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Abstract 

Let G be a planar graph without 6-cycles. We prove that G is 4-choosable. 

1 Introduction 

All graphs considered in this paper are finite, loopless and without multiple edges 
unless otherwise stateel. Let G be a graph with the vertex set V (G), the edge set 
E( G), and the maximum degree .6.( G). A k-coloring of G is a mapping ¢ from 
V(G) to the set of colors {l, 2, ... , k} such that ¢(x) i= ¢(y) for every edge xy of 
G. The graph G is k-colorable if it has a k-coloring. The chromatic numbeT X( G) is 
the smallest integer k such that G is k-colorable. The mapping L is said to be an 
assigmnent for the graph G if it assigns a list L(v) of possible colors to each vertex 
v of G. If G has some k-coloring ~b such that ¢(v) E L(v) for all vertices v, then 
we say that G is L-colorable or ¢ is an L-coloring of G. We call G k-choosable or 
k-list colomble if it is L-colorable for every assignment L satisfying IL(v)1 = k for all 
vertices v. An L-coloring ¢ of such an assignment L is also called a k-li8t coloTing. 
The choice nurnbeT or list chTOrnatic numbeT Xl (G) of G is the smallest k such that 
G is k-choosable. 

It follows from the definition that Xl(G) 2:: X(G). However, the inequality can 
be strict. For instance, K 3 ,3 is not 2-choosable. The concept of list-coloring was 
introduced by Vizing [7] and independently by Erdos, Rubin and Taylor [2]. In 
recent years, a number of interesting results about the choosability of planar graphs 
have been obtained. Alon and Tarsi [1] proved that every planar bipartite graph is 
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3-choosable. Thomassen [5] proved that every planar graph is 5-choosable, whereas 
Voigt [8] presented an example of a planar graph which is not 4-choosable. The 
smallest known 3-colorable non-4-choosable planar graph of order 63 was constructed 
by Mirzakhani [4). In 1995, Thomassen [6] showed that every planar graph of girth 
at least 5 is 3-choosable. In the same year, Voigt [9] gave an example of a planar 
graph of girth 4 which is not 3-choosable. Lam, Xu and Lin [3] proved that every 
planar graph without 4-cycles is 4-choosable. Recently, we have proved in [10] and 
[11] that every planar graph either without 5-cycles or without two 3-cycles sharing 
a common vertex is 4-choosable. In this paper we will prove the following. 

Theorem 1 Every planar graph with01d 6-cycles is 4-cho08able. 

Now we are going to introduce the notation used in this paper. A plane graph G 
is a particular drawing in the Euclidean plane of a certain planar graph. We denote 
its face set, order, and minimum degree by F(G), IGI, and b(G), respectively. Let 
dG(v) (or d(v)) denote the degree of v in G. Let NG(v) (or N(v)) denote the set 
of neighbors of the vertex v in G. For f E F (G), we use b(J) to denote the closed 
boundary walk of f and write f = ['Ul'U2' .. 'un] if 'It 1 , 'U2, ... J 'Un are the vertices on 
the boundary walk in the clockwise order. The set of boundary vertices of f is 
occasionally denoted by V(f). Let )..G(f) (or )..(f) for short) denote the degree of a 
face f in G, i.e., the number of edge-steps in b(f). A vertex (or a face) of degree k 
is called a k-vertex (or k-face). A face f of G is called a simple face if b(f) forms a 
cycle. Obviously, when 6( G) ~ 2, each k-face (k :s; 5) is a simple face. We say that 
two faces or cycles of a plane graph are adjacent if they share at least one common 
boundary edge. A vertex v is said to be incident to a face f, and vice versa, if v 

lies on the boundary of f. Let F (v) denote the set of all faces that are incident 
to the vertex v. Furthermore, let T(v), Q(v), and P(v) denote, respectively, the set 
of 3-faces, the set of 4-faces, and the set of 5-faces that are incident to the vertex 
'U. If f E F ( G), let T* (f) denote the set of 3-faces that are adjacent to the face 
f. A k-wheel Wk , k ~ 3, is a plane graph of order k + 1 obtained from a k-cycle 
Ck = Xl::C2 ... . TkXl by adding a new vertex x to the interior of Ck and joining x to 
every Xi, 1 ::; i ::; k. The vertex x is called the center of VVk . A k-fan Fk is the plane 
graph Vf,lk .'I:l:r:k. VVe call x the mot of Fk . We also denote F.3 by J{*. Obviously, 
K* is isomorphic to K4 - e, where e is an edge of the complete graph J{4' 

2 The Proof 

In order to obtain our main result, we need the following lemma. 

