned by X to at most one edge of G. But, from Lemma 3.1(iv) and the
observation that T must contain at least one edge, it follows that X assigns every one of
the colours ¢y, ¢y, ... , ¢, to at least one edge of G. We conclude that there is exactly one
edge, say [v;, vo] = e, which is assigned the colour ¢;.

If e;, € T, then, by Lemma 3.1(ii), there exists a colour ¢' distinct from ¢y and from
the colours assigned by X to the edges of § which are adjacent to e, and there is at least
one edge e' of T adjacent to e;, which is assigned this colour ¢’ by Z. But, in that case,
since no edge except e, has colour ¢y, an alternative edge colouring X' of G exists in
which ey, is given the colour ¢' and the edge or edges adjacent to it which had colour ¢
are given the colour ¢, instead. This contradiction to the unique completability of the
edge colouring of W shows that e, ¢ 7. Hence, every edge in T is coloured with a
colour which occurs on more than one edge of G.

If there is an edge " which is in 7 and is not adjacent to e),, we can obtain a proper
edge colouring of G distinct from X by replacing the colour assigned by X'to e" by the
colour ¢ of ej,. This contradicts the unique completability of the colouring assigned by
Zto the edges of W. We conclude that, if |E| < 2r, the colouring given by Z'is such that
there exists at least one edge e, which is the only edge of G to be assigned a particular
colour, every such edge is in S, and every edge of T is adjacent to each such edge.

Suppose that there is a second such edge e*. Then depending on whether or not it is
adjacent to e1,, we can suppose without loss of generality that e* = [v, v3] or [v3, vy]. But
if e* = [v}, v3], the only possible edges in T are [v,, v3} and those incident to v and, if e*
= [v3, v4], the only possible edges in T are [vy, vsl, [vy, v3l, [vy, v4] and [vy, v4l. In each
case all of the blocks of the line graph of the subgraph X of G induced by the edges of T
must be a cycle, a complete graph, or a complete bipartite graph. However, this line
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graph of X is uniquely 2-list colourable by Lemma 3.1(ii) (the appropriate list of colours
for each vertex v corresponding to an edge of T being those of X which are not used by X
to colour the edges of S which are adjacent to the edge corresponding to v), contradicting
the Corollary to Lemma 3.3. Therefore there is only one such edge ey, and the lemma
follows.

Theorem 5.2: Let G be a simple graph and W a weakly completable subset of its edge
set E relative to an r-colouring X' (r > 3). Then |E| > 2r.

Proof: We first prove that, if r = 3, G has at least six edges. We then use induction on
the number r of colours. We use S to denote the strong partial completion of W in G.

Suppose that r = 3 and that G has less than six edges. Then the line graph L(G) of G
has fewer than six vertices and the subset of vertices of L(G) which correspond to the
edges of W form a weakly completable subset of vertices of L(G) relative to the vertex 3-
colouring of L(G) which corresponds to X for G (since vertices of L(G) are adjacent if
and only if edges of G are adjacent). But, by Theorem 4.2, a graph (connected or not) for
which a weakly completable subset of vertices relative to a vertex 3-colouring exists
cannot have less than six vertices or less than eight edges. This is a contradiction, so
r=3=|El>6.

We now take as an induction hypothesis that the theorem is true for all r < k-1, where
k=>4. In particular, we assume that, for every simple graph G’=(V’, E) which has a
weakly completable subset W’ of its edge-set E’ relative to a (k—1)-colouring %,_,, we
have |E’| 2 2(k-1).

If the theorem is false for r = k, then there exists a simple graph G = (V, E) such that
|E| < 2k and such that there is a weakly completable subset W of its edge-set F relative to
some k-colouring % of G. By Lemma 5.1, |E| = 2k-1 and there is exactly one edge
(v}, vol = €;, which is the only edge of G to be assigned a particular colour ¢, this edge is
in S, and every edge of T is adjacent to it. All the other colours (cy, c3, ... , ¢) are
assigned to exactly two edges.

