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Abstract 

A long-standing problem has been that of finding weakly completable 
critical sets for latin squares and, in particular. determining the smallest 
latin squares which have such sets. Here, we look at the analogous prob­
lem for graph colouring and determine the graphs of smallest size which 
possess weakly completable partial vertex or edge colourings. 

1. INTRODUCTION. 

A long-standing problem concerns the sizes of critical sets in latin squares; that is, 
subsets of the cell entries which are completable to only one latin square and such that, if 
one member of the subset is removed, the unique completion property ceases to hold. 
The problem can be re-interpreted (in several ways) as a problem concerning completion 
of the colouring of the vertices or edges of a graph when the colouring of a subset of 
these items has been prescribed. (This was first pointed out by one of the present authors 
at a conference held in Beijing. See [K I] and [K2] for full details. Later, 
E.S.Mahmoodian drew attention to the same fact.) 

A problem of particular difficulty has been that of finding so-called weakly 
completable critical sets in latin squares (despite their anticipated abundance) and so it 
seemed a good strategy to look at the corresponding problem for graphs: in particular, to 
find the graphs of smallest size which possess weakly completable partial vertex or edge 
colourings. In the present paper, we give a complete solution to the latter problem, our 
main results being those of Theorems 4.2 and 4.3,5.2 and 5.3. (The consequences for the 
latin square problem are discussed in [B I] and [K3] and in a forthcoming paper of the 
first author.) 

II. DEFINITIONS. 

Let G = (V, E) be a given graph with vertex set V, edge set E and with an assigned 
proper vertex (or edge) r-colouring I. (By a proper r-colouring, we mean a colouring 
with r colours such that no two adjacent vertices (edges) have the same colour.) A subset 
U of the vertices (or edges) of G which, when coloured with the colours of 1:, has the 
property that the only assignment of colours to the remaining vertices (or edges) of G 
which results in a proper r-colouring of G is that of 1: itself is said to be a uniquely 
completable subset of the vertices (or edges) relative to 1:. 

If such a subset U cannot be reduced by deletion of anyone vertex (edge) to one of 
smaller cardinality which is again a uniquely completable subset of the vertices (edges) 
relative to X, then we say that it is a critical set of vertices (edges) relative to 1:. 
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A given graph G may have critical sets of more than one size relative to an r­
colouring.E. A critical set of smallest cardinality is called a minimal critical set relative 
to I. 

Note that these definitions implicitly assume that r ~ Xv(G) or Xe(G) according as the 
colouring under consideration is of vertices or of edges. [Xv' Xe denote respectively 
chromatic number and chromatic index.] 

The definitions may be illustrated by means of the following examples: 
Example 2.1. The Petersen graph may be defined as the graph whose vertices are the ten 
unordered pairs ab, ae, ad, ae, bc, bd, be, cd, ee, de with a pair of vertices adjacent if and 
only if their letter pairs have no letter in common. Then the four vertices ab, cd, be, bd 
form a minimal critical set of vertices for the proper vertex 3-colouring in which vertices 
ab, ae, ad, ae have colour 1, vertices be, bd, be have colour 2, and vertices cd, ce, de 
have colour 3. (It is well known - and easily shown - that, up to isomorphism, the 
Petersen graph has only one proper 3-colouring.) 
Example 2.2. A directed graph (digraph) has directed edges of the form xy joining vertex 
x to y or, equivalently, y from x and is such that two edges are regarded as adjacent for 
edge-colouring if and only if there is a vertex to which or from which they are both 
directed. 
Consider a 3-colouring I of the edges of the complete digraph with loops, on three 
vertices vI' v2' v3 for which each loop edge has colour Cj, the directed edges v2\'3' v3 v \. 

vlv2 have colour c2 and the directed edges v3v2' v2vI' ,,\v3 have colour c3' Relative to I. 
the sets of edges vI v2' vI v3' v2v3 and vI v3' 1'2v2 are both critical sets, the second being a 
minimal critical set. The set of edges vY3' v2\'2' v:1\,'J is uniquely completable but not 
critical. 

Next we define for graph colourings, a concept analogous to that of weak completion 
of a latin square. (See, for example, [K3].) 