Lemma 2 Let G be a 2-connected plane graph withov.t 6-cycles and t E V (G). rr 
d( 'U) ~ 4 for all v E V (G) \ {t}, then G t contain.'3 an induced J{* sv.ch that each 
of its vertice8 is of degree 4 in G. 

Proof. To prove by contradiction, we assume that there is a 2-connected plane 
graph G with vertex t that satisfies the following: 
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(a) d(v) ~ 4 for every v E t7(G) \ {t}; 
(b) G - t does not contain an induced f{* such that each of its vertices is of degree 

4 in G; 
(c) G does not contain 6-cycles. In particular, the following seven configurations 

are excluded from G: 
(c1) a 6-face; 
(c2) a 5-face adjacent to a 3-face; 
(c3) two adjacent 4-faces sharing a single edge; 
(c4) a 4-face adjacent to two non-adjacent 3-faces; 
(c5) a 4-face having only one common edge with two adjacent 3-faces; 
(c6) a 3-face adjacent to three mutually non-adjacent 3-faces; 
(c7) a 5-fan. 
The following identity is a straightforward consequence of Euler's formula. 

L (2d(v) - 6) + L (AU) - 6) -12. 
VEV(G) JEF(G) 

To define a weight function 'W on V(G) U F(G), we let w(x) 2d(.r) - 6 if.7: E V(G) 
and w(:r) ..\(:r) - 6 if;x; E F(G). Thus 2:{w(;x;) I :r E V(G) U F(G)} = -12. Now 
we are going to describe a discharging process that will redistribute the weight 'w(:r) 
to its neighboring elements while the total sum of weights is kept fixed. We use 
W (.7: -+ 1/) to denote the amount transferred to an element 1/ from an element x in 
the following rules. Furthermore, let W(.7: -+) and W( -+ 1/) denote, respectively, the 
total amount transferred out of an element x and the total amount transferred into 
an element 1/. \Ve call a vertex v of G an improper vertex if d(v) = 4, IT(v)1 = 1, 
Iq(v)1 = 2, and IP(v)1 1. 

Our discharging rules are as follows. 
(RO) W(t -+ j) = 2 for every f E F(t). 
For 1) E V(G) \ {t}, we have d(v) ::::: 4 by (a). 
(Rl) d(v) 4. Since w(v) = 2 and 0 :.s: IT(v)1 :.s: 4, we consider the following 

subcases. 
If IT(v)1 = 0 or 4, we let W(v -+ j) = 1/2 for each f E F(v). 
If IT(v)1 = 1, then Iq(v)1 :.s: 2 by (c3). \Ve let W(v -+ f) 1 for the unique f E 

T(v), W(v -+ j) = 1/2 for every f E q(v), and W(v -+ f) = (2 Iq(v)I)/2IP(v)1 
for every f E P( v) if P(v) =F 0. 

If IT(v)1 2, then IQ(v)1 = IP(v)1 = 0 by (c2), (c4), and (c5). \iVe let W(v -+ j) 
= 1 for every f E T(v). 

If IT(v)1 ;3, then IQ(v)1 = IP(v)1 = O. We let W(v -+ f) = 2/3 for every 
f E T(v). 