Now let ¢; be any one of the colours which %, assigns to two edges of G and let G’ =
(V', E") be the graph which is obtained from G by deleting the pair Z of edges of G which
are assigned colour ¢; by %,. Then, since |E|=2k-1, we have |E’| =2k-3. Let
W= S\ (SnZ). Clearly, W’ can be completed to a (k—1)-colouring of G’ in which all the
edges of E”have the colours assigned to them by the k-colouring ; of G. If W’ could be
completed to an alternative (k—1)-colouring of G’ then S could be completed to an
alternative k-colouring of G by adjoining to G’ the two edges of Z and giving each of
them the colour ¢;. This contradicts the hypothesis that the colouring of W (and so S)
assigned by Z; is uniquely completable (weakly) to a k-colouring of G. We conclude that
the colouring of W’ using the colours assigned by % has a unique completion to a (k—1)-
colouring of G, Since |E’l = 2k-3 < 2(k—1), this completion cannot be weak, so it must
be strong. Thus, since E’\ W’ consists of those edges of £\ W which are not assigned
colour ¢; by % and this is non-empty by Lemma 3.1(iii), there exists an edge e € E’\ W’
< T which is adjacent to edges of W’ which jointly are assigned (by %) k-2 of the k~1
colours distinct from ¢;. If e is adjacent in G to one of the edges of S assigned the colour
¢; by %, then the colour of e is forced in G (as well as in G). This implies that e € SNE’
= W', contradicting the fact that e € E’\ W’. So ¢ is not adjacent in G to any edge of S
which is assigned the colour ¢; by %,.
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This argument can be repeated for each colour ¢; except c¢;. Hence, for each colour ¢,
(i=2,3, .., k), there exists an associated edge e(c;) € T which is not adjacent to any
edge of S which has the colour ¢; under X but which is adjacent to edges of S to which %
assigns every colour except that of itself and the colour ¢; There are now two
possibilities. Case 1: Every colour appears on some edge of §; or Case 2: There is no
edge in S of colour ¢; and all the associated edges e(c,), e(c3), ..., e(cy) except e(c)) have
the colour ¢;. We shall show that Case 2 cannot occur but first we make a deduction valid
for both cases.

Suppose, if possible, that the edges e(c;) and e(c)), j =i, coincide: say e(c;) = e(c)) = e*,
and that the edge e* is assigned the colour ¢; by Z,. Then the edge e* = e(c,) is adjacent
to edges of S which are assigned k-2 colours distinct from ¢; and ¢; and also the edge e*
= e(c;) is adjacent to edges of § which are assigned k~2 colours distinct from ¢; and ¢;.
This is absurd since there are only k colours all together. We conclude that the &~1 (> 2)
edges e(c), i =2, 3, ..., k, are all distinct.

We now return to Case 2: that is, we suppose that all edges e(c;), i #j, are coloured
with the same colour ¢;. Then, since c; is assigned to only two edges in total, k = 4 and
the only colours are ¢, ¢,, ¢3, ¢4 of which colour ¢ is assigned to just one edge (which is
in S and such that every edge of T is adjacent to it). We may suppose that no edge of §
has colour ¢, and that both of the edges e(c;) and e(c;) have that colour. Since
ISl 2k-1=3 by Lemma 3.1(i) and |E|=2k-1=7 by hypothesis and Lemma
5.1, |T| <4. Now, the line graph of the subgraph of G induced by the edges of T is
uniquely 2-list colourable (the appropriate list of colours for each vertex v corresponding
to an edge of T being those of X which are not used by X'to colour the edges of § which
are adjacent to the edge corresponding to v). However, this line graph has at most four
vertices so, by the corollary to Lemma 3.3, the only possibility is that it is isomorphic to
the complete graph K, minus an edge (shown in Fig. 5.1(a)). Since the unique edge of G
which has colour ¢, is adjacent to every edge of 7, the line graph of G must contain the
graph shown in Fig. 5.1(b), where vertex v corresponds to the edge of G which has colour
c,. But by a result of Beineke (see Theorem 8.4 of [H1], page 74), the latter graph cannot
be contained in the line graph of any graph. This contradiction shows that Case 2 cannot
occur.

Fig. 5.1(a). Fig.5.1(b).

Hence we are left with Case 1: that is, for each colour ¢; (i = 2, 3, ..., k), there exists
an edge in S of that colour and, hence, there is at most one edge in T of each colour.
Since the k—1 edges e(c), i = 2, 3, ... , k, are each assigned one of these k-1 colours
(none of these edges is e,,, the only one coloured ¢y, since it is in ), each of the colours

42




¢, i=2,3, ..., k, is assigned to exactly one of them and there can be no other edges in T.

But, in that case, it is clear that an edge-colouring of G exists in which the colours of S
are as assigned by %; and the colours of the edges of T are such that the edge e(c;) has the
colour ¢; (for i = 2, 3, ..., k). Thus § is not uniquely completable either strongly or
weakly to the colouring %, of G.

Thus, in both cases, we have a contradiction to the unique completability of the
colouring of W. We conclude that |E| > 2k and so, by induction on the integer k, the
theorem is proved.

