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Abstract 

\Ve consider the independence, domination and independent domination 
numbers of graphs obtained from the moves of queens on chessboards 
drawn on the torus, and determine exact values for each of these param­
eters in infinitely many cases. 

1 Introduction 

The study of combinatorial problems on chessboards dates back to 1848, when a 
German chess player, Max Bezzel [2], first posed the n-queens problem, that is, the 
problem of placing n queens on an n x n chessboard so that no two queens attack each 
other. As stated ill [15], several mathematicians worked on this problem, but Ahrens 
[1] apparently was the first to prove that the n-queens problem has a solution for 
all n :::: 4. The study of chessboard domination problems dates back to 1862, when 
C.F. de Jaenisch [11] first considered the queens domination problem, that is, the 
problem of determining the minimum number of queens required to dominate every 
square on an n x n chessboard. Since then many papers concerning combinatorial 
problems on chessboards have appeared in the literature. Surveys of the topic are 
given in [12, 15]; more recent results can be found in [5 10, 13, 16, 17]. 

In this paper we begin the study of the n-queens problem and the queens domina­
tion problem for chessboards on the torus. The rows and columns of the chessboard 
are rings on the torus. \Ve cut the torus along arbitrary lines separating two rows 
and two columns, and draw the n x n toroidal chessboard in the plane, numbering its 
rows and columns from 0 to n - 1, beginning at the bottom left hand corner. Thus 
each square has co-ordinates (x, V), where x and yare the column and row numbers 
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of the square, respectively. The lines of the board are the rows, columns, sum diago­
nals, abbreviated s-diagonals (i.e., sets of squares such that x+y k (modn), where 
k is a constant) and difference diagonals, abbreviated d-diagonals (sets of squares 
such that y - x == k (mod n)). Note that there are n s-diagonals and n d-diagonals, 
and each contains n squares. 

The vertices of Q~., the queens graph obtained from an n x n chessboard on the 
tOT'US, are the 11,2 squares of the chessboard, and two squares are adjacent if they are 
collinear. Note that Q~L is vertex-transitive. As is standard in domination theory (see 
[14]) we denote the domination, independent domination and independence numbers 
of Q~ by r(Q~), i(CJ~) and j3(Q~), respectively. The n-queens problem on the torus 
is thus equivalent to determining whether j3( Q~) = n, and the queens domination 
problem on the torus is the problem of determining i( Q;J. 

In Section 2 we show that there are infinitely many values of n such that j3( Q;J = 
11, and such that (1 ( Q~) = n - 1. In the remaining cases we also list exact values 
of j3( Q~) for small values of n. In Section 3 we show that if (1( Q;L) = n, then 
sets (independent sets of cardinality 13) of Q~ can be used to find i-sets and i-sets 
(defined similarly) of Q~n of cardinality n, and upper bounds for i(Q~n) and i(Q~n)' 
Moreover, if 13 (Q.~) n - 1, then (1-sets of Q~ can be used to find i-sets of Q~n of 
cardinality n + 1. We determine a general lower bound for i( Q;J which is exact in 
infinitely many cases, and list exact values of i( Q~) and i( CJ;J for other small values 
of n. It turns out that not one of the functions 13, i and i is monotone. Some open 
problems are listed in Section 4. 

2 Maximum independent sets of Q~1 

We first consider the n-queens problem on the torus, that is, the problem to place 
n queens on an 11, x n board on the torus so that no two queens lie on the same 
row, column, s-diagonal or d-diagonal. Note that any independent set of Q~L is 
independent in Qn (the queens graph of order n in the plane), hence (1(Q~J ::; (3(Qn). 
We begin by showing that the existence of a solution to the n-queens problem on 
the torus is equivalent to the existence of a certain type of permutation of the set 
N={O,1, ... ,n--1}. 

Proposition 1 The set S with lSI = n is an independent set of q;1 if and only if 
S = {(:1:,] (x)) : x E N}, where ] is a per'mutat'ion of N such that the function.s 
g, h : N -+ N defined by g(x) == (J(:r) + x) (mod n) and h(.1:) == (J(:r) - x) (modn) 
are permutations 0] N. 

