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Abstract 

Let m and n be non-negative integers and k be a positive integer. A graph 
G is said to have property P( m, n, k) if for any m + n distinct vertices 
of G there are at least k other vertices, each of which is adjacent to the 
first m vertices but not adjacent to any of the latter n vertices. We know 
that almost all graphs have property P(m, n, k). However, for the case 
m, n 2:: 2, almost no such graphs 'have been constructed, with the only 
known examples being Paley graphs which are defined as follows. For 
q == 1 (mod 4) a prime power, the Payley graph Gq of order q is the 
graph whose vertices are elements of the finite field F q; two vertices a and 
b are adjacent if and only if their difference is a quadratic residue. By 
using higher order residues on finite fields we can generate other classes of 
graphs which we refer to as generalized Paley graphs. For any m, nand 
k, we show that all sufficiently large (order) graphs obtained by taking 
cubic and quadruple residues have property P(m, n, k). 

1. INTRODUCTION 

All graphs considered in this paper are finite, loopless and have no multiple 

edges. For the most part, our notation and terminology follows that of Bondy and Murty 

[10]. Thus G is a graph with vertex set V(G), edge set E(G), v(O) vertices and BeG) 

edges. 

Let m and n be non-negative integers and k a positive integer. A graph G is said 

to have property P(m,n,k) if for any disjoint sets A and B of vertices of G with I A I = m 

and I B I = n there exist at least k other vertices, each of which is adjacent to every vertex 

of A but not adjacent to any vertex of B. The class of graphs having property P(m,n,k) is 

denoted by 9(m,n,k). The cycle Cv of length v is a member of 9(1,1,1) for every v ~ 5. 

The well-known Petersen graph is a member of 9(1,2,1) and also of g(l, 1 ,2). The class 
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q(m,n,k) has been studied by Ananchuen and Caccetta [2, 3, 5, 6], Blass et. al. [7], Blass 

and Harary [8], Exoo [13], Exoo and Harary [14,15]. In addition, some variations of the 

above adjacency property have been studied by Alspach et. al. [1], Ananchuen and 

Caccetta [4], Bollobas [9], Caccetta et. al. [11, 12] and Heinrich [16]. 

In 1979, Blass and Harary [8] established, using probabilistic methods, that 

aIm'ost all graphs have property P(n,n, 1). From this it is not too difficult to show that 

almost all graphs have property P(m,n,k). Despite this result, few graphs have been 

constructed which exhibit the property P(m,n,k); some constructions for the class 

q(l ,n,k) were given in [5]. 

An important graph in the study of the class q (m,n,k) is the so-called Paley 

graph Gq defined as follows. Let q == l(mod 4) be a prime power. The vertices of Gq are 

the elements of the finite field ·Fq. Two vertices a and b are adjacent if and only if their 

difference is a quadratic residue, that is a - b = l for some y E F q. 

In [3, 4] we proved that for a prime power q == 1 (mod 4): 

Gq E q(l,n,k) for every q > {en - 2)2" + 2}.Jq + (n + 2k 1)2" - 2n - 1; 

Gq E q(n,n,k)foreveryq> {(2n_3)22n
-

1 +2}..Jq +(n+2k-l)22n
-

I -2n2 -1; 

and Gq E q(m,n,k) for every q > {(t - 3)zt- 1 + 2} jq + (t + 2k -l)zt- l 
- 1, 

where t ~ m + n. 

By using higher order residues on finite fields we can generate other classes of 

graphs. More specifically, for q == l(mod 3) a prime power we define the cubic Paley 

graph, G ~3) as follows. The vertices of G ~3) are the elements of the finite field F q. Two 

vertices a and b are adjacent if and only if a b = y3 for some y E Fq. Since q == l(mod 3) 

is a prime power, -1 is a cubic in F q. The condition -1 is a cubic in F q is needed to 

ensure that ab is defined to be an edge when ba is defined to be an edge. Consequently, 

G~3) is well-defined. Figure lea) gives an example. 