(R.2) d(v) 5. Then lU(V) = 4 and 0 :.s: IT(v)1 :.s: 3 by (c7). 
If IT(v)1 0, we let W(v -+ f) = 4/5 for every f E F(v). 
If ITev)1 1, we let W(v -+ f) = 4/3 for the unique f E T(v), W(v -+ f) = 2/3 

for every .f E Q(v) U P(v). 
If IT(v)1 2, then it follows from (c2), (c3), (c4), and (c5) that both IQ(v)1 

and IP(v)1 are :.s: 1 and IP(v)1 = 1 implies IQ(v)1 = 0 . \Ve let W(v -+ f) = 4/3 
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for every f E T(v), W(v --t 1) = 1/2 for every f E Q(v), and W(v -+ 1) 
(8 - 3IQ(v)I)/6IP(v)1 for every f E P(v) if P(v) =I- 0. 

If IT(v)1 = 3, then IQ(v)1 = IP(v)1 o. We let W(v --t J) = 4/3 for every 
f E T(v). 

(R3) d(v) :2': 6. Then 0 ~ IT(v)1 ~ d(v) 2 by (c7). \Ve let W(v -+ J) = 3/2 for 
every f E T(v), W(v --t J) = 1 for every f E Q(v), and W(v --t J) = 1/2 for every 
f E P(v). 

(R4) For every face f E F(G) with A(J) ~ 7, we let W(J --t 1') = (AU) 6)/ 
IT*(f)1 for every l' E T*(J) ifT*(J) f. 0. 

The following straightforward claims summarize the consequences of the discharg­
ing rules (RO) to (R4). 
Claim 1. For every ve'rtex v E V (G) and every face f E T ('u) U Q (v), we have 
W(v --t f) :2': 1/2. 
Claim 2. Let 'U E V (G) \ {t} and f E P (v). If V i8 an improper vertex, then 
W(v --+ f) 0; otheTwi8e, W(v --t J) ~ 1/2. 
Claim 3. If f E F(C) with A(J) ~ 7 and f' E T*(J), then W(J --t 1') ~ 1/7. 

Let w' (x) denote the final weight function when the discharging is complete. \\Te 
are now going to show that w'(v) = w(v) W(v --t) :2': 0 for every v E V(G) \ {t}. 

Let v E V(C) \ {t}. Thus d(v) ~ 4 by (a). If 4 ~ d(v) :::; 5, (Rl) and (R2) imply 
that w'(v) :2': O. Assume that d(v) ~ 6. It suffices to show that W(v --t) ~ w(v) 
2d(v) - 6. 

If d(v) = 6, then w(v) = 6 and IT(v)1 :s; 4. '\-Then IT(v)1 = 0, W(v --t J) ~ 1 
for every f E F(v), hence W(v --t) ~ 6. '\Then IT(v)1 1, we have IQ(v)1 ~ 3, 
IP(v)1 ~ 3, and IQ(v)1 + IP(v)1 ~ 5. Thus W(v --+) ~ 11/2. \\Then IT(v)1 2, we 
have IQ(v)1 + IP(v)1 :s; 3, hence W(v --t) :s; 6. When IT(v)1 3, we have IQ(v)1 + 
IP(v)l:S; 1, hence W(v --t) ~ 11/2. \\Then IT(v)1 = 4, obviously 1(J(v)1 + IP(v)1 = 0, 
hence W(v --t) = 6. 

If d(v) = 7, then w(v) = 8 and IT(v)1 ~ 5. vVhen IT(v)1 ~ 2, then W(v -+) ~ 8 
by (R3). When IT(v)1 = i for i = 3,4,5, we have IQ(v)1 + IP(v)1 ~ 5 i, hence 
W(v --t):S; 5+'l/2. 

If d(v) 8, then w(v) = 10 and IT(v)1 ~ 6. \\Then IT(v)1 ~ 4, we have W(v --t) ~ 
10. vVhen IT(v)1 = 5, we have 1(J(v)1 + IP(v)1 ~ 2, hence W(v -r) ~ 19/2. VVhen 
IT(v)1 = 6, we have IQ(v)1 + IP(v)1 = 0, hence W(v --+) :s; 9. 

