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Abstract

A Mendelsohn design M D(v, k, A) is a pair (X, B) where X is a v-set to-
gether with a collection B of cyclic k-tuples from X such that each ordered
pair from X is contained in exactly A cyclic k-tuples of B. An M D(v, k, \)
is said to be self-converse, denoted by SCMD(v,k,\) = (X,B,f),
if there is an isomorphism f from (X,B) to (X,B™"), where B~! =
{{zk, Th1y ooy T2, 1) ¢ (21, 0y 71) € B}. The existence of SCMD(v,3,)\),
SCMD(v,4,1) and SCMD(v,4t + 2,1) has been completely settled,
where 2¢ + 1 is a prime power. In this paper, we investigate the exis-
tence of SCM D(v,6q, 1), where ged(q,6) = 1. In particular, when ¢ is a
prime power, the existence spectrum of SCM D(v,6q, 1) is solved, except
possibly for two small subclasses. As well, our conclusion extends the
existence results for M D(v,k, 1).

1 Introduction

Let X be a v-set and 3 < k < v. A cyclic k-tuple from X is a collection of k
ordered pairs (zo, 1), (21, 22), .., (Tr—2,2k—1) and (z4_1, T0), where zg, 21, ..., Tp_y
are distinct elements of X. It is denoted by (2o, z1,...,zk-1). A (v, k, \)-Mendelsohn
design, or M D(v,k, A), is a v-set together with a collection B of cyclic k-tuples
(blocks) from X, such that each ordered pair (z,y) with z # y € X is contained in
A blocks of B.

For an MD(v, k, \) = (X, B), define

B = {(xk—1, Th—2, ..., T1, T0) : (T, @1, ooy 2k 1) € B

Obviously, (X, B™!) is also an M D(v, k, \), which is called the converse of (X,B).
If there exists an isomorphism f from (X, B) to (X, B7!), then the M D(v, k, \) is
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called self-converse and this is denoted by SCMD(v, k, ) = (X, B, f). For a block
B = (xq,71,...,25_1), the block f(B)™' = (f(Tk-1),--, f{z1), [{z0)) is called the
f-converse of B. To prove a system (X, B, f) is self-converse we only need to show
that f(B)~! € B for any B € B. It is well known that a necessary condition for the
existence of an M D(v, k, \) and SCMD{v, k, \) is
Av(v— 1) = 0 (mod k).

The known existence results for M D(v, k, A) and SCM D(v, k, X) can be summarized
as follows.

Theorem 1.1 ([1]) The above necessary condition for the existence of an
MD(v, k,\) is also sufficient, if one of the following cases holds.

(1) k =3 and (v, A) # (6,1);

(2) k=4 and (v, ) # (4,2t + 1) for any integer t > 0;

(3) k=6 and (v, \) # (6,1);

(4) k € {5,7,8,10, 12, 14};

(5) k> 7,0v=0,1 (mod k).

Theorem 1.2 ([4],[5],[6])

(1) There exzists a simple SCMD(v,3,)) if and only if Av(v — 1) = 0 (mod 3),
A<v—-2, v>3and (v, #£ (6,1),(6,3);

(2) There exists an SCMD(v,4,1) if and only if v = 0,1 (mod 4) and v > 5;

(3) There exists an SCMD(v,5,1) if and only if v = 0,1 (mod 5), v > 5 and
v #6;

(4) Let t be an odd integer and t > 3. There exists a self-converse M D(v,2t,1)
forv = 0or 1 (modt) except for v =2t +1 and (v,t) = (6,3). In particular,
when t 1s an odd prime power, the above condition for the existence of an
SCMD(v,2t,1) is also sufficient.

In this paper, our main goal is to solve the existence problem for SCM D(v,6q, 1),
where ged(g,6) = 1. In particular, when ¢ is a prime power, the existence spectrum
of SCM D(v,6q,1) is settled, except possibly for two small subclasses. As well, our
conclusion extends the existence results for M D(v, k,1). Our main results are:

Theorem 1.3 Let g be positive integer with ged(q,6) = 1. There exists an
SCMD(v,6q,1) for the following q and v.
(1) v= 10,1 (mod 3q) except for v =06q + 1;
(2) v=qg+1,2q,49 + 1,5¢ ( mod 6q) and g =5 ( mod 6);
(3) v=yq,2¢+ 1,4¢,5¢ + 1 ( mod 6q) and ¢ =1 ( mod 6) except possibly for
x v="Tq and g =1 (mod 12) or ¢ = 7 (mod 48);
x v =q (mod 12q), ¢ = 1 (mod 6) where q is not a prime power.

Theorem 1.4 For prime power ¢ = p™ (p > 3) and v # 7¢ (¢ =1 (mod 12) and
q = 7 (mod 48)), there exists SCM D(v,6q,1) if and only if v(v —1) = 0 (mod 6q)
except for v ="06q + 1.
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Lot ADK,,, n,,..n, be the complete multipartite directed graph with vertex set

X = U X, where X; (1 <4 < h) are disjoint sets with |X;| = n; and where two
vertic ;q z and y from different sets X, and X; are joined by exactly A arcs from z to
y and A arcs from y to z. A holey M(’H(](’ZS’OhT) design, briefly denoted by (v, k, A)-
HMD, is a trio (X, {X;;1 <14 < h}, A) where X is a v-set, A is a collection of cyclic
k-tuples from X which form an arc-disjoint decompoqltlon of ADK,,, ., Bach X,
1<i<h,is called a hole (or group) of the design and the multiset {nl,nz, e}
is called the type of the design. Sometimes, we use an “exponential” notation to
describe its type: a type 1'273°... denotes i occurrences of 1, j occurrences of 2, ete.
If there exists an isomorphism f from (X, A) to (X, A‘l), then the (v, k, \)-HMD is
called a (v, k, \)-HSCMD = (X,{X;;1 <i < h}, A, f A (v, k, \}-HSCMD ()f type

ar"'ay”...al will be denoted by (v, k, \)-HSCMD(aT"...a™), in which v = Z m;a;.

When A = 1, we shall briefly denote SCMD(v,k,1) and (v k,1)- HSCMD(T) by
k-SCMD(v) and k-HSCMD(T) respectively, where T represents the type of the
HSCMD. A k-HMD(1"""h!) is also known as an incomplete Mendelsohn design
and is denoted by k-ITMD(v,h). Similarly, a k-HSCM D(1°~"h') is known as an
incomplete self-converse MD, and denoted by k-ISCMD(v, h).

An m-cycle system of order v is a collection CS(v,m) of undirected cycles with
length m, whose (undirected) edges partition all edges of the complete graph K, of
order v. Obviously, if there exists a C'S(v,m) = (V, A), then an m-SCM D(v) =
(V,B, f) exists. In fact, f can be the identity mapping and the block set B can be
defined as

{((L], "'7(1’771)3 <a’m7 . (L1> ((117 . 70’m,) € A}

2 Overall arrangement I

A necessary condition for the existence of a 6¢-SCMD(v) is v(v — 1) = 0 (mod 6q).
Let ged(q,6) = 1. By Theorem 1.2(4), there exists a 6¢-SCM D(v) for v = 0,1 (mod
3q) and v # 6g+ 1. It is easy to see that, for general 6g (ged(g, 6) = 1), the following
orders v satisfy the necessary condition v(v — 1) = 0 (mod 6¢) besides v = 0,1 (mod
3q).

g = (mod 6) v = (mod 6q)
1 q 2g+1 4q og +1
5 q+1 2q 4q + 1 5q

These orders v (and corresponding ¢) are just the range considered in this paper.
For prime power ¢, the range is exactly all admissible v for the existence of a 6¢-
SCMD(v).
Let v = 6mq-+h, where m is a positive integer, h € {2¢, 2¢+1, 4¢,4g+1, 5¢, 5¢+1}.
Let
V=XUY and XNY =
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X = Zm X qu X ZQ',

Zn X Zy (h even)
Y= (Z';g_l x Zz)U{oo}  (h odd)

{ (7’7]>k) - (Zajvl “k) (szvk) €eX

, when h > 0,

(a,0) = (a,1 —b) (a,b) € Y\{o0} .

o0 — 00

Sometimes, we denote Y by S = {00,009, ...,00,} and denote the corresponding
mapping by

:{ (Zvj7k)_)(177)l—k)7 (Zvjak)EX

00; =~ OOpg1-i, 1<i<h

The mapping is uniform for all constructions throughout our paper. Below, especially
in section 6, we will give the following results for different h:
(A) 6g-HSCMD((6¢)™) = (X, {{i} X Z3g X Zy : i € Zy,}, Ay, f), where m > 2;
(B) 6¢-SCMD(6q) = ({} X Zyg X Z9,Bi, ), 1 € Zy;
(C) 6¢-HSCMD(h'(6¢)') = (({i} x Zsg x Zo) UY, {{i} x Z3q X Z3,Y'},C,, f),
where 1 € Z,, and 3¢ < h < 6g¢;
(D) 69-SCMDI(Ba + ) = ({0} X Zuy x %)UY, D f);
(E) 6¢-ISCMD(6q+ h,h) = (({i} x Z3; x Z3)US, S, Q4 9),
where i € Z,, and h < 3¢;
(F) 6¢-SCMD(12q+ h) = ((Zs x Z3g x Zo)UY, F, f).
Then, each of the following block sets will form a 6¢-SC M D(v):
AmUDU ( U (B UCi));