For q == l(mod 8) a prime power, define the quadruple Paley graph G~4) as 

follows. The vertices of G ~ 4) are the elements of the finite field F q. Two vertices a and b 

are adjacent if and only if a - b = l for some y E Fq. Since q == l(mod 8) is a prime 
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power, -1 is a quadruple in Fq. The condition -1 is a quadruple in Fq is needed to ensure 

that ab is defined to be an edge when ba is defined to be an edge. Figure 1 (b) gives an 

example. 

(a) GW 
Figure 1. Graphs G g) and G :i) . 

In this paper the adjacency properties of the classes G~3) and G~4) are studied. 

More specifically, we prove that: 

• G~3) E Q(2,2,k) for every q> [..!...(79 + 3 .J36k + 701 )]2; 
4 

• G ~3) E q(m,n,k) for every q> (t2I- I - i + 1 )2ffi f<i + (m + 2n + 3k _ 3)T"3 t
- I, 

where t ;::: m + n; and 

• G~4) E q(m,n,k) for every q > (t2t-l-i+ 1)3m f<i + (m + 3n + 4k-4)T"4t
- I, 

where t ;::: m + n. 

2. FINITE FIELDS 

In this section, we present some results on finite fields that we make use of in 

establishing our main theorems. We begin with some basic notation and terminology. 

Let Fq be a finite field of order q where q is a prime power and let Fq[x] be a 

polynomial ring over F q. 

A character X of F ~ , the multiplicative group of the non-zero elements of F q, is 

a map from F: to the mUltiplicative group of complex numbers with' X(x) I = 1 for all 
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X E F ~ and with X(xy) = X(x)X(y) for any x, y E F ~ . 

Among the character of F ~ , we have the trivial character XO defined by Xo(x) 

for all x E F ~ ; all other character of F ~ are called nontrivial. With each character X of 

F~, there is associated the conjugate character X defined by x(x) = X(x) for all x E 

F:. A character X is of order d if l = XO and d is the smallest positive integer with this 

property. 

It will be convenient to extent the definition of nontrivial character X to the 

whole of Fq by defining X(O) = O. For Xo we define Xo(O) = 1. 

Observe that 

(2.1 ) 

for any a E F q and t a positive integer. 

If X is a nontrivial character of Fq, we know that (see [17)), for a, b E Fq with 

LX(x -a)x(x - b)= -1. (2.2) 
xeFq 

The following lemma, due to Schmidt [18], is very useful to our work. 

Lemma 2.1. Let X be a nontrivial character of order d of Fq. Suppose f(x) e Fq[x] has 

precisely s distinct zeros and is not a d1h power; that is f(x) is not of the form C{g(x)}d, 

where c E Fq and g(x) e Fq[x]. Then 

1 ~X(f(x)) I'" (5 ~ 1).,[0,. o 

The next lemma is a generalization of Lemma 3.2 proved in [3]. 

Lemma 2.2. Let.x be a nontrivial character of order d of Fq. If aI, a2, ... , as are distinct 

elements of F q and s == O(mod d), then there exists c E F: such that 
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I X{(X-al)(x-a2) ... (x-as)} =-1 + I x{c(x-bj)(x b2) ... (x-bs_ l )} 

XEFq XEFq 

for some distinct elements bl, b2, ... , bs_ 1 ofFq• 

Proof: We write 

I x{(x al)(x-a2) ... (x-as)} 
XEFq 

= I X {x(x + at - a2)(X + al -- a3) ." (x + al - as)}. (2.3) 
XEFq 

Note the latter equality is valid, since x and x + a, assume all values in Fq• Now, since aJ, 

a2, ... , as are distinct, then Cj = al - aj + 1 '* ° for 1 :s; i :s; s - 1. 