Proof. Suppose S = {(:r, ](x)) : x EN}, where ], g and h are permutations of N. 
Clearly, no two elements of S are in the same column, nor, since] is a permutation, 
in the same row. The square (:r,] (x)) lies on the s-diagonal (J (1:) + x) (mod n) and 
on the d-diagonal (J (:r) - x) (mod n), and since 9 and hare perrnu tations, no two 
elements of S are in the same diagonal. Thus S is independent. 

Conversely, if S is independent, then each row, column, s- and d-diagonal of Q~ 
contains exactly one element of S. Therefore S = {(x, ] (:[ )) : :r: EN}, where for each 
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pair X, :r:' E N with .r =I- :r;', f(:r) 1= f(:r') (mod n), f(:1:) + X 1= (J(x') + :1:') (mod n) 
and f(:r) - x =!: (J(1:') - x') (mod 17,). Since N is finite it follows that f, g and hare 
permutations of N. • 

\Ve now show that for certain values of n there do indeed exist permutations of 
N = {O, 1, ... , n I} that satisfy the conditions of Proposition l. 

Proposition 2 Let n == 1 or 5 (mod6) and define f, g, h : N -+ iV by f(x) 
2:r (modn), .9(1;) (J(x) +:r) == 31; (modn) and h(x) (J(x) 1:) ==.T (modn) for 
each x EN. Then f, 9 and h are permutations of N. 

Proof. Suppose 2x 2y (modn) for some :r,y EN. Then.T == y (modn) since n is 
odd. But :r, y E {O, 1, ... , n I} and so it follows that:r y. Since f is one-to-one 
and N is finite, f is a permutation of N. 

Now suppose 3x == 3y (mod n) for some x, yEN. Then x == y (mod n) since 17, is 
not a multiple of 3. As above we obtain that :r = y and that g is a permutation of 
N. The identity h is obviously a permutation. • 

Proposition 3 If 17, == 1 or 5 (mod 6), then the set S {(.x, 2.T) : :r E N} (arithmetic 
modulo n) is an independent set of Q~L of cardinality n. 

Proof. The result follows immediately from Propositions 1 and 2. The set S is 
illustrated in Figure 1 for 71, = 5. • 

Corollary 4 If n 1 or 5 (mod 6), then !3 (Q~J = n. 

Proof. The result follows from Proposition 3 and the obvious fact that !3( Q~) S 71, •• 

Our next result concerns the nOll-existence of permutations of N that satisfy the 
conditions of Proposition 1 in the case where n is even. 
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Theorem 5 If n is even then there does not e.rist a permutation f of N such that 
the fl1nction 9 : N --+ N defined by g(x) == (f(:r:) + x) (mod n) is a permutation. 

Pmof. Suppose to the contrary that the permutations f and 9 of N exist. Then 

n-1 

L [x + f(x)] 
x=O 

n(n 1) 

~(n - 1) 
k 

n-l 

L g(x) (mod n) 
x=O 
71-1 

L i (modn) 
i=O 

~(n 1) (modn) 

since f, 9 are permutations 

kn, where k is an integer 

a contradiction since n - 1 is odd and k is an integer. 

Corollary 6 If n is even, then r3(Q~) ~ n - 1. 

• 

We now give a configuration of n - 1 independent queens on Q;t for n == 2 or 
10 (mod 12), thus showing that the bound in Corollary G is exact if n is even but not 
a multiple of 3 or 4. 

Theorem 7 Let n ~ 10, n == 2 or 10 (mod 12) and define f : J.V --+ N by 

\

3X (mod n) 

f(:1;) == ~~ 3) (modn) 

3(x 1) (modn) 

if x E {O, ... , ~ - 1} 
if x = ~ 
if x = ~ + 1 
if x E {~ + 2, ... , n - 1}. 

Then f is a permutation of Nand,) = {(:r, f (:r)) : x E N - {~}} i.'3 an independent 
.'3ct of Q~. 

Pmof. Clearly f is everywhere defined on N. \Ve first prove that f is one-to-one. 
Suppose firstly that x E {O, ... , ~ - 1}. If there exists :1:' E {O, ... , ~ I} snch that 
f(:r) == f(1;') (modn), then 

31; == 31;' (mod n), 
i.e., x == x' (mod71) since 3 f n. 

But then x = Xl since 1:,X
I E {O, ... , ~ I}. Now suppose f(1:) == (71 3) (modn). 

Then 

nl(3:r 71 + 3), 
i.e., 711(x+1) since3fn. 