€2y,

Anm U’DU( U Q)
€z,
(A \AZ)UTU( U ), when m > 2.
2(1)

i€y,

Here and below, Z,, denotes a residue class ring modulo m and Z7, = Z,,\{0}.
Theorem 2.1 The following designs exist:
(1) 6¢g-HSCMD((6¢)™), m > 2;
(denote the design by A, then Ay, C A, for m > 2)
(2) 6g-HSCM D(h*(6g)'), where 3¢ < h < 6g;
(3) 6g-SCMD(6q).
Proof By [6], the designs 2t-HSCMD((2t)™), m > 2; 2t--HSCMD(h'(2t)), t <
h < 2t; 2t-SCM D(2t) exist. We only need put ¢ = 3¢. In these self-converse designs
given by [6], the mapping is the same as the uniform mapping defined by us. ]
By the above description and Theorem 2.1, in order to complete 6¢-SCMD(v),
we only need construct
(D) and (E), when v = 2¢ (mod 6¢);
(E) and (F), when v = 2¢ + 1 {mod 6¢);
(D), when v = 4q,4q + 1,5¢,5¢g + 1 (mod 6¢q).
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3 Overall arrangement I1

For some h (such as h = g or ¢ + 1), it is difficult to construct the desired design
under the overall arrangement 1. Now, let us consider an other arrangement.

Let v = 12mg+h, where h € {q,q+1,7¢} and m > Oor h € {7g+1} and m > 0.
Let

V=XUYand XNY ={;
)&’:Zm XZ()',I X Zg;

Y:{ Z% X Zy (h even)

(Zh;l x Z3) U0} (h odd) when h > 0.

Below, especially in section 6, we will give the following results for different h:
(A) 6g-HSCMD((129)™) = (X, {{i} X Zog X Zy: i € Zin}, A, f), where m > 2;
(B) 6¢-HSCMD(h'(12q)") = (({i} x Zsg x Zo)UY, {{i} x Zey x Z2, Y}, Bi, f),
where 1 € Z,, and h > 3g¢;

(C) 6¢-SCMD(12q) = ({i} X Zgg X Z5,C;, f), where i € Z,,;

(D) 6¢-SCMD(12q + h) = ({0} x Zeg x Z, D, f);

(E) 6¢-SCMD(h) = (Y, J, f), where h > 6gq;

(F) 6¢-ISCMD(12g + h, h) = (({i} x Zgg x Zo)US, S, %, g), where i € Z,,,

and h < 3q.
Then, each of the following block sets will form a 6¢-SCM D(v):
AuJu( U (B, UG));

1€0m
AUDU( Lg (B; UG));

€2,
(AUD)U( U ).

IS

Theorem 3.1 The following designs ezist:
(1) 6g-HSCMD(12¢)™, m > 2;
(2) 6g-SCMD(12q);
(3) 6g-HSCMD(h'(129)), h > 3q.
Proof By [6], the designs 2t-HSCMD((4t)™) for m > 2, 2t-HSCM D(h'(4t)") for
h > t, and 2t-SCMD(4t) exist. We only need put ¢t = 3¢. In these self-converse
designs given by [6], the mapping is same as the uniform mapping defined by us. O
By the above description and Theorem 3.1, in order to complete 6g-SC M D(v),
we only need construct
(D), when v = 7¢ (mod 12¢);
(D) and (F), when v = ¢, g+ 1 (mod 12g);
(E), when v = 7¢ + 1 (mod 12¢).

4 Notation and terminology

Consider the numbers and the differences in the set 7, x Z,. In what follows, we
will use the following notation and terminology, which was firstly introduced in [6].
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(1) In Z, x Z,, the number (x,0) is denoted by xy or xz, the number (z,1) is
denoted by z; or 7.

(2) The ordered pairs (z;, (z + d);) belong to the difference d;;, where z,d €
Zyn, 1,J € Zyand d # 0 if i = j. A difference d;; is said to be pure if i = j, or mized
if i # j. The difference dop (or dyy) is called 0-pure (or 1-pure) and is denoted by dy
(or dy), respectively. Denote the set of all (pure and mixed) differences from Z,, x Z,
by [Z, X Zs].

(3) For integers a,b,k, a < band k > 1, a = b (mod k), define the integer
intervals (as an ordered set under the natural ordering <):

la,blx = (a,a+ k,a + 2k, -, b),

[a, 0, = (bb—k, -, a+k,a).
The subscript £ can be omitted when k = 1. For the numbers z; in Z,, X Z, and the
differences d;; in [Z, x Z,], the range of 2 and d is uniformly taken as [~ 251 |, [%5*]],
but d # 0 for the pure difference d;.

(4) Let 1, ..., 2 € [Z, % Z3). Call the ordered tuple D = (z, ..., z,) a difference-
tuple on [Z, x Z,). If ©; = d,;, the corlcqpondmg number—tuple (a;,0; + x1,0; +
Ty + Tg, .oy @ + Ty + ...+ Tp) is denoted by D or Da, where a € Z,. Note that
b+ di; = (b+d); and b + dy; is undefined if s # i, where b,d € Z, and i,j,s € Z,.
Usually, we write a; = head(D ), ai oyt xy, = tmi( ) and D, = Dy+a. For
a difference-tuple D and corresponding number-tuple D = (yo, y1, ..., Ym), We have
the unordered sets

{5} = {2/0,'91, ~~-7ym}1 {5}0 = {1’; (770) € 5} and {5}1 = {:L‘; (LL‘, 1) € 5}

For example, if D = (20, (—~1)n
then D = (0,2,1,3,-1,0, 2,-2),
tail(D) = =2.

(5) Define two mappings F(x) and T on [Z, x Z,] as follows.

+210, (—4)00; Lo1, 211, (—4)11) and head(D) = 0,
{D}O - { 1 072v3} {D}l - {_2:0:1:2} and

F(doo) = ~dyy, F(du) = ~dyy, F(dm) = —dy, F(dm) = —dyy,

doo = di1, diy = dgo, doy = dyg, dip = do,

where —d;; = (—d);;. Let D = (2),...,2,,) be a difference-tuple. The following
derived tuples are often useful:
=D = (—=z1,....,—Zm), DV= (24, .., T2, 71),
F(D) = (F(x1), F(x2), ..., (1)), F YD) = (F(D))"!
(6) Let a,s € Zy, 4,5,%,y € Zo, D = [a,a + 5] be a difference-tuple on [Z, x Z;).
Define
Aii (D) = (agy, —(a +1)ji, ..., (=1)*(a + 8);00)s
—A;(D) = (—ay, (a+ 1)]“ o (=1)Ha + $)py) and
Aij (D7) = ((a + s)ij, —(a+s = 1)j5, ..., (—1) agpe),
where the subscript [i7]° denotes ij (if s (’V(,Il) or ji (1f s odd). When i = j, these
symbols are briefly denoted by 4;(D), —A;(D), A;(D71). As well, we define
]\IA@](D) = (aij7 —(G, + l)ji, ( -+ 2)2], R 7( 1) ((l + é)[l]]
(=1)*(a + 8)(jgps, o, — (@ + 1)y, a5).




Similarly, M A;; (D), =M A;;(D) can be defined also.
(7) A difference tuple D = (21, ..., 2,,) is called a difference-path on [Z, x Zy),
denoted by DP(D), if the following conditions are satisfied:

The numbers in Dy are distinct;
If 2z, = d;;, then x4, = diy for 1 <s <m—1.

(8) A DP(D) = (x4, ..., xm) is called a difference-cycle on [Z, x Z,], denoted by
DC(D), if the additional conditions are satisfied:

di + ...+ dyy = 0 (mod n), where z, = (dy)s,;,, ds € Z,,, 5,75 € {0,1}
and 1 < s < my

If 2, = d;; then z,, = d,,.

A DC(D) is said to be complete, denoted by CDC(D), if the differences in D are
distinct. A C'DC(D) corresponds to a block-orbit dev(Dy) = (Do + a;a € Z,},
which covers all ordered pairs {(a;, a; + dij);a € Z,,d;; € D}.

(9) In a DC(dy, ..., dy), if k = Xs, dy, ..., d, are distinct and d; = dij,,V1 < i <
k — s, then this DC is called a A-partite DC, denoted by A- DC(dl, v ds). Tt is
not difficult to see that a difference-tuple AR = (dy, ..., d,, dy, ..., ds, ...... vy, dy),
where R = (di,...,d;) is repeated X times, forms a \-partite DC’ if and only if
gcd(d;+...+ds, n) = 2, AMnand dy, dy+da, ..., di+da+.. +d are not congruent modulo

- AX-DC(dy, ..., dy) corresponds to a block-orbit dev(Ny) = {Ng+a;0 < a < -1}
When A =1, the notation X can be omitted and this DC is just a CDC.

(10) Let Q be a DP consisting of distinct differences in [Z, x Z,]. f QN F(Q) =
0,Qo N f(Qo) = @ and both head(Qg) and tail(Qo) belong to the same set Z, x {7}

for some j € Z, then (Q,0;,_;, F71(Q), 01-;;) forms a self-converse complete DC
on [Z, x Z,}, which is denoted by SDC(Q).