If x '* 0, then there exists an X-I such that xx-I = 1. Furthermore, X(x-1)S = 1, 

since s == O(mod d) and X is a character of order d. If x = 0, then X(x) = 0. Thus, we can 

write (2.3) as 

L X {x(x + Cl)(X + C2) ... (x + cs_ I )} 

xEF; 

= L X(x-1tx {x(x + CI)(X + C2) '" (x + Cs_ l )} 

xeF: 

= L X {xx-I(xx-I + CIX-')(xx-1 + C2X- I) ••• (XX-I + Cs_1 X-I)} 
xEF; 

= L X {(l + C I x-I)( 1 + C2X -I) ... (1 + C 5-1 X-I) } . 
xEF: 

Since, for each i, Cj '* 0, then C~I exists. Further, X(c! C~I C2 Cl l 
.,. c s_1 c~21) = 1. 

Now using the same idea as above we can write 

L X{(l + CIX-I)(l + C2X-I) ... (l + cs_1 x-I)} 
xeF; 

"( ) {( -I -1)( -I -I) (-I -I)} = L.J X CIC2 ... cs_ 1 X C1 + X C2 + X ... cs_ 1 + X . 
xEF: 

(2.4) 

Let C = CIC2 ... c s- 1 ' Since Cj '* 0, for each i, we have C '* 0. As x assumes all values in 

F ~, so does X-I. Hence, we can write (2.4) as 

L X(c)X{(x+ C~I)(X+ Cl l
) ... (x+ c:21)} 

xEF~ 

L X(c)X{(x + C~I )(x + Cl
l

) ... (x + C~~I)} X(c)X(c- l
) 

XEFq 
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= I x{c(x + C~I )(x + C;I) ... (x + C~~I)} - 1. 
xeFq 

This completes the proof of the lemma. o 

Using Lemma 2.1, we have the following corollary to Lemma 2.2. 

Corollary. Let X be a nontrivial character of order d of Fq• If aJ, a2, ... , as are distinct 

elements ofFq and s == O(mod d) then 

I I X { (x - a I )( X - a 2 ) ... (x - as)} I ~ 1 + (s - 2) .jq . 0 
xeFq 

Let g be a fixed primitive element of the finite field F q; that is g is a generator of the 

cyclic group F ~. Define a function a by 

2rril 

o.(g!) = e 3 , 

where i2 
= -1. Therefore, a is a cubic character, character of order 3, of Fq• The values 

2ni 

of a are the elements of the set {I, 0), 0)2} where 0) = e 3"". Note that 0.
2 is also a cubic 

character and a = 0.
2. Moreover, if a is not a cubic of an element of F:, then 

o.(a) + o.2(a) =-1. 

Further, define a function J3 by 

J3(gt) = it. 

Therefore, ~ is the quadruple character, character of order 4, ofFq. The values of P are in 

the set {I; -1, i, -i}. Observe that J33 is also a quadruple character and i3 = J33 while ~2 is 

a quadratic character. Moreover, if a is not a quadruple of an element of F:, then 

p(a) + J32(a) + ~\a) =-1. 

Lemma 2.3. Let a be a cubic character of F q and let A and B be disjoint subsets of F q. 

Put 
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g= O{l+a(x-a)+a?(x a)}O{2---a(x b)-a?(x-b)}. 
aeA beB 

As usual, an empty product is defined to be 1. Then 

g ;? 2ng (ti 1 - i + l)i jq , 

where I A I = m, I B I = nand t = m + n. 

Proof: Let A u B = {CI, C2, ... ,cd. Expanding g and noting that I 2n = 2ng, we can 
xeFq 

write 

I ± i-1X(x-Ci)1 + 
)(E{a,a 2} i=1 

I,~" 
I ,~" 

I2I {i-
2

Xt (X- Cil )X2(X- Ci)}1 + ... + 
XJE{U,U ) 11<12 • 

L
2

. L. {i-SXt(X-Cil)X2(X-Ci)"'Xs(X-Ci)}1 + ... + 
Xjelu,a ) 11<12< ... <1, 

I ,~" L {X 1 (x - C t) X 2 (x - C2) ... X t (x - Ct)} I 
XjE{a,a2 1 

Now, by (2.1) and Lemma 2.1 we obtain 

I g_2ng I ~ ± 2si-s(!)cS-.l»)q 
s=1 

= (t2t
- I - i + l)i.f.i . 