Hence :r == -1 (n - 1) (mod n), contradicting the choice of x. Next, suppose 
f(x) == ~ (mod n), that is, 3x == ~ (mod n). Since 3 t ~ and x E {O, ... , ~ - 1}, it 
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follows that 3:1; 
exists x' E {~ 

n + ~, i. e. x = ~, which is not the case. Further, suppose there 
2, ... ,n I} such that f(x) == f(:r') (modn). Then 

3x==3(x'-1) (mocln), 
i.e., x == (:c' -1) (modn) since 3tn. 

This is impossible by the choice of .7: and x'. 
If ~ == (11,-3) (mod 11,), then 71,1(3- ~). The only possibility is ~ = 3, contradicting 

the conditions on n. 

Now let.7: E {~+2, ... , n-1}. If there exists .7:' E {~+2, ... ,n-1} such that f(x) == 
f(:r') (mod71,), we obtain a contradiction as in the case where x,:x;' E {O, ... , ~ - I}. 
Suppose f(:r:) == (71, 3) (mod 71,). Then 

71,1 (3(x - 1) (11, - 3)), 
i.e., nl3:r 

and so 11,1:x;. Thus:1: 0, contradicting the choice of x. Finally, suppose f(x) == 
~ (mod 71,), that is, 3(:1: -1) == ~ (mod 71,). By the choice of x, we have that 3(x -1) = 
~ + 2n = 5~ and so 31~, which contradicts the conditions on 11,. \Ve have therefore 
shown that f is one-to-one and thus a permutation of the finite set N. 

Now consider the set S = {(.7:, f(x)) : .7: E N {~}} and the functions g and h as 
defined before. Since.f is one-to-one, no two elements of S are in the same row or 
column of Q~. To show that no two elements of S are on the same 8- or d-diagonal, 
we must show that 9 and h restricted to N - {~} are one-to-one. 

Let :c,x' E {O, ... , ~ -I}. If g(x) == g(:r') (modn), then 

4x == 4x' (mod n), 
i.e., 11,14(:r - x'). 

Since n == 2 (mod 4) it follows that 

~I(x - x'), 

and so, by the choke of x and :r', x = :1:'. If h(x) == h(x') (mod n), then 

2x == 2x' (mod 71,) 

and we obtain :r: = x' as above. Now let x E {O, ... , ~ I} and ;x;' 
g(x) == g(.7:') (mod 71,), then 

4x == 11, + 1 == 1 (mod 11,). 

~ + 1. If 

This is clearly impossible since 4x and 17, are both even. A similar argument shows 
that h(x):f- h(x') (mod71,). Next, let x E {O, ... , ~ I} and .7:' E {~+2, ... ,71, -I}. If 
g(x) == g(x') (mod 71,), then 

4x == (4:r' - 3) (mod 17,) 
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and the parity of these numbers shows that this is impossible. Similarly, h(:r) 1= 
h(x') (modn). Further, let x = ~ + 1 and :r' E {~+ 2, ... , n I}. If g(1;) 
g(x') (mod n), then 

(n + 1) == (4x' - 3) (modn), 

z.e., nI4(:x:' - 1) 

i.e., ~ICx:' - 1), 

which is clearly impossible by the choice of 2:'. Similarly, h(:r) ¢: h(x') (modn). 
Finally, if x, x' E {~ + 2, ... , n - I} we obtain a contradiction as in the case where 
x,x' E {O, ... , ~ I}. It follows that g, h 1 (N {~}) are one-to-one and so S is 
independent. • 

The following corollary is immediate from Corollary 5 and Theorem 7. 

Corollary 8 Ifn == 2 aT 10 (mod 12), then B(Q~J n - 1. 

Vve now prove a result similar to Theorem 5 concerning the nOll-existence of 
permutations of N that satisfy the conditions of Proposition 1 in the case where 
n == 3 or 6 (mod 9). As is common practice, we denote the domain and range of a 
function f by Dom(J) and Ran(J), respectively. For easy reference we first state two 
results about the equivalence relation congruency modulo a given integer; the proofs 
are simple and omitted. 

Lemma 9 Let n == ° (modp), l' == i (modp) and s 
k (mod n). Then k == (i + j) (modp). 

j (modp), wheTe T + s == 

Lemma 10 If n pm, wheTe p and m aTe positive integeTs, then faT each i E 

{O, ... , pI}, N has exactly m elements congT'uent to 'i (mod p) . 