(11) Let N be a DP consisting of distinct differences in [Z,, x Z,]. If NNF(N) = ()
and both head(N) and tail(N) belong to the same set Z, x {7} for some j € Z,,
then (0o, N) forms a complete block-orbit. The corresponding CDC is denoted by
CDCy(N).

(12) Let N be a DP consisting of distinct differences in [Z, x Z,], let ay, as, - - -,
ap—1 be distinct numbers in (Z,, x ZQ)\{No} if NNF(N) =0, a; and ay,_; belong to
the same set Z,, x {7} for some j € Z,, then (001, a;,009, ay, ..., %0h_1, an_1, 5n, No )
forms a complete block-orbit. The corresponding C'DC'is denoted by CDCy,, , (N).

5 Some typical DP and DC

Lemma 5.1 ([6]) (1) Let a,m,d, k be positive integers, d < m and a + km < 2 If
N =la,a+kml; or[a,a + km]k\{a + kd}, then £A;;(N) is a DP on [Z, x ZQ]

(2) Suppose Q and N are both DP on Z,, x Zy, n even and a,b € Zn. If the members
of Q (resp. N) are dzstmct O-pure differences, Qgﬂ (Qo+1 ) B, No 1 (Np + 2) =
anda+b+ Z d= % (modn), then (Q, a0, N bm,Q,am, ,big) forms a 2- partzte

DC on [Zn X ZQ}, denoted briefly by 2-(Q, ag1, N, byo).
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(3) Let n be an even integer, P be a DP consisting of distinct differences of [Z, x Z,).
IFPAF(P) =0, (})o1, (2)10 & P, head(Py), tail(Py) € Z, x {0} and Py f(Py+3) =
0, then

(a) (P, (Z)or, F(P), (%)10) forms a complete DC on [Z, x Z,], denoted by
FDC(P, (%)o1)- . -

(b) Let N = (P, (%)o1, F~(P), a1q), a10 € PUF(P) and a & {Po},U({Fo}o+5).

Then, the blocks {(co, N;) : 0 < i < % —1} and their f-converse cover the differences
de PUF(PYU{(%)o} and a half of the number pairs with differences ayp and —ayq.
The tuple N is denoted by FDC(N).
(4) Let N = (Agla,a+ 7], (=1)" A ([ —s— 1,5 —1])), 2a+7+25+2 <n, [b] #
el € 1,3 —s—2), bb+c & {NhU({Nh+13) and ¢ ¢ {N}U({N}o +3),
where head(N) = 0. If r = s (mod 2), then P = (2, N, (%)poyr, F7HN), %, bo) and
Q = (—cor, N, (B)our, F7HN), cor, bio) form a pair of FDCy, where [10)]" = 01 4f r
odd or 10 if r even.

Lemma 5.2 Let M(k,n), 1,j,5 € Za,¢ € Z, and [%} < &. Then for the following
R, AR forms a A-partite DC if tail(Ry) = +3.

(1) R = (Ayla,a+ gk— 2, Cay);

(2) B = (Ay(la,a+ 5 = 1\ {a+t}), czy).
where the subscript vy = js (or xy = is) sz even (or odd).

Proof (1) By Lemma 5.1(1), P = Ala,a+% —2]isa DP and {F}; = [-([£] -
1,0}, {Po}; = [a,a + | £] — 1], and they are intervals with length [£] and | ]

respectively. It is easy to see that L%j < [E’Cﬂ < %, so they are not congurent

modulo ¥, thus AR indeed forms a DC.
(2) By Lemma 5.1(1), P = A;([a,a+ £ — 1]\{a + t}) forms a DP, and

5y =51 -1),0] (t even)
{PO}Z—{ (=11, 00N {5} (¢ odd),

5y [ la+FINMat gt (teven)
{Po}j—{ [a’aﬂLbk;J ~1] ’ (t zdd).

Thus, by the definition of A-partite DC (in (9) of section 4), it is easy to see that AR
forms a DC. a

Lemma 5.3 Let n,m,a,b,c,d be positive integers, n even, 1 < d < m < § and
1 <b,c,a+m < §. Then for the following R, 2R forms a 2-partite DC'.
(1) R = (£Ac([1, m]\{d}), aor, £A:[1, ¢], bro), where

at+b="2— ()" [T +esgnd - (~1)°[ S |sgnd;
(2) R = (+Aola,a + m], by, cro), where

bt o= T4 (1) [ ]sgnA (m odd)
T (-0 a+ BsgnA (m even);

(3) R = (£Ao([a, a + m]\{a + d}), boy, c10), where

176




biemn s | U] 4 et a)sond (m odd)
T (=)™ N2 + eq)sgnA (m even)

eq = 0 (if d even) or (—1)™ (if d odd).

Proof (1) By Lemma 5.1(1), both @ = £A4y([1,m]\{d}) and P = £A[1,c] are
DP, head(Qo) = 0, tail(Qo) = (=1)™([%2] + €4)sgnA, and Q) is contained in a
interval with length m + 1 (< %), thus Qo N (Qo + 2) = . As well, head(P,) = 0,
fazl(Po) (—1)*'[£]sgnA and P, is contained in a interval with length ¢+ 1 (< 2,

thus Py N (P + %) = 0. By Lemma 5.1(2), for the given value of a + b, 2R forms a
2-partite DC.

(2) By Lemma 5.1(1), @ = +A[a,a + m] forms a DP, Q is contained in a
interval with length m + 1(< %), thus (Qo + %) N Qo = 0, head(Qy) = 0 and

gosy_ ) —(a+ B)sgnA  (m even)
t(m(QO)_{ [%]sgnA (m odd).
Thus, for the given value of b+ ¢, 2R forms a 2-partite DC.
(3) By Lemma 5.1(1), Q = j:Ag([a a+ m]\{a+d}) forms a DP, head(Qg) = 0
and

a0 +eq +a)sgnA  (m odd)
tml(Qo)_{ (—1)’""1([%1 + ci)sgnA (m even).

Thus, for the given value of b+ ¢, 2R forms a 2-partite DC. O

Lemma 5.4 Let n be odd, a be even and a < "2—“—3 Then the following difference-tuple
N forms a SDC':

(1) N :( (n g+1 (),AQ[ ] A/fA01[(l -+ 1,%],“‘140[1,0,- 1]“1);
(2) N = ( (n ‘2H“;)0 Ao[ ] [A(n[(l'i-l,E—‘;—l],“Ao][a*—1,(11]_1,“.40[1,(1,"3]‘1).

Proof (1) Since {.]Y}O =[-25b gy n=gtl nol] (N} = [2+1, 221 head(N) =
(2=g+)) and tail(N) = —(251)0, N satisfies the conditions of SDC.

(2) Since {V}o = [~ 5, 8Ju[2=2, 251 (N}, = [2+1, 222=1), head(N) = (2=323),
and tail(N) = —(%51)o, NV satisfies the conditions of SDC. O

Lemma 5.5 Let n be odd, b be even and b < " , then

D = (Ao[1, 25%], (= 1)"7" Ao[b, %51 — 1))
forms o CDCly,.

Proof Obviously D forms a DP and satisfies the conditions of CDC., since

Eﬁ{k%u#%mw%} (25 even) tail(Dy) = —(24=1)g

= O
[ N2 (25 0dd)  tail(Dy) = —(25),.

Lemma 5.6 Let a be even, n, t be odd, 1 <s<t< ”‘1 —a and "‘“ < h<n, then

= (Ao(la, %"\ {a + s}), (=1)"T Ao ([a + 1, 252\ {o + <}) Lia+s) o,( 1) (%51)o)
forms a CDCy, ,(N).
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Proof From the following table, it is easy to see that N forms a DP.

s (M}
oven even ([a n— a i— 2]‘\{a+s} U([ n— a n—a—1+2 _a% { n— a s+1 _ })
odd | ({8 mer=t\ (fanety) ([ Camntid Cap( Pee ads))
odd even ([a ” “" Bzt —527@%1}) (= 2 t7_%]\{ e a 5 1})
Odd ([a n ‘a t] {n a— s,n }) ([ ’A }\{ s+a}>
where head(N) = —(%)o and

NG 1) (o X
tail{N)= ( 1)’:3( 31)0 (s even)
(=17 (%5 )o (s 0dd).
Finally, in order to construct CDCy, ,(N), we take (coy, 1;,002,21,...,0041, (h—
1)1, o0h, NO) as the base block of a corresponding block-orbit. -

6 Constructions of SCMD

In all constructions of this section, we will use the notation DC of various kinds:
AR, FDC,FDCy,SDC,CDC,CDCy,CDCy, , defined in the above section. Each

,,,,,

DC represents one (or 1) block-orbit and their f converse (except SDC, which is

self-converse). Therefore, each DC will correspond to the following number of blocks
from Z,, X Zy:

AR | FDC | FDCy | SDC | CDC | CDCy | CDCly,

h
TX2|19x2] §x2 |nxl|inx2| nx2 nx2

Theorem 6.1 There ezists a 6g-SCMD(14g + 1) for ¢ = 1 (mod 6).
Construction Let ¢ = 6t+1 and ¢t > 1. Construct a (36t +6)-SCMD(84t +15) =

(X, B) as follows. The point set is X = (Zyn47 X Z2) U {oo}, the block set B consists
of three parts:

(I) (6t + 1)-partite DC: (6t + 1)-DC(An(Ry)), 0 <i < L%J
(6 + 1)-DC(Aw(R,), 0 <5 < [ - 1],
where Ry = {1,2,3,4,5,10}, R, = {60,601 + 1,6i + 2,60 + 3,60 + 5,6i + 10}, 1 > 1,

(I1) CDCos (Ao[1, 211 + 3], (—1) Ao 6t + 2, 211 + 2]-1):

(II1) SDC((—1)"1(21¢ + 3)g, —Ao[1, 6t + 1], P), where P = M Ag,([15¢ + 3,21t +
31\{15¢t 4 7}) for odd t or (Ag; ([15t + 1,15t + 5]\{15¢t + 4}), M Ao ([15t + 6,21t +
3N\{15¢ + 10}), (15¢ + 10)o1, (15t)10) for even t.