Therefore, g ;::: 2nq ...:. (ti - I - i + l)i.[ci as required. o 

Lemma 2.4. Let a be a cubic character of F q and A be a subset of m vertices of F q. Put 

g I fl{l +a(x-a)+a2(x-a)}. 
XEFq aeA 

As usual, an empty product is defined to be 1. Then 

g;? q - [1 m2 + m + (2m - 3)3m- I
)] jq - (m2 - m). 

Proof: Let A = {at, a2, ... , am}. We can write 

g L 1 + I I f x(x - ai) + 
XEFq XEFq )(E{a,a 2) i=1 
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(2.5) 

Consider 

for some ail' a i2 with i, < b. Then by using (2.2) we have 

h = L {a(x - ail )a(x - ai2) + a(x - ail )a2(x - ai2) + a 2(x - ail )a(x - a i2 ) + 
XEFq 

a
2
(x ail )a.2(x - a i2 )} 

= -2 + L {a(x - ail )a(x - ai2) + a 2(x - ail )a2(x - a i2 )}. 
XEFq 

Using the same idea as above together with (2.1), (2.2) and Lemma 2.1 we get from (2.5) 

Ig-[q-(m2-m)]1 s:t 2s(~)(s-1)fcl + (m2 -m)fcl 
5=3 

= [1 + (2m - 3)3m- 1 
- (m2 

- m)].[cl. 

Therefore, g;::: q - [1 m2 + m + (2m - 3)3m -I)] fcl - (m2 - m) as required. 0 

Lemma 2.5. Let P be a quadruple character of F q and let A and B be disjoint subsets of 

Fq• Put 

g= I TI{1+p(x-a)+p2(x-a)+p\x-a)}TI{3-P(x-b) p2(x-b)-p3(x-b)}. 
XEFq aeA beB 

As usual, an empty product is defined to be 1. Then 

g;::: 3nq - (t2 t
-

1 
- 21 + 1)31 fcl, 

where I A I = m, I B I = nand t = m + n. 

Proof: Let Au B = {CI, C2, ... ,Ct}. Expanding g and noting that I 3" = 3nq, we can 
xeFq 

write 
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I g_3
n
q I ~ I L ~ ] t 3

t
-\(X-Ci)1 + 

XEF" )(E(P,P ,13 } I-I 

I~ 
I~ 
!~ 

~]L {3t-2XI(X-CiJ)X2(X-Ci2)}! + ... + 
XjeW,p ,p-} 11<12 

~ 3' I {3t-sXI(X-Cil)X2(X-Ci2)"'XS(X-Ci)}1 + ... + 
XjEW,p ,p } 11<12< .. <1, 

L {XI(X-CI)X2(X- C2)'''Xt(X- Ct)}! 
XjE{P,pl,pl} 

Now, by (2.1) and Lemma 2.1 we have 

I g - 3 n q I ~:t 353 t - s( ! ) (s - 1) jcl 
s=l 

Therefore, g ~ 311q (ti- 1_ i + 1)3 t Jcl as required. o 

Lemma 2.6. Let P be a quadruple character of F q and A be a subset of m vertices of F q. 

Put 

g = I Il { 1 + P(x - a) + p2(x - a) + p3(X - a)}. 
XEFq aEA 

As usual, an empty product is defined to be 1. Then 

g~q [1 +(3n-4)4m- l ljcl. 

Proof: Let A = {aJ, a2, ... ,am}. We can write 

g= II + L L I X(X-ai)+ 
xeFq XEFq Xe{p,pl ,pl} i=1 

L I L {XJ(X- ail )X2(X- ai2)} + ... + 
xeFq Xje(p,pl,pl} il<i 1 

I L I {XI(x-a iJ )X2(x-a i) .. ·xs(x-ai)}+ .. ·+ 
XEFq )(jE{P,pl,pl) il< i1 < ... <i s 

L L {xl(x- adx2(x- a2)'''Xm(X am)}. 
xeFq )(jE{Jl,pl,pl) 

Then, by (2.1) and Lemma 2.1 we have 
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= [1 + (3m - 4)4m
-

l
] jq. 