Finally suppose d(v) ~ 9. Clearly, IT(v)1 ~ d(v) - 2. If IT(v)1 ~ d(v) - 3, then 
W(v --t) ~ 3(d(v) 3)/2 + 3 = 2d(v) 6 (d(v) - 9)/2 ~ 2d(v) - 6 = w(v). If 
IT(v)1 = d(v) - 2, we have IQ(v)1 = IP(v)1 = o. So W('v --t) 3(d(v) - 2)/2 
2d(v) - 6 - (d(v) - 6)/2 :s; 2d(v) - 6 = w(v). 

Now we are going to compute w'(J) for f E F(C). If A(J) 6, then w'(J) = 
w(j) = O. If A(j) ~ 7, then w'(J) ~ 0 by (R4). If A(j) = 4, then w(j) = -2. It 
follows from Claim 1 that w' (j) :2': O. 

Suppose A(j) 5 and f = [UI U21L311,4U5]. Hence wU) 1. If the vertex t is 
incident to f, then 'w'U) 2:: 1 by (RO). Othenvise, d(11,i) :2': 4 for all 'l = 1,2, ... ) 5 
by (a). We assert that at most two of lL/s are improper vertices, hence w'U) 2:: 
1/2 by Claim 2. Suppose on the contrary that there were at least three improper 
boundary vertices of f. Then two of them, say 'ILl and 11,2, are adjacent. Let N(ud = 
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{VI,V2,7l2,V,5} and N(U2) = {Vh,W2,H3,ud. By the definition and (c2), [UIVIV2J E 

T(V'I)' ['1l2Wl'W2J E T(1l2)' and [UIV2'Wl'U2] E Q(ud· A 6-cycle UIVIV2'Wl'W211,2UI is thus 
produced, which contradicts (c). 

Finally let A(j) = 3, hence w(j) = -3. If t E V(f), then W(t -+ J) = 2 by (RO) 
and W(v -+ J) ~ 1/2 for each v E V(f) \ {t} by Claim 1. Therefore w'(j) ~ O. So 
assume that t tj. 1/ (.f). If.f receives at least 1 from each of its boundary vertices, 
then w'(f) ~ O. Suppose that W(v -+ J) < 1 for some v E V(j). According to (RO) 
to (R4), this happens only in two cases. 
Case 1. d(v) = 4 and IT(v)1 = 3. \Ve call va i-bad vertex because W(v -+ .f) = 2/3 
by (Rl). Let VI, V2, V3, and V4 denote the neighbors of v arranged around v in the 
clockwise order. Then f E T(v) = {[VV1'V2], [VV2V3], [VV3V4]}' 

Case 2. d(v) = 4 and IT(v)1 = 4. We call 11 a ~-badvertex because W(v -+ J) = 1/2 
by (R1). Let VI, V2, V3, and V4 denote the neighbors of v arranged around v in the 
clockwise order. Then f E T(v) = {[V'lhV2], [VV21)3], [VV3V4], [VV4VI]}' 

\Vc call a vertex v of G bad if it is either a i-bad vertex or a ~-bad vertex. If a 3-
face [.TYZ] ofG has two bad boundary vertices, say 1.: and y, then N(:r;)UN(y)U{.T,y} 
induces a subgraph containing a 6-cycle. It follows that every 3-face of G is incident 
to at most one bad vertex. 
Claim 4. Let v E V(G) \ {t} be a bad verte.T with T(v) n F(t) = 0 and let.f E T(v). 
fr.f' E F(G) \T(v) is adjacent to.f, then A(j') ~ 7. 

\Ve only prove the case when v is a i-bad vertex. The other case can be handled 
in an analogous manner. Let .f' denote a face in F(G) \ T(v) that is adjacent to .f. 
Obviously, AU') #- 6. Assume that )..U') = 3. Since d(v) ~ 4 for every v E V(G)\{t}, 
there is y E V U') \ {7J}, V2, V3, V4}' A 6-cycle containing v, Y, VI, V2, V:3, and V4 exists 
in G, contradicting (c). Similar contradictions can be derived if ).. (.f') is either 4 or 
5. The proof of Claim 4 is complete. 

vVhen v is either a ~-bad or ~-bad vertex, we write W(-+ T(v)) = 2:{W(-+ J)I 
f E T(v)} and w(T(v)) = L:{w(j)1 .f E T(v)}. \Ve are going to show that 
W(-+ T(v)) + w(T(v)) 2: O. 