Suppose that X is a given subset of the vertices (or edges) of a graph G = (V, E) whose 
members have been coloured in the colours prescribed by a given proper r-colouring Iof 
G. To try to complete the colouring, we look for an uncoloured vertex (edge) of G such 
that those vertices (edges) which are adjacent to it and which are already coloured jointly 
use r-l of the given r colours. If such a vertex (edge) exists, we colour it with the 
remaining colour. We continue this process until no further such vertices (edges) can be 
found. The set of vertices (edges) of G which have then been coloured forms the strong 
partial completion S of X in G relative to 1:. If the strong partial completion of X in G is 
the vertex (edge) set of G itself, X is called a strongly completable subset of V (or E) 
relative to I. A uniquely completable subset X of V (or E) relative to I which is not a 
strongly cornpletable subset is a weakly completable subset of V (or E) relative to 1:. 

III. PRELIMINARY LEMMAS. 

We shaH make frequent use of the following Lemma 3.1. The statements and their 
proofs are valid both for vertex coJourings and for edge colourings but, because the 
lemma will be used mostly in the section on edge colourings, we state it in tenns of the 
latter. 

Lemma 3.1: Let W be a weakly completable subset of the edges of a simple graph 



G = (V, E) relative to an r-colouring X of E which uses colours cl' c2' ... , cr' say, where 
r> 2. Let S be the strong partial completion of W in G relative to X and let T = E \ S. 
Then, 

0) the set ST of edges of S which are adjacent to edges of T must jointly use at least 
r-l colours and so, a fortiori, I sl ~ r-1; 

(ii) for each edge e E T, the edges of S adjacent to e cannot jointly use more than r-2 
colours; 

(iii) each edge e E T is adjacent to at least one other edge e' of T: moreover, the colour 
assigned by X to one (at least) such edge e' must be distinct from those assigned to 
e and to the edges of S which are adjacent to e; 

(iv) each edge e E T which is not assigned colour ci (1 ~ i ~ r) by X is adjacent to at 
least one edge (not necessarily in T) which is assigned colour ci by 17; 

Proqf: Statement (i). In the contrary case, there are at least two colours, say cI and c2' 

which are not used on any edge of Sr. If these colours both occur on the edges of T when 
the colouring 17 has been completed, a colouring completion alternative to 17 exists in 
which cI and c2 are exchanged on those edges of T which use these two colours, while all 
other edges of G have the same colours as before. This contradicts the hypothesis that W 
is weakly completable. If, on the other hand, colour CI (and/or c2) has not been used to 
colour any edge of T when the colouring X has been completed, a colouring completion 
alternative to X exists in which some colour ci (i i: 1, 2) is exchanged for the colour c] (or 
c2) on all those edges of T which are assigned colour ci by I. Again, all other edges of G 
(including those of Wand S) have the same colours as in X, and so the hypothesis that W 
is uniquely completable is again contradicted. 

Statement (ii). If the edges of S adjacent to e used l' colours, there would be no 
colour available for e. If they used 1'-1 colours, the colour of e would be forced, 
implying that e E S. 

Statement (iii). Let edge e E T. If no edge e' E T and adjacent to e exists then, 
since the edges of S adjacent to e use at most 1'-2 colours, there is an alternative colour 
available for e in the completion of the colouring of W to a colouring of G, contrary to 
hypothesis. 

Statement (iv). Suppose that e E T, that e is assigned a colour different from ci by 
X and that no edge of G adjacent to e is assigned colour ci by I. Then colour ci is 
available for e so there exist two different completions of W to a colouring of G, contrary 
to hypothesis. 