Therefore, g;::: q - [1 + (3m - 4)4m- l
] jq as required. o 

3. THE GENERALIZED PALEY GRAPHS 

For q == 1 (mod 3) a prime power, there exists a cubic character a of F q and a( -a) 

= a(a) for all a E Fq. Further, for q == l(mod 8) a prime power, there exists a quadruple 

character p ofFq and PC-a) = pea) for all a E Fq. 

Observe that if a and b are any vertices of G~) , then for t = 1 and 2 

a\a-b)= 0, 
{

I, if a is adjacent to b, 

ifa=b, 

otherwise. roorro 2
, 

Also, if a and b are any vertices of G ~4) , then for t = 1 and 3 

pt(a-b)= 0, ifa=b, 
{ 

1, if a is adjacent to b, 

-1, i or - i, otherwise. 

Note that p2 is a quadratic character~ that is 

{ 

1, 

p2(a_ b) = 0, 

-1, 

if a - b is a quadratic ressidue, 

ifa=b, 

otherwise. 

Before stating our results, we need the following notation. For disjoint subsets 

A and B ofV(G), we denote by n(A/B) the number of vertices ofG not in Au B that are 

adjacent to each vertex of A but not adjacent to any vertex of B. When A = {ai, a2, ... , 

am} and B = {bl, b2, ... , bn}, we sometimes write for convenience n(A/B) = n(al, a2, ... , 

am / bI, b2, ... , bn). 
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Theorem 3.1. Let q == 1 (mod 3) be a prime power and k a positive integer. If 

q> [~(79 + 3 .J36k + 701 )]2, 
4 

then G ~3) E Q(2,2,k). 

Proof: Let S = {a, b, c, d} be any set of distinct vertices of G ~3). Then n( a, b/e, d) ~ k if 

and only if 

f= L {[I + a(x - a) + a 2(x - a)][l + a(x b) + a 2(x - b)] 
xEr~ 
XES 

~ k34
. 

[2 - a(x e) - a 2(x - e)][2 - a(x - d) - a 2(x - d)]} 

To show that f ~ k34, it is clearly sufficient to establish that f> (k - 1 )34. 

We can write 

g= L {[I +a(x a) + a 2(x-a)][1 +a(x-b)+a2(x-b)] 
xeFq 

[2 - a(x - c) - a 2(x - e)J[2 - a(x - d) - a 2(x - d)]} 

= L 4 + L L {4X(x - a) + 4X(x - b) 2X(x - c) - 2X(x d)} + 
xeFq xeFq xe{a,a)) 

L L {Xt(x-c)X2(x-d)-2Xl(X a)X2(x-c)-
xeFq Xie{a,all 

2 Xl (x - a)X2 (x - d) - 2 Xl (x - b) X2 (x - c)-

2 Xl (x - b) X2 (x - d) + 4 Xl (x - a) X2 (x - b)} + 

L L {Xl(x-a)X2(x-c)X3(x d)+ XI(X-b)X2(X-C)X3(X-d)-
XEFq XiE{a,all 

L L {X\(x-a)X2(x-b)X3(x e)X4(x-d)}. (3.1) 
XEFq Xie{a,a2l 

Now, by (2.1) (2.2) and Lemma 2.1 we get from (3.1) 

g = 4q + 0 + [L a(x - e)a(x - d) + L a 2(x - c)a2(x - d) - 2] -
xeFq XEFq 

2[ I a(x - a)a(x - c) + I a 2(x - a)a2(x - e) - 2] -
XEFq XEFq 
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2[ L a(x - a)a(x - d) + L a 2(x a)a\x - d) - 2] -
XEFq XEFq 