Proposition 11 If n == 3 aT 6 (mod 9), then theTe does not exist a pennutation f 
of N such that the functions g, h: N ---t N defined by g(x) == (J(:1:) +x) (modn) and 
h(:r;) == (f(2:) - x) (modn) aTe both pennuiat'ions. 

Proof. Suppose to the contrary that such a permutation f of N exists. Let n 3'm, 
where rn is not a multiple of 3, and for 'i E {O, 1, 2}, define [i] = {x EN: :r; == 
i (mod3)}. By Lemma 10, I[ill = m for each i. Since 9 is a permutation, Ran(g) = 
u;=o[il N. By Lemma 9 the m integers in Ran(g) n [0] result when 

(x, f(x)) E ([0] x [0]) U ([1] x [2]) U ([2] x [1]). (1) 

For N', Nil <;;;; N, let N' xf Nil = {(x, f(x)) : :r; E N' and f(:1;) E Nil}. Suppose 
1[0] xf [0]1 = p. Then, since 1[0]1 = 1n, 

1([0] xf [1]) U ([0] xf [2])1 'm - p, 

236 



and since 1[1] U [2]1 2Tn, 

1([1] U [2]) xI ([1] U [2])1 = 2m - (m - p) Tn + p. 

However, since 1[0]1 = m and 1[0] xI [0]1 = jJ, it follows from (1) that 

1([1] xI [2]) U ([2] xI [IDI = rn - p, 

and so, by (2) and (3), 

1([1] xI [1])1 + 1([2] xI [2])1 = 1([1] xI [1]) U ([2] XI [2])1 
= (m+p) (m-p) = 2p. 

However, for each i E {O, 1, 2}, 

(:r:, f(x)) E til XI til {:} h(x) E [0]. 

Since h is a permutation, Ran(h) n [0] = [0], whence 

m= 1[0]1 
= 1([0] XI [ODI + 1([1] XI [1])1 + 1([2] xf [2])1 
= 3p, 

i. e., p= W-. 

(2) 

(3) 

This contradicts the fact that m is not a multiple of 3 and the result follows. • 

Corollary 12 fr n == 3 or 6 (mod 9)) then /J(Q~J S n - 1. 

Although Corollaries 6, 8 and 12 show that the natural upper bound for /J( Q!J is 
often not exact, we have not yet established a general lower bound for n == i (mod 12), 
where'i E {O, 3, 4,6,8, 9}. However, we have established /3(Q;J by computer for the 
small values of n given in Table 1; the solution given in each case lists the values of 
f(:r) for:r 0,1, ... , n-2 and sometimes n-l, in that order. In the case where n == 1 
or 5 (mod 6), the solution is provided by Proposition 3, while if n 2 or 10 (mod 12), 
an alternative solution is given by the set 5' defined in Theorem 7. Note that f3(Q~) 
is not monotone! 
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Solutions 

6 4 0,2,5,1 
7 7 
8 6 0,2,5,1,6,4 
9 7 0,2,4,7,1,3,5 
10 9 0,2,7,5,3,1,9,4,6 
11 11 
12 10 0,2,4,6,3,9,11,1,5,7 
13 13 
14 13 0,2,5,8,11,13,3,6,4,1,12,9,7 
15 13 0,2,4,7,9,12,5,13,1,3,6,8,10 
16 14 0,2,4,6,8,10,5,13,15,1,3,7,9,11 
17 17 
18 16 0,2,4,6,12,10,5,1,14,16,7,3,8,17,9,13 

Table 1: /3(Q~) for small values of n 

3 Dominating sets of Q;L 
We now show that there is a correspondence between /3-sets of Q~ of size nand 
dominating sets of Q~n of size n. Let ri, Ci, d'i and Si, i E N = {O, 1, ... , n -I}, denote 
the rows, columns, difference diagonals and sum diagonals, respectively, of Q~. 

Theorem 13 For any n, /3( Q~) = n if and only if the're is a dominating set of Q~n 
of cardinality n. 