The following lemma, due to Mahmoodian et al[MI], will be used in Theorem 4.2 of 
the next section: 

Lemma 3.2: Let V be a uniquely completable set of vertices of a simple graph G = 
(V, E) relative to an r-colouring X of the vertices of G. Then: 

lEI ~ (r-1)(1 VI-I VI). 
Proof Let the colours be denoted by cI' c2' ... , c,. and let the number of vertices which 

have colour ci in V, V (under the colouring 1:) be denoted by Vi' ui respectively. Let G jj 
be the subgraph of G which is induced by the vertices of G which are coloured ci or Lj 
under X. Since U must contain at least one vertex of each connected component of Gij , 

the number of connected components of G ij is at most ui+Uj' Now, the number of edges 
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in each connected component K is at least equal to one less than the number of vertices of 
K. Summing this over all the components of Gij , we deduce that the total number of 
edges of Gij is at least (Vi +V)-(Ui +Uj)' Further, the vertices of G which are coloured ci 

occur in r-1 of the subgraphs Gij since there are r colours all together. Hence, taking the 
sum of the edges in all of the subgraphs Gij, we find that I E I 2': (r-1 )( I vi-I u I) because 
each vi -Ui occurs r-l times in the sum. 

Another result which will be useful later is due to Mahdian and Mahmoodian [M2] 
who have recently introduced a new concept related to unique completability of a graph 
G = (V, E). If there exists a set S = {L j , L2, ... , LIl } (11= I VI) of lists of size at least two 
(i.e. 1Lil 2': 2) and associated one-to-one with the vertices of G for which the colours for 
one and only one proper colouring of the vertices of G can be selected, then clearly there 
exists such a set of lists of size exactly two (we simply remove from each of our lists all 
but one of the colours which are not used in the proper colouring). In this case, G is said 
to be uniquely 2-list colourable. 

Lemma 3.3: A graph is uniquely 2-list colourable if and only if at least one of its blocks 
is not a cycle, a complete graph, or a complete bipartite graph. 

Proof: See [M2]. 
Corollary: A graph with less than four vertices is not uniquely 2-list colourable. 

Moreover, up to isomorphism, the only graph on four vertices which is uniquely 2-list 
colourable is that formed by removing an edge from the complete graph on four vertices. 

IV. VERTEX COLOURINGS. 

Theorem 4.1: Let G be a simple graph and W a weakly completable subset of its vertex 
set V relative to an r-colouring.E. Let S be the strong partial completion of Win G and 
letT=V\S. ThenITI2':4. 

Proof: Let G' = (T, E,) be the subgraph of G induced by the vertices of T. Then G' is 
uniquely 2-list colourable, the appropriate list of colours for each vertex v of T being 
those of I which are not used by .E to colour the vertices of S which are adjacent to v (by 
Lemma 3.1(ii)). Hence the result of the theorem follows from the Corollary to Lemma 
3.3. 

Theorem 4.2: Let G be a simple graph and Wa weakly completable subset of its vertex 
set V relative to an r-colouring .E of V (r ~ 3). Then G has at least r+3 vertices and 4(r-l) 
edges. 

Proof: Let S be the strong partial completion of W in G and let T = V \ S. Then T has at 
least four vertices by Theorem 4.1. Also, I sl ~ r-l by Lemma 3.1 (i) and so 

I VI = Isl+ITI ~ (r-1)+4 = r+3. 
Since S is a uniquely completable subset of the vertices of the graph G relative to the 

r-colouring I, it follows from Lemma 3.2 that 
lEI 2': (r-l)(1 VI-lSI) = (r-1)1 TI ~ 4(r-1). 

Theorem 4.3: For every r 2': 3, there is at least one connected graph with r+3 vertices and 
4(r-l) edges for which a weakly completable subset of vertices relative to an r-colouring 

38 



exists. 
Proof We prove the result constructively. For r ~ 3, let r,. == (Vr> Er) be the graph with 

VI' = { 1,2, ... , r+3} and Er such that 
E3 = {[I, 2], [1,3], [1,4], [2,4], [2,5], [3,4], [4,5], [5, 6]} and, for r ~ 4, 
Er == Er_Ju{ [1, r+3], [2, r+3], [4, r+3], [5, r+3]}. (Hence IV,.I == r+3 and IE,J == 4(r-l ).) 
We illustrate this graph in Fig. 4.1 for the cases r == 3, 4, 5 and 6. 

C2 

• 3 4 5 6 3 4 5 

4 

3 4 5 3 4 5 
Fig. 4.1. 