First assume that v is i-bad. Then w(T(v)) = -9 and all v/s are not bad 
vertices by the foregoing argument. If t lies on the boundary of some face in T(v), 
i.e., t E {VI,V2,V3,V4}, we have two subcases in view of the symmetry between VI, 1)2 

and V3, V4. If t = VI, then T(v) receives exactly 2 from each of t and v, at least 2 
from each of V2 and V;3, and at least 1 from V4. Hence W(-+ T(v)) 2: 9. If t = V2, 

then T(v) receives 4 from t, 2 from v, at least 2 from 113, and at least 1 from each of 
VI and 1)4· Consequently, W(-+ T(v)) 2: 10. 

Suppose that t tj. {Vl,V2,V3,V4}. The planarity of G implies that Vl'U3 tj. E(G) 
or V27J4 ~ E( G). \Vithout loss of generality, we suppose that V1 V3 ~ E( G). If the 
degree of every Vi is 4, then {v, 7h, V2, vd induces a configuration that contradicts 
(b). \lVe may first suppose that d(V2) ~ 5. By (Rl) to (R3), T(v) receives at least 
1 from VI, at least 8/3 from V2, at least 2 from V3, at least 1 from V4, and exactly 2 
from v. Moreover, if f E T(v) and f' E F(G) \ T(v) are adjacent, then )..U') 2: 7 
and WU' -+ .f) 2: 1/7 by Claims 3 and 4. Therefore W(-+ T(v)) ~ 197/21 > 9. 
Next, we suppose that d(Vl) 2: 5. By (R2) and (R3), T(v) receives at least 4/3 from 
VI' Thus W(-+ T(v)) ~ 190/21 > 9. 
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Next assume that v is ~-bad; then w(T(v)) = -12. If t {'lh,'02,V3,'04}, say 
t = Vb then T( v) receives 4 from t, 2 from v, and at least 2 from each of V2, '03, and 
1)4. It is easy to see that W(--t T(v)) ~ 12. 

Suppose that t ¢:. {Vl' V2, V3, V4}' Let fi,i+l denote the face of G that shares the 
edge ViVi+l with the 3-face [VViVi+l], where the indices are taken modulo 4. By (c) 
and Claim 4, )..(Ji,i+l) ~ 7. If there exist distinct j and k sllch that d( Vj) ~ 6 and 
d(Vk) 2: 5, then T(v) receives at least 3 from 'OJ, at least 8/3 from 'Ok, at least 2 
from each of v and Vi, i -I j, k, and at least 4/7 from the fi,i+l, all together. Thus 
W(--t T(v)) ~ 257/21 > 12. If there are at least three Vk'S such that d(Vk) ~ 5, 
then W(--t T(v)) ~ 88/7 > 12. If d(vd d(V2) = 5 and d(V3) d(V4) = 4, then 
IT*(J23)1:; )..(J23) 1, IT*(J4dl :; )..(J41) -1, and IT*(J34) I :; )..(J:34) 2 since h4 is 
adjacent to both 12:3 and f41' Thus W(J23 --t [VV2 V 3]) ~ () .. (J23) - 6)/()..(!2a) - 1) ~ 
1/6. Similarly, W(J41 --t ['Ov4vd) ~ 1/6, W(Ja4 --t [VV:fU4]) ~ ()..(Ja4) - 6) / 
(/\(J34) 2) ~ 1/5, and W(J12 --+ ['OVI V2]) ~ 1/7. Therefore W( --t T('O)) ~ 
1261/105 > 12. If d(Vl) = d(V3) = 5 and d(V2) d(V4) = 4, then IT*(li,i+dl :; 
)..(Ji,i+l) - 1 for all i. In this case, W(--t T(v)) 2:: 12. Finally, let d(vd ~ 5 and 
d( Vi) = 4 for i = 2,3,4. If V2 and V4 are adjacent, then at least one of VI and Va is a 
cut vertex. This contradicts the 2-connectedness assumption about G. If V2 and '/)4 

are non-adjacent, then {v, V2, Va, V4} induces a configuration that contradicts (b). 
It follows from the above argument that 

Lfw'(x) I x E (V(G) U F(G)) \ {t}} 2:: o. 