Proof. Suppose rJ(Q~J = n and let S be a /3-set of Q;I' By Proposition 1 there is 
a permutation] of N such that S = {(:1:, f(:1:)) : x EN}, where f satisfies the 
conditions on g and h as stated in Proposition 1. \Ve show that T = {(3x,3](:r)): 
:r E N} (arithmetic modulo 3n) is an independent dominating set of Q~n' Consider 
any square (x', V') of Q~n' If :r' = 3x or yl = 3y for some :r, yEN, then (since 
y E Ran(])) one of (3x, 3f(:r)), (3]-1(y), 3y) E T dominates (:r /, y') by column or 
row. Hence suppose neither ~r' nor yl is a multiple of 3. Say Xl = 3p + r, yl = 3q + t, 
where p, q E Nand T, t E {I, 2}. 

If r = t, then by Lemma 9, yl - ;rl = 3(q - p) == 3a (mod 3n) for some a E N. 
But by Proposition 1 the function h : N ---+ N defined by h(x) == (](x) - x) (mod n) 
is a permutation, and so there exists x E N such that ](x) - x == a (mod n). Thus 
(3x, 3f(.1:)) E T and (x', yl) lies on the same d-diagonal of Q~n as (31:,3] (:r)); that 
is, T dominates (:r /, y'). 

Now assume without loss of generality that r = 1, t = 2. Then by Lemma 9, 
x' + yl = 3(p + q + 1) == 3b (mod3n) for some bEN. Since 9 : N ---+ N defined 
by g(x) == (J(x) + x) (mod n) is a permutation, there exists x E N such that 
f(x) + x == b (modn). Then (3x,3.f(x)) E T and lies on the same s-diagonal as 
(x' , y'). We have thus shown that T dominates Q~n' Note that the elements of T 
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oCCllr ill every thircl row, column, s-diagonal and d-diagonal of Cnn . Also note that 
T is independent this follows directly from the fact than 8 is independent. 

Conversely, suppose T is a dominating set of Q~n of cardinality n. Let R = {Ti : 
TinT = r/J, i 0,1, ... ,371, I} and C = {Ci: CinT (P, i 0,1, ... ,371, I}. Vle 
prove the following three lemmas. 

Lemma 13.1 For each Ti E R, T dominates every square in Ti e.'Eactly once. 

Proof of Lemma 13.1. Each element of T dominates each row in R exactly three 
times (by column, s-diagonal and d-cliagonal). There are 3n squares in each row, 
each of which is dominated, and ITI = 71,. 0 

Lemma 13.2 R conta'ins at most two consecutive rows of Q~n' 

Proof of Le'mma 13.2. Suppose without loss of gerwrality that rO,T1, T2 E R. There 
obviously exist two adjacent columns c and c' such that c C and c' tI C; say without 
loss of generality that Co tI C and C1 E C. Since T1 E R (el E C, respectively), there 
is no element of T on the same rmv (column) as the square (Cl, r1). Since Co 1:. C, the 
squares (co, TO) and (co, 1'2) are on the same column as an element of T (which is not 
in rows To, Tl, T2)' By Lemma 13.1, T dominates each of (co, TO) and (co, '("2) exactly 
once, and so there is no element of T on the d-diagonal dOor on the s-diagonal 
s = 2. But these are the diagonals containing (el' rd, and so T does not dominate 
(el, r1), a contradiction. 0 

Lemma 13.3 T is independent and its elements occ'ur in ever'y third TOW and thir"d 
column of Q~n' 

Proof of Lemma 13.3. Note that results similar to Lemmas 13.1 and 13.2 hold for 
the columns of Qf3n" If two elements of T are on the same row, column or diagonal, 
then some square in a rovv in R or a column in C is dominated more than once, 
contradicting Lemma 13.1. The latter part of the lemma follows directly from Lemma 
13.2. 0 

We may therefore assume without loss of generality that the 71, elements of T 
occur in rows 3y and columns 3x, :1;, yEN. That is, there is a permutation f of 
N such that T = {(3:1:, 3f(;r)) : :1: EN}. Moreover, the elements of T occur in the 
diagonals 8 3(x + f(:r;)) and d == 3(1(:];) x), :x:,y E N. Since T is independent, 
this means that :r + f(:r) and f(.T) x take on n distinct values each. Therefore 
the functions g and h as defined above are permutations of N. By Proposition 1, 
8 {(:r, f(.T)) : :1: E N} is an independent set and hence a {)-set of Q~. • 

The proof of Theorem 13 also gives the following result. 