Let £,. be an r-colouring of r,. (using colours CI, C2, ... , cr) which assigns colour Cl to 
vertex 3, colour C2 to vertex 6 and, if r ~ 4, for each k such that 7 S k S r+3, colour Ck-3 to 
vertex k. Let W3 == {3, 6} and, for r ~ 4, Wr == Wr_IU{ r+3}. Then Wr is not a strongly 
completable subset of VI' relative to II' since, after the assignment of the colours of .1:" to 
the vertices of W,., each of the uncoloured vertices (i.e. I, 2, 4 and 5) is such that those 
coloured vertices which are adjacent to it use, between them, no more than r-2 colours. 
(The fact that this is true for r == 3 implies that it is true for r == 4, r == 5 successively, and 
so on.) 

However WI' is a uniquely completable subset of VI' relative to I r. This can be seen as 
follows: After the vertices of Wr have been coloured in the colours of I,., the pair of 
adjacent vertices (l, 4) must be coloured (C2, C3) or (C3, C2). In either case, vertex 2 must 
be coloured ('1. This implies that vertex 5 must be coloured C3 and so the pair (l, 4) can 
only be coloured (C3, C2). It follows that WI' is a weakly completable subset of VI' relative 
to the 3-colouring £,. thus defined. 
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Note: We thank the referee for pointing out that "it is not an accident" that, for each r, 
the graph r,. and its r-colouring Ir used to prove Theorem 4.3 are such that the subgraph 
of r,. induced by the vertex set Tr = Vr\Wr (as defined therein) is the complete graph on 
four vertices with an edge removed. By the Corollary to Lemma 3.3, this is the only 
graph with less than five vertices which is uniquely 2-list colourable. 

V. EDGE COLOURINGS. 

Next, we obtain theorems analogous to Theorems 4.2 and 4.3 for edge-colourings. 

We first prove a lemma and we shall again suppose that the colours prescribed by I 
are cI' c2' ... ,cr 

Lemma 5.1: Let G be a simple graph and Wa weakly completable subset of its edge set 
E relative to an r-colouring I (r ~ 3). Let S be the strong partial completion of Win G 
and let T = E \ 5. Suppose, if possible, that such a graph exists with less than 21' edges. 
Then the colouring given by I is such that there exists exactly one edge with the property 
that it is the only edge of G to be assigned a particular colour. Moreover, that edge is in S 
and every edge of T is adjacent to it. Hence all the other colours are assigned to exactly 
two edges and \ E\ = 21'-1. 

Proof: Let r ~ 3 and suppose that lEI < 2r. If every colour occurs on at least two edges 
of G then I EI ~ 2r, so this is not the case. Thus, there exists at least one colour, say cl' 

which is assigned by I to at most one edge of G. But, from Lemma 3.ICiv) and the 
observation that T must contain at least one edge, it follows that I assigns everyone of 
the colours cl' c2' ... , cr to at least one edge of G. We conclude that there is exactly one 
edge, say [vI' V2] = el2 which is assigned the colour ci' 

If el2 E T, then, by Lemma 3.1 (ii), there exists a colour c' distinct from Cl and from 
the colours assigned by Ito the edges of S which are adjacent to el2 and there is at least 
one edge e' of T adjacent to el2 which is assigned this colour c' by I. But, in that case, 
since no edge except el2 has colour cI' an alternative edge colouring ,1; of G exists in 
which el2 is given the colour c' and the edge or edges adjacent to it which had colour c' 
are given the colour ci instead. This contradiction to the unique comp1etability of the 
edge colouring of W shows that el2 liE T. Hence, every edge in T is coloured with a 
colour which occurs on more than one edge of G. 

If there is an edge e" which is in T and is not adjacent to e12' we can obtain a proper 
edge colouring of G distinct from I by replacing the colour assigned by I to e" by the 
colour cl of el2' This contradicts the unique completability of the colouring assigned by 
Ito the edges of W. We conclude that, if IE\ < 2r, the colouring given by Iis such that 
there exists at least one edge el2 which is the only edge of G to be assigned a particular 
colour, every such edge is in 5, and every edge of T is adjacent to each such edge. 