However, we note that w'(t) = 2d(t) - 6 - 2IF(t)1 ~ 2d(t) - 6 2d(t) = -6 by (RO). 
Therefore, 

I) w'(x) I x E V(G) U F(G)} ~ -6. 

Since the total sum of weights was kept fixed during the discharging procedure, the 
following obvious contradiction is produced. 

-12 = L{w{;x;) I:c E V(G) U F(G)} L{ll/(;X;) I x E V(G) U F(G)} 2:: -6. 

o 

Corollary 3 Let G be a plane graph witho'ut 6-cycles and 8( G) ~ 4. Then G con­
tains an induced K* such that each of its vertices i8 of degree 4 in G. 

Proof. If G is 2-connectecl, the result follows immediately from Lemma 2. In fact, 
we may choose any vertex of G as the specific vertex t. Otherwise, let B be a block 
of G that contains a unique cut vertex, say t, of G. Since B is 2-c:onnected and 
dB('O) ~ 4 for all '/) E ~7(B) \ {t}, B - t contains an induced J{* such that each 
of its vertices is of degree 4 in B by Lemma 2. Noting that dG(v) = dB(v) for all 
v E V(J{*), K* is a desired induced subgraph of G. 0 

Now we are ready to prove our main theorem. Every subgraph of a planar graph 
without 6-cycles is also a planar graph without 6-cycles. Every subgraph of a k-list 
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colorable graph is also k-list colorable. These simple facts are essential in carrying 
out the induction in the following proof. 

Proof of Theorem 1. \\1e use induction on IGI. If IGI ::; 4, the theorem is trivially 
true. Assume that it holds for all planar graphs without 6-cycles of order less than 
k. Let G be a planar graph without 6-cycles and IGI = k ~ 5. Let L denote an 
assignment for G such that IL(v)1 = 4 for all v E V(G). If o(G) :::; 3, let 1L be a 
vertex of minimum degree in G. By the induction hypothesis, G - 11, is L-colorable. 
Obviously, we can extend any L-coloring of G - v, to an L-coloring of G. If o( G) ~ 4, 
then G contains an induced K* such that each of its vertices x, Xl, X2, X3 is of degree 
4 in G by Corollary 3. Let G' = G - {x, Xl, X2, X3}. By the induction hypothesis, G' 
has an L-coloring 9. For v E V (I{*), let S (v) denote the set of colors that are used 
on Nc(v) \ V(K*) under 9. Thus IS(v)1 ::; dc(v) - dJ(*(v). Define an assignment 
L'(v) = L(v) \ S(v) for every v E V(K*). Obviously, 1L'(xJI ~ IL(Xi)l- IS(:r:i)I ~ 2 
for i = 1 and 3; both IL'(x)1 and IL'(x2)1 are at least 3. If IL'(x)j = 4, we color .Tl, ;£3, 
:£2, and X successively. If IL'(x)j = 3 and L'(:£l) nL'(X3) i= 0, we first color :[,1 and X3 
with the same color, then color X and X2. If IL'(x)1 = 3 and L'(xdnL'(X3) = (/), then 
there is some color 0: E (L'(Xl) u L'(X3)) \ L'(x), say 0; E L'(Xl). \Ve color Xl with 
0:, then color :1:2, X3, and X successively. vVe succeeded in obtaining an £I-coloring of 
K*. Therefore G is L-colorable. 0 

It should be noted that 4-choosabili ty in Theorem 1 can not. be strengthened to 
3-choosability. There exist infinitely many planar graphs without 6-cyeles that are 
not 3-choosable. Two simple examples are K4 and Ks - e. 
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