Corollary 14 FOT" any 11, and any permutation f of N, 8 {(x, f(:r;)) : x E lV} is 
a {)-set ofQ~ if and only ifT = {(3x,3f(.y,))::r E N} (arithmetic modulo 371,) is a 
dominatinq set of Qf3n of cardinality n. 
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Note that Lemma 13.3 holds for any dominating set of qfhll that is, 

Corollary 15 Any dominating set of Q~n of cardinality n 'is independent and its 
elements OCC11,1' in every third TOW and third col'U:mn of Q~n' 

Corollary 16 lfn == 3 or 15 (mod 18), then r(q~J:::; i(Q~J:::;}. 

Proof. If n 3 or 15 (mod 18), then ~ 
Proposition 3. 

1 or 5 (mod 6) and the result follows from 

• 
The dominating set of qis obtained as described in the proof of Theorem 13 from 

the /3-set of q~ of Figure 1 is illustrated in Figure 2. The structure of this dominating 
set suggests that such dominating sets may well be optimal, and we now show that 
this is indeed the case. 

Proposition 17 For all n ~ 1, ,(q~) ~ rn/31. 

Proof. The result is obvious for n :::; 3 and we assume that n 2: 4. Consider any 
,-set S of Q~. If S n r # cp for each row l' of Q~p then lSI 2: n > n/3. Hence let T be 
any row such that Tn S = cp. Each element of S dominates r exactly three times (by 
column and 8- and d-diagonals), hence in at most three squares (since if n is even, 
the 8- and d-diagonals may intersect in T). Thus, since I S I is integral, 

lSI ~ I~l· 

• 
Proposition 3, Corollary 14 and Proposition 17 immediately yield the solution of 

the queens domination problem on the torus in the following cases: 

Corollary 18 Let n == 1 or 5 (mod 6). The set S = {(3i, 6i) : i E N} (arithmetic 
modulo 3n) i8 an independent dorninating set of Q~n of cardinality n. 
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Corollary 19 Ifn == 3 or 15 (mod 18), then ,(CJ~) = 'i(Q~) = ~. 

By Theorem 13 and Proposition 17, if ,8( Q~) < n, then ,( Q§n) 2': n + 1. \Ve now 
use t.he f3-sets of Q;t' n 2 or 10 (mod 12), defined in Theorem 7 to find dominating 
sets of Q~n of cardinality n + 1 for these values of n, thus determining exact values 
of ,(Q~n)' 

Theorem 20 Let n 2': 10, n == 2 or 10 (mod 12) and define 1 : N -+ N as in 
Theorem 7, Let 5' = {(:r,f(x)) : ,1: E N}, T' = {(3:r,3f(:r)) ::1: EN} (arithmetic 
modulo 3n) and T T' U {(O, 3n - 9)}. Then T is a dominating set of Q~n' 

Proof. As was shown in the proof of Theorem 7, 1 is a permutation of N. Thus the 
elements of T' occur in every third row and column of Qf3n' Also by Theorem 7, the 
set 5 5' {(~, n - 3)} is an independent set of Q;t' Hence T' {(~, 3n - 9)} is 
independent and its elements occur in every third 8- and d-diagonal, except for one 
in each case, of Q~n' \iVe determine the missing diagonals. 

By the congruency of n and the definitions of 1 and T', the elements x E 
{O, ... , ~ I} account for the 8-diagonals 8 == 12:r (mod 3n) and for the d-diagonals 
d == 61: (mod 3n), that is, all ~ s-diagonals and all ~ d-diagonals of Q~n where 
s, d == 0 (mod 6). The elements .7: E {~ + 2, ... , n - I} account for the s-diagonals 
s == (12::r - 9) (mod 3n) and the d-diagonals d == (6x - 9) (mod 3n), that is, all 
s- and d-diagonals of Q~n' where s, d 3 (mod 6), except .'3 E {3,3n 9} and 
dE {3n 3,3n 9}. The element (~+3,~) E T' accounts for the s-diagonal s = 3 
and the d-diagonal d = 3n - 3. Thus the missing diagonals are s = d = 3n - 9. 
However, (0,3n -- 9) E T lies on these diagonals, and so the elements of T occur 
in every third row, column, s-diagonal and d-diagonal of Q~n' (Some lines of Q~n 
contain more than one element of T.) 

It can now be shown as in the proof of Theorem 13 that T dominates Q~n' • 

Corollary 21 If n == 6 or 30 (mod 36), then ,(Q;J = ~ + 1 and i(Q~) ::; j + 3. 