Suppose that there is a second such edge e*. Then depending on whether or not it is 
adjacent to e12, we can suppose without loss of generality that e* = [VI' v3] or [v3' v4]' But 
if e* = [VI' v3], the only possible edges in Tare [v2' v3] and those incident to VI and, if e* 

= [v3' v4]' the only possible edges in T are [VI' v3], [v2' v3]' [VI' v4] and [v2' v4]' In each 
case all of the blocks of the line graph of the sub graph X of G induced by the edges of T 
must be a cycle, a complete graph, or a complete bipartite graph. However, this line 
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graph of X is uniquely 2-list colourable by Lemma 3.1 (ii) (the appropriate list of colours 
for each vertex v corresponding to an edge of T being those of L which are not used by I 
to colour the edges of S which are adjacent to the edge corresponding to v), contradicting 
the Corollary to Lemma 3.3. Therefore there is only one such edge el2 and the lemma 
follows. 

Theorem 5.2: Let G be a simple graph and Wa weakly completable subset of its edge 
set E relative to an r-colouring L (r"? 3). Then lEI"? 2r. 

Proof: We first prove that, if r = 3, G has at least six edges. We then use induction on 
the number r of colours. We use S to denote the strong partial completion of Win G. 

Suppose that r = 3 and that G has less than six edges. Then the line graph L( G) of G 
has fewer than six vertices and the subset of vertices of L( G) which correspond to the 
edges of W form a weakly completable subset of vertices of L(G) relative to the vertex 3-
colouring of L(G) which corresponds to I for G (since vertices of L(G) are adjacent if 
and only if edges of G are adjacent). But, by Theorem 4.2, a graph (connected or not) for 
which a weakly completable subset of vertices relative to a vertex 3-colouring exists 
cannot have less than six vertices or less than eight edges. This is a contradiction, so 
r=3=>IEI"?6. 

We now take as an induction hypothesis that the theorem is true for all r::; k-l, where 
k "? 4. In particular, we assume that, for every simple graph G' = (V', E) which has a 
weakly completable subset W' of its edge-set E' relative to a (k-1)-colouring I k- l , we 
have I E'I "? 2(k-l). 

If the theorem is false for r = k, then there exists a simple graph G = (V, E) such that 
lEI < 2k and such that there is a weakly completable subset W of its edge-set E relative to 
some k-colouring Lk of G. By Lemma 5.1, lEI = 2k-l and there is exactly one edge 
[VI' v2] = eI2 which is the only edge of G to be assigned a particular colour cI' this edge is 
in S, and every edge of T is adjacent to it. All the other colours (c2' c3' ... , ck) are 
assigned to exactly two edges. 

Now let ci be anyone of the colours which l:k assigns to two edges of G and let G' = 
(V', E) be the graph which is obtained from G by deleting the pair Z of edges of G which 
are assigned colour Ci by I k. Then, since lEI = 2k-1, we have IE'I = 2k-3. Let 
W' = S \ (SnZ). Clearly, W' can be completed to a (k-l )-colouring of G' in which all the 
edges of E' have the colours assigned to them by the k-colouring Lk of G. If W' could be 
completed to an alternative (k-l )-colouring of G' then S could be completed to an 
alternative k-colouring of G by adjoining to G' the two edges of Z and giving each of 
them the colour ci' This contradicts the hypothesis that the colouring of W (and so S) 
assigned by Ik is uniquely completable (weakly) to a k-colouring of G. We conclude that 
the colouring of W' using the colours assigned by l:k has a unique completion to a (k-l)­
colouring of G'. Since IE'I = 2k-3 < 2(k-J), this completion cannot be weak, so it must 
be strong. Thus, since E' \ W' consists of those edges of E \ W which are not assigned 
colour ci by Ik and this is non-empty by Lemma 3.I(iii), there exists an edge e E E'\ W' 
e T which is adjacent to edges of W' which jointly are assigned (by 17k) k-2 of the k-l 
colours distinct from ci' If e is adjacent in G to one of the edges of S assigned the colour 
ci by I k , then the colour of e is forced in G (as well as in G). This implies that e E SnE' 
= W', contradicting the fact that e E E' \ W'. So e is not adjacent in G to any edge of S 
which is assigned the colour ci by l:k' 
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This argument can be repeated for each colour ci except Ct. Hence, for each colour ci 
(i = 2, 3, ... , k), there exists an associated edge e(ci) E T which is not adjacent to any 
edge of S which has the colour ci under Lk but which is adjacent to edges of S to which Lk 
assigns every colour except that of itself and the colour Cj. There are now two 
possibilities. Case 1: Every colour appears on some edge of S; or Case 2: There is no 
edge in S of colour Cj and all the associated edges e(c2), e(c3), ... , e(ck) except e(c) have 
the colour Cj' We shall show that Case 2 cannot occur but first we make a deduction valid 
for both cases. 