Proof The number of 6¢-blocks in part (I)-(1I1) is (42¢+7) X (24 1)+ (5t +1)x 7Tx2 =
196t + 35, as expected. Tt is not difficult to see that all differences are contained in
(D)-(I1I) exactly once. As for the correctness of each part, we can show it as follows.

() By Lomma 5.2 (138531 < %:2).

(II) By Lemma 5

(III) We only verify the case: ¢ even. Denote R = —Ag[1,6t+ 1] and M =
(Agr ([15¢ -+ 1, 15t + 5\ {15¢ + 4}), M Ao, ([15¢ + 6, 21¢ + 3]\ {15¢ + 10})). Then
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{Roo=[—(3t +1),31], tail(Ry) = ¢ = —(3t + 1),

{M Jo=[—(9t + 1), = (3t + 2)\{=(3t + 3)},

{M }1~[121‘ 36¢\{12t + 4,18t — 2},

tail(M,)= —(9t + 1)q.
Furthermore, it is easy to see that the last two values of P, are (6t+9), and —(21t —
2)o. Obviously, the first number of the corresponding number-tuple of (ITI) is (21t +
3)o. By the list value, it is not difficult to see that the difference-tuple given by (III)
satisfies the conditions of an SDC. O

Theorem 6.2 There exists a 6q-SCMD(10q) for ¢ =1 (mod 6).
Construction
(Case 1) Let ¢ = 12t+1and ¢ > 1. Construct a (72t+6)-SCM D(120t+10) = (X, B)
as follows. The point set is X = Zgo1.5 % Z2, the block set B consists of three parts:
(1) (12t + 1)-partite DC: (12t +1)-DC(Aq (R;)),
(12t + 1)-DC(A1p(R:)), 0<i <t —1,
where Ry = {1,2,3,4,5,8}, R; = {64,601+ 1,60+ 3,61+ 4,6i + 5,6i + 8}, i > 1;
(I) CDC(P), where P = (M Ag ([6t, 30t + 2]\ {6t + 2}, (30 + 2)y, Ao[1, 24¢] !
~(18t)o);
(ITT) SDC(Q), where Q = (Ag[18t + 1,30t + 2], —Ag[24¢ + 1,30t + 1]
Apll, 18t — 1]71).
(Case 2) Let ¢ = 12t 47 and t > 0. Construct a (72t + 42)-SCM D(120t 4 70) =
(X, B) as follows.
When t = 0, a 42-SCM D(70) is given in Appendix 1. Below, suppose ¢ > 0. The
point set is X = Zsor35 X Zy, the block set B consists of three parts:
(I) (12t + 7)-partite DC: (12t + 7)-DC(Aq (R;)), 0 < i < ¢,
(12t + 7)-DC(Ay(Ry)), 0 <5 <t -1,
where Ry = {1,2,3,4,5,8}, Ry = {64,60+ 1,60+ 3,60 +4,6i +5,6i +8}, i > 1;
(I1) CDC(M Ag[6t + 9, 30t + 17], — A, ([6¢, 6t + 8]\ {6t + 2})~*, (30t + 17),,
Ap[2, 24t + 15]71, — (18t + 11),);
(II1) SDC(—Ao([1, 30t + 16]\[18¢ + 11, 24¢ + 15]), — Ag[18¢ + 12,30t + 17|71,
—(6t + T)o1, — (6t + 6)10, 1o).

Proof We only verify case 1. The number of blocks is (60¢ + 5) x 3+ 2t x 5 x 2 =

200t + 15, as expected. The correctness of each orbit is shown as follows.

(I) By Lemma 5.2 ( ;’%ﬁfg] < fg;i?)

(I1) Since {P}y = (24t +2),0) U [6t,30¢], {P}, = {~(30¢ + 2)} U ([6t, 30¢ +
1\{6t + 1} and head(P) = tail(P) = 0.

(IIT) Since Qo = [~(30t +2), — (15t + 3)] U [—(9¢ + 1),0] U [18¢ + 1,30t + 2] and
tail(Qq) = — (24t + 2),. O

Theorem 6.3 There exists a 6g-SCMD(11q + 1) for g =1 (mod 6).
Construction

(Case 1) Let g = 12¢t+7and ¢ > 0. Construct a (72t+42)-SCM D(132t+78) = (X, B)
as follows.

When t = 0, a 42-SCM D(78) is given in Appendix 2. Below, suppose ¢t > 0. The
point set is X = Zggq39 X Zo, the block set B consists of three parts:
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(I) 3-partite DC: 3-DC(Aq[1, 24t + 13}, (32¢ + 19)10);
(I1) CDC (M), where M = (AL, a] Ao ([1, a]\{24¢ +13})!
Ag[32t + 20,33t + 18] 71, (24t + 13)10, Ani b, 526 + 18], (221 + 12)o);
(Il1) SDC(N), where N = (P, A01[24f+ 14,0 — 1], = (33t + 19) o,
— Ag[22t + 13,33t + 19]71),

(a,b) = (33t +19,27t +15) ¢ even
STV (33t + 18,27t +14) ¢ odd

P —Ag[1, 22t + 11] t even
T\ ((33t+19)g, —Ag[1, 22t + 11]) ¢ odd
{Case 2) Let ¢ = 12¢+1and ¢ > 1. Construct a (72t+6)-SCM D(132t+12) = (X, B)
as follows. The point set is X = Zggp46 X Zo, the block set B consists of four parts:
(1) 6-partite DC: 6-DC(Anl1, 12t], — (5t + 1)),
6-DC(A10[1, 12t], —(E)f + 1)1),
(I1) 2-partite DC: 2-DO((—1)""" Ap([1, 33t + 2]\ {5t + 1}), (12t + 1)o1,
(—1) AL, 3E], —ci0);

and

(I1) FDC(M Aoy ([15¢ + 1,33t + 2\ {¢}) ™", (33t + 3)01);
(IV) SDC(Q), where Q = (—A0{5[ + 27 33t + 3]~1, Co1, Aw[d, ]5t]_l,
—Ap[3t + 1,5t]7Y, = Agy[d + (—1)71, 15¢)71) and

(e,d) = (30t + 2,12t +2) ¢ even
SUTY (30t +3,12t+1) todd

Proof The number of blocks is

(22t +13) x 2+ (66t + 39) x (2 + 1) = 242t + 143 (case 1)
(116 4+ 1) x (24 2) + (66t +6) x (1 + 1+ 1) =242t + 22 (case 2) '

as expected. For case 1, the correctness of each orbit is shown as follows.

(I) By Lemma 5.2(1) ([22H42] < 866289y B

(II) We only verify the case: ¢ even. Since {M}o = [—(£t+9), 33t+19]U[—(33t+
19), =(Ft+21)]JU[—(Ft+14), —(22¢+12)], {M}y = [5t+3, Ft+4JU[-(§+1), —2]U
[~ (33t + 19), — (22t + 10)]\{— (21t + 13)}) and head(M) = tail(M) = 0.

(III) We only verify the case: ¢ even. Since {Np}o = [— (2t+6), 11t+5} [—(24t+
14), —(Zt+11)JU[24+9,20t+12], {No}1 = [13+8, Lt+8] and tail(No) = (20t+12)o.
As for case 2, the correctness of each orbit is shown as follows.

(I) By Lemma 5.2(1) ([7246] < 86L8)),

(II) By Lemma 5.3(1).

(IIT) We only verify the case: ¢ even. Let R = M Ay ([15t+1, 331+2]\{30t+2}
then {Ro}o = (27t + 4), — (18t + 4)] U [0, 9¢], {Ro}: = [15¢,33¢ + 2\ {24, & t+2}
and tail(Ry) = (18t+4) We see that RNF(R) = 0, {Ro}ﬁf({Ro}+331+3) =0.