Theorem 5.3: For every r 2 3, there is at least one connected graph with 2r edges for
which a weakly completable subset of edges relative to an r-colouring exists.

Proof: We prove the result by example. For r = 3, 4, 5, 6 the graphs 4, which we
construct have 5, 5, 5, 6 vertices respectively. For each r > 7, we use an iterative
procedure to construct a suitable graph 4, with r—1 vertices. We illustrate the graphs A4,
and the colours which are to be assigned to the appropriately-sized weakly completable
subsets of their edges in Fig. 5.2 and Fig. 5.3 following.

For r €{3, 4, 5}, let 4, = (V,, E,) where V, = {1, 2, 3, 4, 5} and E, is defined as
follows: Es = {[1, 2], [1, 3], [2, 3], [2, 4], [3, 51, [4, 5]}, E4 = E5U{[1, 4], [2, 5]} and
Es=E40([1, 5], [3,4]) sothat |E,| =2r. Forre{3,4,5},let X be an r-colouring of 4,
(using colours ¢y, ¢,, ... , ¢,) which assigns colour ¢y to edge [2, 4], colour ¢; to edge
[4,5] and, if r 2 4, colour ¢4 to edges [1, 4] and (2, 5] and, if » = 5, colour ¢5 to edges
[1, 5] and [3, 4].

Let T = {{1, 2], [1, 3], [2, 3], [3, 5]} and W, = E, \ T. Then W, is not a strongly
completable subset of E, relative to X, since, after the assignment of the colours of X, to
the edges of W,, each of the uncoloured edges (i.e. each edge in T) is such that those
coloured edges which are adjacent to it use, between them, no more than -2 colours.
(The fact that this is true for » = 3 implies that it is true for r = 4 and r = 5 successively.)

However W, is a uniquely completable subset of E, relative to 2. We may see this as
follows: After the edges of W, have been coloured in the colours of %, the pair of
adjacent edges ([1, 2}, [2, 3]) must be coloured (3, c3) or (c3, ¢2). In either case, edge
{1, 3] must be c;. This implies that edge [3, 5] must be coloured c3 and so the pair ([1, 2],
[2, 3]) can only be coloured (c3, ;). It follows that W, is a weakly completable subset of
E, relative to the r-colouring Z, thus defined.

4 4 4s
1 1 1
2 3 2 3 2 " N3
C

¢ c; 4 c, A .
€y % 4

4 : 5 4 e 5 4 o 5

Fig. 5.2.
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Fig. 5.3.

For r = 6, let Ag = (Vg, Eg), where Vg = {1,2, ..., 6} and Eg = {[1, 2], [1, 3], [1, 4],
[2.3], [2, 4], [2, 51, [3, 4], [3, 51, [3, 6], [4, 51, [4, 6], [5, 6]}. For r 27, let A4, = (V,, E)),
where V, = {1, 2, ..., r—1} and E, is defined as follows: £, = E,_,U{[l, 2], [2, r—11}, so
that again |E, | = 2r.

For each r 2 6, let %, be an r-colouring of 4, (using colours ¢y, ¢z, ..., ¢/) which assigns
colour ¢; to edge [1, 2], colour c; to edge [4, 51, colour ¢4 to edges [3, 4] and [5, 6],
colour ¢s to edge [3, 6], colour c¢ to edges {3, 5] and [4, 6] and, if r > 7, for each k such
that 7 = k 2 r, colour ¢ to edges [ 1, k-2] and [2, k—1].

Let T = {[1, 31, [1, 41, [2, 3], [2, 4], [2, 5]} and let W, = E, \ T. Then W, is not a
strongly completable subset of E, relative to Z, since, after the assignment of the colours
of X to the edges of W,, each of the uncoloured edges (that is, each edge in 7) is such
that those coloured edges which are adjacent to it use, between them, no more than -2
colours. (The fact that this is true for r = 6 implies that it is true for r = 7, r = 8
successively, and so on.)
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However W, is a uniquely completable subset of E, relative to 2. We may see this as
follows: After the edges of W, have been coloured in the colours of Z, , the pair of
adjacent edges ([2, 4], [2, 5]) must be coloured (c3, ¢5) or {cs, c3). In either case, edge
[2, 3] must have colour ¢; and so edge [1, 3] must have colour ¢3. This means that edge
[1, 4] must be coloured ¢s and that the pair ([2, 4], [2, 5]) can only be coloured (c3, ¢5). It
follows that W, is a weakly completable subset of E, relative to the r-colouring . thus
defined.
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