Suppose, if possible, that the edges e(c) and e(c), j :;r: i, coincide: say e(ci) = e(c) = e *, 
and that the edge e* is assigned the colour c/ by Lk' Then the edge e* = e(ci) is adjacent 
to edges of S which are assigned k-2 colours distinct from Cj and c/ and also the edge e* 
= eCc) is adjacent to edges of S which are assigned k-2 colours distinct from Cj and c/. 
This is absurd since there are only k colours all together. We conclude that the k-l (> 2) 
edges e(ci)' i = 2, 3, ... , k, are all distinct. 

We now return to Case 2: that is, we suppose that all edges e(c), i :;r: j, are coloured 
with the same colour Cj' Then, since Cj is assigned to only two edges in total, k = 4 and 
the only colours are c\' c2' c3' c4 of which colour c) is assigned to just one edge (which is 
in S and such that every edge of T is adjacent to it). We may suppose that no edge of S 
has colour c4 and that both of the edges e(cI) and e(c2) have that colour. Since 
I SI ~ k-l = 3 by Lemma 3.1 (i) and 1 EI = 2k-l = 7 by hypothesis and Lemma 
5.1, 1 TI ::; 4. Now, the line graph of the subgraph of G induced by the edges of T is 
uniquely 2-1ist colourable (the appropriate list of colours for each vertex v corresponding 
to an edge of T being those of L which are not used by L to colour the edges of S which 
are adjacent to the edge corresponding to v). However, this line graph has at most four 
vertices so, by the corollary to Lemma 3.3, the only possibility is that it is isomorphic to 
the complete graph K4 minus an edge (shown in Fig. 5.1 (a». Since the unique edge of G 
which has colour ci is adjacent to every edge of T, the line graph of G must contain the 
graph shown in Fig. 5.1(b), where vertex v corresponds to the edge of G which has colour 
ci' But by a result of Beineke (see Theorem 8.4 of [HI], page 74), the latter graph cannot 
be contained in the line graph of any graph. This contradiction shows that Case 2 cannot 
occur. 

Fig.5.1(a). Fig.5.1(b). 

Hence we are left with Case 1: that is, for each colour ci (i = 2, 3, .. , , k), there exists 
an edge in S of that colour and, hence, there is at most one edge in T of each colour. 
Since the k-l edges e(ci)' i = 2, 3, ... , k, are each assigned one of these k-l colours 
(none of these edges is e12' the only one coloured Cl' since it is in S), each of the colours 
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Ci' i 2, 3, .,. , k, is assigned to exactly one of them and there can be no other edges in T. 
But, in that case, it is clear that an edge-colouring of G exists in which the colours of S 

are as assigned by Ik and the colours of the edges of T are such that the edge e(ci) has the 
colour ci (for i = 2, 3, ... , k). Thus S is not uniquely completable either strongly or 
weakly to the colouring Ik of G. 

Thus, in both cases, we have a contradiction to the unique completability of the 
colouring of W. We conclude that \EI ~ 2k and so, by induction on the integer k, the 
theorem is proved. 

Theorem 5.3: For every r 2 3, there is at least one connected graph with 2r edges for 
which a weakly completable subset of edges relative to an r-colouring exists. 
Proof We prove the result by example. For r = 3, 4, 5, 6 the graphs L1r which we 

construct have 5, 5, 5, 6 vertices respectively. For each r 2 7, we use an iterative 
procedure to construct a suitable graph L1r with r-l vertices. We i11ustrate the graphs ,11' 

and the colours which are to be assigned to the appropriately-sized weakly completable 
subsets of their edges in Fig. 5.2 and Fig. 5.3 following. 