(IV) We only verify the case: t even. Since {NQU}O = [~ (33t + 3), - (19t + 3)] U
[—(14t+1), 0JU[Ft+2, T+ U7t +2, Tt+2), {Qo}i = [Ft+2, 15+1]U[16t+1, 4]
and tail(Qo) = (27t + 2),. O
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Theorem 6.4 There exists a 6g-SCM D(8q) for g =5 (mod 6).
Construction Let ¢ = 6¢+5 and t > 0. Construct a (36t+30)-SCM D(48t 4 40) =
(X, B) as follows. When t = 0, a 30-SCMD(40) is given in Appendix 3. Below,

suppose t > 0. The point set is X = Zyy,99 X Z,, the block set B consists of four
parts:

(1) (6t + 5)-partite DC: (6t + 5)-DC (A (R;)), 0 < < [4],
(6t +5)-DC(A(R:), 0 <i < [5) —1,
(6t +5)-DC(A01(S5)), 0 < < [L],
(61 +5)-DC(An(S)), 0= < [1] -1,
where S; = [125 + 1,125 + 7)\{12j + 6}, R; = [120 + 6,127 + 12\ {12 + 7};

(1) (12 + 10)-partite DC: (12t + 10)-DC(P, —1p);
(IIT) FDC(M, (12t + 10)py), where M = (Ag[6% + 7,12t + 9], (12¢ + 910,

—Ap[1,12¢ + 10]71);
(IV) SDC(N), where N = (Ay[2, 12t + 9], Q) and

(P,Q) = (— Ao [6 + 5,6t 4 6], —Ag1 ([6% + 1,12t + 8]\{6t + 5,6t + 7})~!) ¢ even
’ - (Agl[ﬁt + 2,6f +3},(—A01[6t+4,12t + 8}"1,(6t)10)) t odd

Proof The number of blocks is (2t + 1) x 4 x 2+ 2 x 2 + (24t + 20) x 2 = 64¢ + 52,

as expected. The correctness of each orbit is shown as follows.

(I) By Lemma 5.2 ([$5583] < "Zgi—iég).

(I1) By Lemma 5.2(1) ([§345] < %A%,

__(ITI)  Since {Mg}o = (0,3t + 1] U [9¢ + 7,12t + 10] U [—(12¢ + 9), — (3¢ + 3)],
{]V[g}l = [9t + 8,12t + 9] and tail(M) = —(9t + 8)o, we have M N F(]\I) 0,
{Mo} N f({ My} + 12t + 10) = 0.

(IV) We ounly verify the case: ¢ even. Since {No}o = [—(9t +8), 6t + 5\ {— (9t

5),1}, {N0}1«[6t +8,9t 4+ 11\ {9t + 9} and mzl{No} = —(9¢t + 8),.

D+

Theorem 6.5 There exists a 6¢-SCMD(10q + 1) for ¢ = 5 (mod 6).
Construction Let ¢ = 6¢+5 and ¢t > 0. Construct a (36t+30)-SCM D(60t+51) =
(X, B) as follows. When t = 0, a 30-SCMD(51) is given in Appendix 4. Below,
suppose ¢ > 0. The point set is X' = (Z301125 X Z3) U {00}, the block set B consists
of three parts:

(I) 6t + 5-partite DC: (6t + 5)-DC(Ag (R;)), 0 <1 < | L],

(6t +5)-DC(A1o(R;)), 0 <j <[] —1),

where Ry = {1,2,3,4,5,8}, R; = {616 + 1,60 +3,6i + 4,6 + 5,60 + 8}, i > 1:

(II) SDC(M), where M = ((—1)""" Ag[1, 15¢ + 12}, agy, bio, (—1)1Ao[1, 3]);

(II) CDCo(N), where N = (M Ag[c, 15t + 12], P, — Ag[3¢ + 1,15¢ + 12] 1),

(a bc):{ (3t+7,3t+6,3t+9) teven and

(3t +3,3t+4,3t+6) todd '

P — Ao ([3, 3t + 4\{3t+2})"' teven
T —An[3t+ 3,3t + 4] todd -

Proof The number of blocks is (t + 1) x 5 x 2 4 (30t + 25) x (2 + 1) = 100¢ -+ 85,
as expected. The correctness of each orbit is shown as follows.
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(I) By Lemma 5.2 ([{5:80] < %220),

(I) We only verify the case: t even. Since {My}o = [~ (12t +6), Lt + 6] U [12t +
19,15t + 19], { Mo} = {2t + 13} and tail{My} = (12t + 19),.

(II1) We only verify the case: t even. Since {Np}o = [—(15¢+12),0]U[3t+5,9t +
10Juf12¢+11, 15¢+12] {Noh=[3t+9, 15t+12]U([— (15t+12), — (15¢+8)\{ —(15t+9)}
and tail(Ng) = (12t + 11)¢. o

Theorem 6.6 There ezists a 6g-SCMD(11q) for ¢ =5 (mod 6).
Construction
(Case 1) Let ¢ = 12{+5 and ¢ > 0. Construct a (72t+30)-SC' M D(132t+55) = (X, B)
as follows.
When t = 0, a 30-SCM D(55) is given in Appendix 5. Below, suppose ¢ > 0. The
point set is X = (Zger27 X Za2) U {00}, the block set B consists of three parts:

(I) 3-partite DC: 3-DC(An[1, 24t + 9], (32t + 13)10);

(Il SDC (M), where M = (P, (—1)""1(32t + 13)01, Q);

(III) CDCyW(N), where N = (Aq[1, a], M Ag; ([24t + 10, 33t + 13]\ {32t + 13}),

A [b, 24t + 9]),

(a,b) = { (33t + 12, 3t) teven o

(32t + 13,3t +1) todd

(P.Q) = ((33t + 13)y, —Ap[1, 33t + 13]), Ag[1,3t — 1]71) ¢ even
’ - (—Ao[l, 33t + 13], —AU[]., 315]_‘1) t odd

(Case 2) Let ¢ =12t + 11 and t > 0. Construct a (72t + 66)-SCM D(132t + 121) =
(X, B) as follows. The point set is X = (Zggr460 X Z2) U {00}, the block set B consists
of three parts:
(I) 6-partite DC: 6-DC'(Ap1[2,12¢t + 11], — (5t + 5)o),
(I1) SDC(R), where R = (A [12¢ + 12, 30t + 26], 110, Ag1[12¢ + 12, 30t + 27]74);
(IIT) FDCos((33 + 30)q, N, (33t -+ 30) 1y, F~1(N), (33t + 30)1, (30t + 27)10),
FDCOO(—lol, N, (33t + 30)[1011, Fvl (TV_), 101, (30t + 27)10), where
= (Ap([1, 33t + 29\ {5t + 5}), (1) 44, [30t + 28, 33t + 29]), [01]==01 (¢ even) or 10
(t odd).

Proof The number of blocks is

(22t +9) x 24 (66t +27) x (2+1) =242t +99  (case 1)
(11t +10) x 4 + (66t + 60) x (2 + 1) = 242t + 220 (case 2) ’

as expected. For case 1, the correctness of each orbit is shown as follows.

(I) By Lemma 5.2(1) ([Z2520] < 804021y B

(II) We only verify the case: t even. Since {M}o = [— (2t +7), 8t +6]U[19t +
7, 42—1t~+ 6) U {—(33t + 13)}, {M}, = [2t + 7,19t + 6], head(M) = —(33t + 13), and
tail(M) = (19¢ + 7)o. -

(IIl) We only verify the case: ¢ even. Since {No}o = ([—(33t + 13), %1t +
6\{—(2t+8)})u[30t+11,33t+13], {No}1=[2¢t+4, Be+6]U[—(Lt+11), —(12¢t+7)]
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and tail(No) = (30t + 11)o.
As for case 2, the correctness of each orbit is shown as follows.

(I) By Lemma 5.2(1) ([Z2££88] < 864160y

(1) Since {Ro}o = [—(9t+7), 0JU[21¢+20, 30t +28], { Ry}, = [—(241+20), — (15t +
13)] U [12¢ + 12, 21t + 19], and tail(Ry) = (30t + 28),.

(ITI) By Lemma 5.1(4). , )

Theorem 6.7 There exists a 6q-SCMD(7q+ 1) for ¢ =5 (mod 6).
Construction
(Case 1) Let g = 12t+5and t > 0. Construct a (72¢+30)-SCM D(84t+36) = (X, B)
as follows.
When t = 0, a 30-SCM D(36) is given in Appendix 6. Below, suppose ¢t > 0. The
point set is X = Zyy .13 X Zy, the block set B consists of three parts:

(1) 6-partite DC: 6-DC(Ag1[9t + 5, 21t + 8], —(t + 1)g);

(I1) FDC(N, (21t 4+ 9)o1), where N = (Aolt + 1,21t + 9], P, Ap[1,1]™1);
(III) SDC(M), where M = (Q, Ao ([1, 21¢ + 8]\[9¢ + 5, 15¢ + 5])~1),

5| (—Aa[2,15t +5],15) teven
F= { —Aoi[1, 15t + 5 todd A
0= (1ig, —Ao([2,21¢ + 8\ {t +1}) teven

T —Ao([1, 21+ 8\{t + 1}) t odd

(Case 2) Let g = 12t+11and ¢t > 0. Construct a (72t+66)-SCM D(84t-+78) = (X, B)
as follows. The point set is X = Zy1139 X Zy, the block set B consists of three parts:
(I) 3-partite DC: 3-DC(A1[2,a], — Ag[1,b] 7Y, — (16t + 15),),
3—DO(A10[2, (l], -Al[l, b}ﬁl, “(16t + 15)1),
(I1) SDC(D), where D = (Ag[3t + 4,21t + 19]\ {16t + 15}), cq1,
Ayfb+ 1,168+ 14]71, — ey, (=1 Ag[16¢ -+ 16, 21t + 19)1, R),

(a, b, )= (21t + 19,3t + 3,1) t even nd
GPOTU (218 4+ 18,3t + 4, — (42t + 40)) todd A
Re 0 t even
- (‘1313 711@) todd -~

Proof The number of blocks is

(Tt+3) x 24 (42t + 18) x 2 =98t + 42 (case 1)
(14 +13) x 2 X 24 (42t +39) = 98t + 91 (case 2) °

as expected. For case 1, the correctness of each orbit is shown as follows.