Proof. That ,( QU ~ + 1 follows directly from Theorems 13 and 20 and Corollary 
6. Let n 3m and consider the sets S = {(:r, I(:r)) : .7: E {O, 1, ... , m - I} - {~}} 
as defined in Theorem 7 and X = {(3:r,3f(x)): x E {O,I, ... ,rn I} - {~}}. Since 
5 is an independent set of Q~, it follows that X is an independent set of Q~. As 
in the proof of Theorem 20, X dominates all squares of Q,~ except squares in row 
3m - 9 = n 9, column 3~J, = ~ and the diagonals s d 3n~ 9 = n g, Thus it 
is easy to find four mutually independent squares 0" b, c, d of Q~" one on each of these 
lines (and thus non-adjacent to any of the elements of X), such that Xu {a, b, c, d} 
is an independent dominating set of Q~) of cardinality ~ + 3. • 

Consider Qn, the queens graph of order n in the plane, and lable the rows and 
columns of Qn from 0 to n - 1. If S is any dominating set of Qn, then 5 u {( n, n)} 
is a dominating set of Qn+l. Hence if ,(QnJ = k, then "'((Qn+m) ::; k + m for any 
m 2': 1. However, since the s-diagonal Si (d-diagonal di) of Q~L is not contained in the 
",-diagonal Si (d-diagonal di) of Q~t+l (i = 0, ... , n - 1), the same result does not hold 
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for queens graphs on the torus. Therefore the exact values of 'Y( Q~) and i( Q;J given 
in Corollary 19 do not give upper bounds for the other cases. Moreover, although 
it is easy to see that any dominating set of Qn also dominates Q~, and hence that 
,(Q~J ~ ,(Qn), the corresponding inequality does not hold for the independent 
domination number i, as an independent set of Qn is not necessarily independent on 

Q~. 
We have established exact values of ,( Q~J and i( Q~J for some small values of 

n, some by human brain and some by computer; these are listed in Tables 2 and 
3 together with the corresponding values for Qn for comparison. Two interesting 
facts emerge: all three possibilities i( QU i( Qn), i( Q~J < i( Qn) and i( Q~) > i( Qn) 
occur, and neither ,( Q~) nor i( Q~) is monotone! (Recall that in the case of Qn the 
corresponding questions of monotonicity remain unresolved.) Also note that while 
,( (5) = i( Q5) = ,( Q~) = 3, i( QD = j3( Q~) = 5 - is this an exceptional case or are 
there other values of n for which 'i( Q~) = ,t3( Q;J? (VVe believe the former.) 

As can be seen from Tables 2 and 3, ,( Q,~J = i( Cd;.) = fn/2l for some small 
values of n and we now show that ,( Cd;J ~ i( Q;J ~ n/2 for infinitely many even 
values of n. Interestingly, the n-queens problem on the torus is again involved. 

,( Cdn) ,(Q~) SoIl 

3 1 1 
4 2 2 (0,0),(1,2) 
5 3 3 (0,0), (2,2), (4,4) 
6 3 3 (0,0), (2,4), (4,2) 
7 4 4 (0,0), (1,1 ),(3,3) ,(5,5) 
8 5 4 (0,0), (3,7), (4,3), (7,4) 
9 5 5 (0,0), (1 ,3),(3,7) ,(5,1) ,(7,,5) 
10 5 5 (0,0), (2,4), (4,8), (6,2), (8,6) 
11 5 5 (0,0), ((2,6), (4,2), (6,9), (8,4) 
12 6 6 (0,0), (2,2), (4,4) ,(6, 10),(8,8), (10,6) 
13 7 ~7 
14 8* ~7 Corollary 23 
15 9* 5 Fig. 2 

*See [13] 

Table 2: ,( Q~) for small values of n 
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n ~( qn) ~(Q;J 0 
0UIUl>lUU>:l 