For r E {3, 4, 5}, let Li,. = (Vr, Er) where Vr = {I, 2, 3, 4, 5} and Er is defined as 
follows: E3 = {[I, 2], [1, 3], [2, 3], [2, 4], [3, 5], [4, 5]}, E4 = E3U{ [1, 4], [2, 5]} and 
E5 = E4u{[1, 5], [3, 4]} so that \Er\ = 2r. For r E {3, 4, 5}, let II' be an r-colouring of Ltr 
(using colours cl' C2' ... , cr) which assigns colour CI to edge [2, 4], colour C2 to edge 
[4,5] and, if r 24, colour C4 to edges [1,4] and [2,5] and, if r = 5, colour C5 to edges 
[1,5] and [3,4]. 

Let T = {[I, 2], [1, 3], [2, 3], [3, 5]} and W,. = Er \ T. Then Wr is not a strongly 
completable subset of E,. relative to Ir since, after the assignment of the colours of II' to 
the edges of Wn each of the uncoloured edges (i.e. each edge in T) is such that those 
coloured edges which are adjacent to it use, between them, no more than r-2 colours. 
(The fact that this is true for r = 3 implies that it is true for r = 4 and r = 5 successively.) 

However W,. is a uniquely completable subset of E,. relative to I,.. We may see this as 
follows: After the edges of W,. have been coloured in the colours of I,., the pair of 
adjacent edges ([1, 2], [2,3]) must be coloured (e2, C3) or (C3, C2). In either case, edge 
[1, 3] must be C1. This implies that edge [3, 5] must be coloured C3 and so the pair ([ 1, 2], 
[2, 3]) can only be coloured (C3, C2). It follows that Wr is a weakly completable subset of 
Er relative to the r-colouring II' thus defined. 

~l 
1 

2 __ ----.. 3 

c1 

4 ~----·5 c 2 

1 

24��_--+---.. 3 

4 dt------tIII5 
c2 

Fig. 5.2. 
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Fig. 5.3. 

For r = 6, let L16 = (V6' E6), where V6 = {I, 2, .,. ,6} and £6 = {[I, 2], [1,3], [1,4], 
[2, 3], [2,4], [2, 5], [3,4], [3, 5], [3, 6], [4, 5], [4, 6], [5, 6]}. For r;::: 7, let L1r = (V,., Er), 
where Vr = { 1, 2, ... , r-l } and Er is defined as follows: Er = E"-1 U {[ 1, r-2], [2, r-1]}, so 
that again I Er I = 2r. 

For each r;::: 6, let Ir be an r-co]ouring of L1,. (using colours C1, C2, ... , C,.) which assigns 
colour C1 to edge [1, 2], colour C2 to edge [4, 5], colour q to edges [3, 4] and [5, 6], 
colour C5 to edge [3,6], colour C6 to edges [3, 5] and [4, 6] and, if r ~ 7, for each k such 
that 7 ~ k;::: r, colour q to edges [1, k-2] and [2, k-l]. 

Let T = {[I, 3], [1, 4], [2, 3], [2, 4], [2, 5]} and let WI' = E,. \ T. Then Wr is not a 
strongly completable subset of Er relative to };,. since, after the assignment of the colours 
of };,. to the edges of W,., each of the uncoloured edges (that is, each edge in T) is such 
that those coloured edges which are adjacent to it use, between them, no more than r-2 
colours. (The fact that this is true for r = 6 implies that it is true for r = 7, r = 8 
successively, and so on.) 
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However W,. is a uniquely completable subset of Er relative to .Lr We may see this as 
follows: After the edges of WI' have been coloured in the colours of ..[,. , the pair of 
adjacent edges ([2, 4], [2, 5]) must be coloured (C3, cs) or (cs, C3). In either case, edge 
[2,3] must have colour C2 and so edge [1,3] must have colour C3. This means that edge 
[1,4] must be coloured Cs and that the pair ([2, 4], [2,5]) can only be coloured (C3, C5). It 
follows that Wr is a weakly completable subset of Er relative to the r-colouring ..[,. thus 
defined. 
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