(I) By Lemma 5.2(1) ([T2£30] < 426418y N

(I) We only verify the case: ¢ even. Since {No}o = [~(10t+4),0]U[t+1, 32¢+8],
{Noh = [t + 2,11t + 3] and tail(Ny) = (19¢ + 8),.

(IIT)  We only verify the case: ¢ even. Since {M}y = ([-(%t +4),21t +
IMN{=1, 5} U [=(21F +8), (18 + 10)], {M} = [~ (18t + 9), —(Zt + 6)] U {~1},
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head(M) = —1, and tail(M) = —(18¢ + 9),.
As for case 2, the correctness of each orbit is shown as follows.

(I) Let S = (An[2,21t + 19],—Ao[L,3¢ + 3]7!), then {S}; = [-Zt + 12
{S}h = [2, 2t +10]. Obviously they are not congruent modulo 14¢+13 and tail(
(16t + 15) = 14¢ + 13. ~ '

(I) We only verify the case: t even. Since {Dg}y = [—(9t + 8),0] U ([t +
1,12t + 11I\{3¢ + 3}) U [19t + 18,21t + 19] U [—(21¢ +19), - (4t +19], {Do}1 =
[~ (5t +18), — (14t + 13)] U [12¢ + 12,3 + 17], and tail(Dy) = (19t + 18). O

),00,
S)-

Theorem 6.8 There erists a 6¢-SCMD(13q+ 1) for ¢ =5 (mod 6).
Construction
(Case 1) Let ¢ = 12t+5and ¢ > 0. Construct a (72¢4+30)-SCM D(156t+66) = (X, B)
as follows.
When t = 0, a 30-SCMD(66) is given in Appendix 7. Below, suppose ¢t > 0. The
point set is X = Zzg133 X £, the block set B consists of three parts:
(I) 3-partite DC: 3-DC(Agy[1, 24t + 9], — (38t + 16)10),
3-DC(Ap[1,24t + 9], — (38t + 16)q,);
(IT}y SDC(M), where M = (Ag[a, 39t + 14]71, —by, —(39¢ + 15),
A()[3t -+ 3, a — 2]_1, 10),
(I11) CDC(N), where N = (M Ay ([24t + 10, 39¢ + 16]\{38¢ + 16}),
—A0[2,39¢ + 16])71, (39t + 16)g, Ao[3, 3t + 2] 71, cg, —(a — 1)) and

N ) (664+4,1,2) t even
(@.b,¢) = { (6t+5,2,—1) todd

(Case 2) Let ¢ =12t +11 and ¢t > 0. Construct a (72t + 66)-SCM D(156t + 144) =
(X, B) as follows. The point set is X = Zygy72 X Zo, the block set B consists of four
parts:
(I) 6-partite DC: 6-DC(Ag[2, 12t + 11], = (7t + T)o);
(II) 2—pa7‘tite DC Q-DC(A()({?)t + 47 39t + 35}\{7t + 7}), apy, blO):
2-DC(— Ag([3t + 4,39t + 35\ {7t + 7}), —bo1, —a10);
(ITT) FDC(P, (39t + 36)01), where P = (M Ag[21¢ + 20, 39¢ + 35]71);
(IV) SDC(Q), where Q = (Ag[1, 3t + 3], —M Ay, ([12¢ +12, 21¢ + 19]\ {18 + 161},
Ao1[2,12¢ + 11]71, (39¢ + 36), (7L + 7)o, — Ap[1, 3t + 3]7!) and

(a,b)= (1,18t +16) t even
T} (18t+16,1) todd
Proof The number of blocks is

(26t +11) x 2 x 2+ (78t + 33) x (2+ 1) = 338t + 143 (case 1)
(13t +12) x 2+ (T8t +72) x (2+ 1+ 1) = 338t + 312 (case 2)

as expected. For case 1, the correctness of each orbit is shown as follows.
(I) By Lemma 5 (1) ((72&301 < 78f+33)
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(II) We only verify the case: ¢ even. Since Ny = [0, Bt+5]U[Lt 48,39+ 14U
[—(3t+7), (15t + 6)] U [ (12t + 4), — (2t + 5)] and tail(Ny) = —(15¢ + 6),.

(ITT) We only verify the case: ¢ even. Since {M}y = ([—(39¢ + 16), ON{— (&t +
14)}) U (24t + 11,39 + 16] U ([3¢ + 1, 15t+3]\{6t+2} ), {M}, = {~(39t+16)} U
(124t + 10,39t + 16]\{31¢ + 13}) and head(M) = tail{M} = 0,.

As for case 2, the correctness of each orbit is shown as follows.

(I) By Lemma 5.2(1) ([Z288] < 80723

(II) By Lemma 5.3(3). B

(II1) Since {Po}o = [0,18t + 16}, {Po}1 = [—(21¢ + 19), — (12t + 12)] U [30¢ +
28,39t + 35] and tail{ Py} = (18t + 16),. ~

(IV) We only verify the case: ¢ even. Since {Qo}o = [~ (36t + 33), —(3-t + 25] U
[—(gt+1),6t+5]u[§t+15,i‘21t+18]u{27t+ 11}, {Qo}y = [ (%t +23), (2t +
1O)N\{—(Zt + 12, — (2t + 16)} and tail(Qo) = (19t + 16)q. O

Theorem 6.9 There exists a 6q-SCMD(13q) for ¢ =1 (mod 6).
Construction
(Case 1) Let ¢ = 12t+7 and t > 0. Construct a (72t+42)-SCM D(156t491) = (X, B)
as follows. The point set is X = (Z7s1445 X Z2) U {oo}, the block set B consists of
three parts:
(I) 3-partite DC: 3-DC(Agi[1, 24t + 13], — (38t + 22)0),
3-DC(Ayo[1, 24t + 13], — (38t + 22)qy):
(IT) CDClo(Ao[1,39¢ + 22], (—1)1 Ag[6¢ + 4, 30t + 21]1);
(III) SDC(P), where P = ((~1)!(39¢ 4 22), —Aq[1, 6 + 3],
M Agy ([24t + 14, 39¢ + 22\ {38t + 22)).
(Case 2) Let ¢ =12t + 1 and t > 1. Construct a (72t + 6)-SCM D(156t + 13) =
(X, B) as follows. The point set is X = (Zrg46 X Z3) U {00}, the block set B consists
of three parts:
(I) 3-partite DC: 3-DC(Aq[2, 24t + 2], — (38t + 4)19),
3-DC(Ap[2, 24t + 2], — (38t + 4) 1 );
(I1) SDC(Q), where Q = (Ag[1, 4t], (24t + 3)o1, — M A (24t + 4,38t + 3], 110,
A0[114t]_1);
(IH) FDOOO((Bgf + 3)0, N, (39t + 3)01 , Fﬁl(]\/.), (39t + 3)1, (24t + 3)]0),
FDCo(=101, N, (39 + 3)10, F"1(N), Lo, (24t + 3)10),
where N = (Ag[4t + 1,39¢ + 2], (— 1)L A, [38¢ + 5, 39¢ + 2)).

Proof The number of blocks is

(261 +15) x 2 x 2+ (78t +45) x (24 1) = 338t + 195 (case 1)
(26t +2) x 2x 24 (T8t +6) x (1 +1+1) =338t +26 (case 2) ’

as expected. For case 1, the correctness of each orbit is shown as follows.
(I) By Lemma 5.2(1) ([1242] < T8L045)
(II) By Lemma 5.5.
(IIT) We only verify the case: t even. Since { P}y = [~ (18t+10), 3t +1Ju{-(39t+
22)}, {P}, = [21¢ + 12,36t + 21]\{28¢ + 16, 29t + 17}, head(P) = —(39t + 22), and
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tail(P) = —(18t + 10),.
As for case 2, the correctness of each orbit is shown as follows.

(I) By Lemma 5.2(1).

(T1) Since {Qo}o = [~9¢, 20] U~ (18t — 1), = 11¢]U[~(39¢ +2), — (38t + 2)] U [36t +
4,39t + 3], {Qo} = [22t + 3,36t + 3] and tail(Qp) = (381 + 4)o.