3 1 1 
4 3 2 See I 
5 3 5 Fig. 1 
6 4 4 (0,0), (2,3), (3,5), (5,2) 
7 4 5 (0,0), (1,4), (2,6), (3, 1), (4,5) 
8 5 4 See I 
9 5 5 See I 
10 5 5 Sf~e I 
11 5 5 See I 
12 7 6 (0,0),(1,2) ,(2,11) ,(6,5) ,(7,3),(8,6) 
13 7 7 (0,0), (1,2),(2,4) ,(3,12),( 4,1) ,(5,3), (6,11) 
14 8 7 (0,0), (2,4), (4,8), (6, 12) ,(8,2) ,(10,6) ,(12,10) 
15 9 5 Fig. 2 
16 9 8 (0,0), (1,4), (2,8), (3,5), ( 4,9), (5, 13), (8,3), (13,10) 

Table 3: i( Q~) for small values of n 

Proposition 22 ff S = {(x, f (1;)) : x E lV} is an independent set of Q~, then 
T = {(21:, 2f(x)) : x E N} (arithmetic modulo 2n) is an independent dominating set 
of Q~n of cardinality n. 

Proof. Consider any square (x', 71') of Q~n' If x' 2.7: or 71' 271 for some x, 71 E lV, 
then (since y E Ran(f)) T dominates (x', 71') by column or row. So suppose x' and 
71' are odd. Then x' + y' is even, hence by Lemma 9, x' + y' == 2p (mod 2n) fOf 
some pEN. But by Proposition 1 the function g as defined there is a permutation, 
and hence there exists a E N such that g(a) = p, i.e., (a, f(a)) E S and lies on 
the s-diagonal.') p of Q~. Therefore (2a,2f(a)) E T and lies on the s-diagonal 
s 2p of Q~n' which is also the s-diagonal of Q~n which contains (x', 7/'). Hence T 

dominates Q~n' The independence of T follows directly from the independence of S . 

• 
Corollary 23 If n == 2 or 10 (mod 12), then "y( Q~) ~ i( Q~) ~ ~. 

Proof. If n 2 or 10 (mod 12), then ~ == 1 Of 5 (mod 6) and the result follows from 
Propositions 3 and 22. • 

4 Problems 

The n-queens problem 
\Ve have sho-wn tha,t if n == 1 or 5 (mod 6), that is, n 1,5,7,11 (mod 12), then 
f3( Q;J 71" and if 71, == 2 or 10 (mod 12), then f3( Q~) = n-l. For all other congruence 
classes modulo 12, that is, when n is divisible by 3 or 4, the values of f3 listed in 
Table 1 shmv that /3( Q;J = n 2 if n is small. 
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1. In determining the above values of {3, we have also shown that if n is even 
or n == 3 or 6 (mod 9), then J3( Q;J < n. Can we extend these results to all 
multiples of 3? 

2. Is it true in general that p( Q~) 2': n 2, and that J3( Q~J 
0,3,4,6,8,9 (mod 12)? 

n - 2 if n 

3. In the cases where J3( Q;J = n, how many non-isomorphic solutions are there 
to the n-queens problem? We can also ask this question if j3( Q~) < n, but 
suspect that this will be a difficult problem to solve in general. 

The queens domination problem 

We have shown that if n == 3 or 15 (mod 18), that is, if TL == 3,15,21,33 (mod 36), 
then ,(Q~) = i(Q;J = ~, and if n == 6 or 30 (mod36), then ,(Q;J = ~ + 1. In each 
case optimal solutions were obtained from solutions to the rn-queens problem, where 
rn = ~. The following questions arise: 

1. If we can show that J3( Q,~) = n - 2, can we use such a solution to show that 
"1(Q~n) = n + 2? 

2. Can we in any way use optimal solutions for "(( Q~n) to get hounds or solutions 
for ,(Q~n+l) and ,(Q~n+2)? 

3. Is the bound 'i(Q~n) :::; n + 3, n == 2 or 10 (mod 12), exact? 

4. As in (1), can we use a J3-set of Q~ of cardinality n - 2 to show that 'i(Q~n) :::; 
n + 6, or to obtain other upper bounds? 

Some of the questions mentioned above are addressed in [3, 4]. 

Other domination parameters of Q~! 
Vve have only considered the independence, domination and independent domination 
numbers of Q~. The irredundance number, upper domination and irredundance 
numbers, total domination number and other domination type parameters still need 
to be investigated. 

Graphs for other pieces on chessboards on the torus 

For chessboards in the plane, domination related problems for the queens graph are 
considered to be to more difficult than the corresponding problems for the graphs 
of the other chess pieces. It thus seems reasonable to expect that many of these 
problems could be solved for the graphs of other pieces on chessboards on the torus. 
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