(III) By Lemma 5.1(4). O

Theorem 6.10 There exists a 6¢-SCM D(19q) for ¢ = 1 (mod 6).
Construction
(Case 1) Let g = 12t+1and ¢t > 1. Construct a (72t+6)-SCM D(228t+19) = (X, B)
as follows. The point set is X = (Z114049 X Zy) U {00}, the block set B consists of
four parts:
(I) 3-partite DC: 3-DC(Ag[1, 24t + 1], — (50t + 4)10),
3-DC(A10[1, 24t + 1], “(5(”, + 4)0] );
(I1) CDC(N), where N = (M Ag ([24t + 2,57t + 4]\ {50t + 4}),
— Ag[1, 61+ 171, (36t + 3)o);
(II1) CDCw(R), where R = ((—1)71(57t + 4)g, Ag[6t + 2,57 + 4],
(—1) Ag(36t + 4,57t + 3]71);
(IV) SDC(A[1, 36t + 2]).
(Case 2) Let ¢ = 12t + 7 and ¢t > 0. Construct a (72t + 42)-SCM D(228¢ + 133) =
(X, B) as follows. When t = 0, a 42-SCMD(133) is given in Appendix 8. Below,
suppose ¢t > 0. The point set is X = (Zy140466 X Z2) U {00}, the block set B consists
of five parts:
(I) 3-partite DC: 3-DC(Aq[1, 24t + 13], - (50t + 29),0),
3*DC(A10[1, 24t + 13], "‘(5015 + 29)01),
(I1) 2-partite DC: 2-DC(Ap[1, 36t + 19], —(51¢ + 29)¢1, — (247 + 14)19);
(II1) FDC(—Aq[6t + 7,42t + 26], (57t + 33)01);
(IV) CDCy (M), where M = ((24t + 14)¢;, — M Ay ([24¢ + 15,57t + 32]\ {50t+
29,51t + 29}), — (51t + 29)10, — Ag[1, 6¢ + 6]);
(V) SDC(Q), where Q = (—Ag[36t + 20, 57t + 33], (— 1) Ag[42t + 27, 57t + 32]71).

Proof The number of blocks is

(38t +3) x 2x 2+ (114t +9) x (2+2+1) =722t +57  (case 1)
(38t +22) x 2 x 2+ (114t +66) x (2+ 2 + 1) = 722t + 418 (case 2)

as expected. For case 1, the correctness of each orbit is shown as follows.

(I) By Lemma 5 (1) ([2u6] < 114; Lde49))

(1) Since {N}o = [—(39t+ 3), 0], (N}, = ([24t + 2, 57t +4]\ {37t + 3, 44t + 4}) U
{=(57t +4)} and hcad(N) = tail(N) = 0. ~

(III) We only verify the case: ¢ even. Since {R} = ([-(% +2), ON{~ (5t +
)} U6t + 2,42t + 3] U {57t + 4}, head(R) = (57t + 4)¢ and tail(R) = (42t + 3),.

(IV) It is trivial by Lemma 5.1(1).
As for case 2, the correctness of each orbit is shown as follows.

(I) By Lemma 5.2(1) ([726H12] < H4LE80)

(II) By Lemma 5.3(2).
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(III) It is trivial by Lemma 5.1(1).

(IV) Since {M}o= [~ (9t +7), —(3t + 1)] U ([~ (45¢ + 26), — (12t + )\ {—(25¢ +
15), =(55t + 17), = (32t + 19)}), {M}= [12t + 7,45¢ + 25]\{Z¢ + 14, %t + 18},
head(M)= —(12t + 7)o and tail(M)= —(3t + 1),.

(V) Since Qy = [— (54t +29), —(36¢+20)]U[0, 18+ 10] and tail(Q) = (18t+10)o.

]

7 Constructions of ISCMD

Theorem 7.1 There ezists a 6q-ISCMD(6q + 2q+ 1,2q + 1) for g = 1 (mod 6).
Construction
(Case 1) Let ¢ = 12t+1and t > 1. Construct a (72¢+6)-ISCM D(96t+9,24t+3) =
(X, B) as follows. The point set is X = (Za543 X Zo) U {001, ..., 0094143}, the block
set B consists of three parts:
(1) (36t + 3)-partite DC: (36t + 3)-DC (Agi[i,i + 1), i € [1, 6t + 1],
(36t + 3)-DC(Aolj, 5 + 1)), j € [1,6t — 1)y;
(I1) SDC(—(15t + 2)g, Ap[1, 6t + 2], M Ag, [6t + 3, 18¢ + 1],
—Ag[6t 4+ 1,6t +2]71, —Ay[1,6t — 1]71);
(III) CDClos, urys(Ao([6t, 18E\{15¢ + 2}), — Ao ([6t + 3, 18¢ + 1\{15¢ + 2})~,
(15¢ + 2)o, (18t + 1)0).
(Case 2) Let ¢ = 12t+7and t > 0. Construct a (72t+42)-ISCM D(96t+57, 24t +
15) = (X, B) as follows. The point set is X = (Zzge121 X Zo) U {001, ..., 0094115}, the
block set B consists of three parts:
(1) (36t + 21)-partite DC: (36t + 21)-DC(Ap[i,i +1]), i € [1,6t + 3,
(36t + 21)-DC(Aqoli, i + 1)), @ € [1,6t + 3]y
(IT) SDC(~(15t + 9)o, A1, 6t + 4], M Ay [6t + 5, 18¢ + 10], — Ap[1, 6t + 3]71);
(IT) CDCr, iy (Ao([61 + 4,18 + 9]\ {15 + 9}),
Ao([61 4 5,18t + 10]\{15¢ + 9}) 7, (15¢ + 9)g, — (18t -+ 10),).

Proof The number of blocks is

(36t +3) x (2+1) + (6t +1) x 2 =120t + 11 (case 1)
(36t +21) x (2+1) + (61 +4) x 2 =120t + 71 (case 2)

as expected. The correctness of each orbit is shown as follows.
(I) It is trivial.
(II) By Lemma 5.4(1)(2).
(III) By Lemma 5.6. m

Theorem 7.2 There exists a 6q-ISCMD(6q + 2q,2q) for ¢ =5 (mod 6).
Construction
(Case 1) Let ¢ = 12¢t+5 and t > 0. Construct a (72t + 30)-1SC M D(96t + 40, 24t +
10) = (X, B) as follows. When ¢t = 0, a 30-1SC M D(40, 10) is given in Appendix 9.
Below, suppose t > 0. The point set is X = (Zsg415 X Zo) U {00y, ..., 00ass10}, the
block set B consists of three parts:

() (36t + 15)-partite DC: (36t + 15)-DC (A1 [i,7 + 1]), 7 € [1, 6t + 1],
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(36t + 15)—DC(A10[Z,1 + 1]), 1€ “.) 6t + 1]2;
(I1) SDC(— (15t + T)q, Ao[1, 6t + 2), M Agy [6t + 3,18t + 7], —Ag[1, 6t + 1]7);
(IT) CDCoo,  yurpro(Ao([6t + 2, 18t + 6]\ {15¢ + 7}),
— Ag([6t + 3,18t + TI\{15¢t + 7}) L, (15t + 7)o, (18t + 7)p).
(Case 2) Let ¢ = 12¢+7 and t > 0. Construct a (72t+66)-15C M D(96t+88, 24t+
22) = (X, B) as follows. The point set is X = (Z3p433 X Z2) U {001, ..., 00u4s422 }, the
block set B consists of three parts:
(I) (36t + 33)-partite DC: (36t + 33)-DC{Ap[i, i+ 1]), 1 € [1, 6t + 5],
(36f + 33) DC(AM)[],_] + 1]), J € []., 6t + 3]2,
(I1) SDC(—(15t + 15)q, Ag[1, 6t + 6], M Ag,[6t + 7,18t + 16},
—Ap 6t + 5 6t +6]71, —Ap[1, 6t + 3]71);

Ao([ﬁt 7,186+ 16)\{15¢ + 15}) (15t+ 15), — (18t + 16)).

Proof The number of blocks is

(36t +15) x (2+ 1)+ (6t +2) x 2 =120t +49 (case 1)
(36t +33) X (24 1)+ (6t +5) x 2 =120t + 109 (case 2) ’

as expected. The correctness of each orbit is shown as follows.
(I) It is trivial.
(II) By Lemma 5.4(1)(2).
(II1) By Lemma 5.6. 0

Lemma 7.3 Let q be prime power and ¢ = 1 (mod 6); then there are at least 5
integers d; such that ¢ < d; < 3q and gcd(d;, 6¢) =1 for each j.

Proof Let ¢ = p". Since ¢(6p™) = 2p"~!(p — 1), there are p"~!(p — 1) integers w;
such that 1 < w; < 3¢ and ged(w;, 6¢) = 1 for each j.
Let S = {d| gcd(d, 6g) =1, ¢ < d < 3¢}. Note that ¢(p™) =p" !(p — 1), so we have

ISl="p*p— 1) = [o(p™) = (1) + 5] + (5] + 5] + 15D = 15 ])

= Bl +15 -5 -5 - 15+ 15

= U B B (T 4 [P - [P ))
= 30" - D~ (1% + 175 - 25D

Obviously, p"~! =1 or 5 (mod 6) when p" = 1 (inod 6).
Ifp"~' =1 (mod 6), then

3 « n-1_ . n—-1__ n
R e s

= -1 =30 - -




If p»~' =5 (mod 6), then

Ty nl_ n-—1 nl_:-
IS['_E‘;_]: %(p_l) ( 21+p32 ))"

= gl (p-4) 520
Therefore, |S| > 25 in both cases. The conclusion holds. O

Theorem 7.4 There ezists a 6g-1SCM D(12q + ¢, q), where q is prime power and
g =1 (mod 6).
Construction Let ¢ = 6t + 1 and ¢ > 1. Construct a (36t + 6)-1SCMD(78t +
13,6t +1) = (X, B) as follows. The point set is X = (Zag146 X Zo) U {001, ..., 006141 }5
the block set BB consists of five parts:

(1) 6¢- DC’( ) and 6q- DC(~—d ) 1 <5 < 3t, where ¢ < d; < 3q,

dy # 9+ 1, g(d(d,,6q) =1land 1<j <3¢
(II) FDC (A1, 6t — 1, —(9%+ 1)0,Am[6t+1 18t + 2], (18¢ + 3)01);
(IV) SDC(An (1,18t + 2]~1);

S = {(11,(12,' . ',(13,5,91& -+ 1}

Proof The number of blocks is (6t 4 1) x 2+ 6t x 2 + (36t + 6) x 4 = 168t + 26, as
expected. The correctness of each orbit is shown as follows.

(I) By Lemma 5.2(1) ([30L48 < 3646y

(II) By Lemma 5.7.

(L) Let P = (A[1,6¢ 1], (9t + 1), A [6¢ + 1,18t + 2]), then {P}o = [~ (3t —
1), 3t]U [~ (12t +2), — (6t + 1)], { P}, = [0,6¢], and tail(P) = —(12¢+2)¢. Obviously
PN F(P)=0,and it is easy to see Py N f(FP + 18t + 3) = ().

(IV) By Lemma 5.1(1), N = Ay, [1,18t + 2]~ forms a DP.

(V) Let N = (=Ao([1, 18 + 3]\{S}), (—1)! Ap([6¢, 18t + 2)\{S})~1), then N, =
(0,~1,1,-2,--) = (e1,b1, ¢, b9, --). Obviously the sequences ¢; and b; are mono-
tone increasing and decreasing respectively, and they are mutually distinct, so NV
formsa DP. . Finally, when constructing CDCl, ., we take (001, 11,009, 2,, ..., (6t+

1)1, 006141, NO) as the base block of the corresponding block-orbit. O

Theorem 7.5 There exists a 6g-ISCMD(12g + q+1,q + 1) for ¢ =5 (mod 6).
Construction Let ¢ = 6t +5 and ¢ > 0. Construct a (36t + 30)- ISCMD(78t +
66,6t+6) = (X, B) as follows. The point set is X = (Z35430 X Za)U {001, ..., 00p146 },
the block set B consists of five parts:

(I) 3-DC(Ag[1,12¢ + 9], (18t + 15));

(I1) 6¢-DC(~1);

(ILl) FDC(Ag[1,18t + 14], (18t +15)0);

(IV) SDC(An 1, 181+ 14]71);

(V) CDCro, _yyo(— (18t + 14)o, Ag[2, 18t + 14], Ag[12¢ + 10, 18¢ + 13] ).

Proof The number of blocks is (12t +10) x 2+ 1 x 2+ (36t + 30) x 4 = 168t + 142,
as expected. The correctness of each orbit is shown as follows.
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(I) By Lemma 5.1(1), D = Ao[1, 12649 forms a DP, and Dy = [— (6t +4), 6t +5)
is a interval with length 12t + 10, so they are not congruent modulo 12¢ + 10.

(IT) Tt is trivial.
(III) It is trivial by Lemma 5.1(1).
(IV) Tt is trivial by Lemma 5.1(1).

(V) Let N = (—(18t + 14), Ag[2, 18 + 14]], Ao[12¢ + 10,18t + 13]7"), Ny =
([—(12¢ +10),12¢ + 10]\ {1, — (9¢ + 7), — (9t + 8)}) U {18¢ + 14}. Obviously N forms
a DP. Finally, when constructing CDCy, . we take (001, 1;, 00,2, ..., (6t +
6)1, 0%st+6, ]VO) as the base block of the corresponding block-orbit. 0

8 The proof of Theorem 1.3 and 1.4

By [7] and all the Theorems in sections 6 and 7, we have the following table (the
block size is 6q):

g= (mod 6) | v=(mod-) | SCMD(v) | ISCMD(v,h) CS(v,6q,1) | Theorems
14g + 1 6. 1
1 2 +1 (6g) (8q+1,2¢ +1) 7.1
8g+ 1 7]
1 4q (6q) 10q 6. 2
1 5¢ + 1 (6g) 11g+1 6.3
' 8q 6.4
i 24 (6 (84,29) 7.2
5 4q + 1 (6g) 10g+1 6.5
5 5¢ (6q) 11q 6.6
5 T+ 1(129) | g+ 1 6.7
13¢ + 1 6.8
5 g+1 (129) (13¢ +1,q+ 1) 7.5
13¢ 6.9
1 7 (12q9) * (13¢, ) 7.4
19 6.10
1 7q (12q) 1 e 7]

The proof of Theorem 1.3 is trivial by section 2, 3 and the above table. Theorem 1.4
is a consequence of Theorem 1.3. r

The conclusion of Theorem 1.3 extends the existence results for M D(v, k, 1) as
well (refer to Theorem 1.1). Two possible exceptions in Theorem 1.3 correspond to
the two “x”s in the table. For the first “x”, the construction of Theorem 7.4, i.e.
6¢g-1SCMD(13q, q), holds only for odd prime powers ¢ = p™ (p > 3). For the second
“¥" the existence of a C'S(7q,6¢,1) has not been completely settled. These two
parts are still open.
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Appendix

1. 42-SCMD(70)
The point set is X = Z35 x Z,, the block set:
(I) 7—partite DC: 7“DC(A01[1, 5], ‘810);
(II) SDC(‘_AO[l, 17]\{11, 12}, “}60, 1207 701, *610, 1()),
(IT1) CDC(M Agi[9,17), — Aoy [1, 8] 71, 175, Ap[2, 15] 71, —11,).
2. 42-SCMD(78)
The point set is X = Z39 X Z5, the block set:
(I) 3-partite DC: 3-DC(Agy[1,13],1940);
(IT) SDC(—199, —Ao[1,17], —Api[14,15]71);
(ITT) C'DC(Ag[1,19], Agi[1, 18], Agi[16,19]71, 18,).
3. 30-SCMD(40)
The point set is X = Zy x Z,, the block set:
(I) 5-partite DC: 5-DC(An[1, 5], 110);
(II) 10-partite DC: 10-DC{ Ay (2, 3], —1¢);
(I11) FDC(10q, Ag[1,9], —An1[4, 5], —Ag1[8, 9], 10¢1);
(IV) SDC(Ao[2,9], =91, A10[6, 8], — Ap1[6, 7)).
4. 30-SCMD(51)
The point set is X = (Zy; x Z,) U {oo}, the block set:
(1) 5-partite DC: 5-DC{An |1, 5], 701);
(I1) SDC(~Ap[1,12], —Ag 1, 2]);
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(III) CDCo (300, Ao[1,12], M Agi[8,12], —Agi[6, 7)Y, Ag1[4,6)).
5. 30-SC'MD(55)
The point set is X = (Zy7 x Z3) U {00}, the block set:
() 3-partite DC': 3-DC(Ap1[1, 9], 1310);
(II) SDC(134, —Ao[l, 13));
(IIT) C'DCo(Ao[1, 12}, M Ap1[10,12], (13)01, 910, Ao [4, 8], AslL, 3]).
6. 30-SCMD(36)
The point set is X = Z;3 X Z,, the block set:
(I) 6-partite DC: 6-DC(Ap1[1, 4], —1p);
(1) FDC(Ao[1, 8], Aoi[2, 7))
(HI) SDC(SOl, —110, A01[5, 8], ‘—AQ[2, 9]_1).
7. 30-SCMD(66)
The point set is X = Z33 x Z5, the block set:
(I) 3-partite DC: 3-DC(Apn[1,9], —1610) and 3-DC(A6(1,9], —160;);
(H) SDC("'150, —10, A0[4, 14], 10),
(III) CDC (M A1 [10, 15], — Ag[2, 16] 7Y, 160, 20, —30).
8. 42-SCMD(133)
The point set is X = (Zg X Z2) U {00}, the block set:
(I) 3partite DC: 3-DC(Ag[1,13], —29,) and 3-DC(A6[1, 13}, =291 );
(1) 2-DC/(Aq[1, 19], =280, —1510);
(III) FDC(~A¢|7, 26}, 33p1);
(IV) CDCoo (M Agy ([14, 32\ {15, 28}, 1501, 2810, — Ao[L, 6]);
(V) SDC(—Ao[20, 33], Ag[27, 32]71).
9. 30-ISCM D(40, 10)
The point set is X = (Z)5 x Zy) U {001, ..., 0010}, the block set:
(I) 15-partite DC: 15-DC(161, —210) and 15-DC'(119, —201);
() SDC(~Ty, Ao[1, 2}, MAn[3,7], —1);
(HI) CDCOOl 10(A0[276]7 AO[?)! 71-1).
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