2[ L a(x - b)a(x - c) + L a 2(x b)a2(x - c) - 2] 
XEFq XEFq 

2[ L a(x - b)a(x - d) + L a 2(x - b)a2(x - d) - 2] + 
XEFq XEFq 

4[ I a(x - a)a(x - b) + I a\x - a)a2(x - b) - 2] + 
XEFq XEFq 

I I {XI(x-a)X2(x-e)X3(x d)+ Xl(x-b)X2(X e)X3(x-d)-
xeFq x;e{a,a J

} 

2Xl (x -- a)X2 (x - b)X3(X -- e)-2Xl (x - a)X2 (x - b)X3(X - d)} + 

I I {Xl (X - a)X2 (X - b)X3(x e)X4 (X - d)}. 
xeFq x;e{a,a2

} 

By first applying (2.1) and Lemma 2.2 and then applying Lemma 2.1 we obtain 

I g - 4q - 10 I ~ 2 jq + 4 jq + 4 jq + 4 jq + 4 jq + S jq + 

Therefore, 

[6«3 --1)fci) + 2(3 -2)fci] + [6«3 - l)Jq) + 2(3 2)..{q] + 

2[6«3 -l)fci) + 2(3 -2)fci] + 2[6«3 -l)fci )+2(3 -2)jq] + 16(3 fci) 

=15SJq. 

g ~ 4q + 10 - 158 fci . 

Consider 

g-f= {I +a(a-b)+a2(a-b)}{2-a(a-e)-a2(a-e)}{2 a(a-·d)-a2(a-d)} + 

{I + a(b - a) + a 2(b - a)}{2 - a(b - c) - a 2(b- e)}{2 - a(b - d) - a 2(b - d)} + 

2{1 + a(e - a) + a 2(e - a)}{l + a(e b) + a 2(e - b)} {2 - a(e d) - a 2(c - d)} + 

2{1 +a(d-a)+a2(d-a)}{1 +a(d b)+a2(d-b)}{2-a(d-e)-a2(d-e)} 

S; 108, 

since g - f achieves its maximum value when ab, cd \l E(G) and ac, ad, be, bd E E(G). 

Consequently, 

f~g-108 

~4q+l0-'15Sjq -lOS. 
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1 
Hence, f> (k - 1)34 for q> [- (79 + 3 -J36k + 701)t As S is arbitrary, this completes 

4 

the proof. o 

Remark 1. When k = 1, Theorem 3.1 above asserts that G~3) E 9'(2,2,1) for all prime 

powers 2 1609. We have verified, using the computer, that G~3) E g(2,2,1) only if q is a 

prime power of order 151, 157 or at least 223. Table I gives the maximum k for which 

G~3) E Q(2,2,k); we give only some of the computational results. 

Table I. Maximum k for which G ~3) E g(2,2,k). 

Maximumk Order q Maximumk Order q 

0 s: 139 and 163 14 601,613,619,631,634 

1 1 51, 157, 223 15 661 

2 169,181,193,199,229 16 673,625 

3 211,241,271,361 17 691, 709, 769 

4 256,277,289,313 18 727, 733, 757 

5 283,307,331 19 751 

6 337,343,349,373,379 20 739,787,811,829 

7 367,397,409 22 823 

8 433,439,463,523 23 859,883 

9 421,457,487,529 24 853,877,907 

11 499 25 919,937 

12 547,571,577 27 967,991 

13 541,607 28 997, 1009 

For the class g(m,n,k), we have the following result. 

Theorem 3.2. Let q == 1 (mod 3) be a prime power and k a positive integer. If 

q> (ti- I - i + 1)2m fci + (m + 2n + 3k - 3)T"3 t
- J, (3.2) 

141 



then G ~3) E 9(m,n,k) for all m, n with m + n:::; t. 

Proof: It clearly suffices to establish the result for m + n = t. Let A and B be disjoint 

subsets ofV(G~3») with I A I = m and I B I 

f = .L I1 { 1 + a(x - a) + a 2(x 
XEFq aEA 
x~AvB 

Let 

n. Then, n(A/B) ~ k if and only if 

a)} I1 {2 - a(x - b) - a 2(x - b)} 
bEB 

g =.L I1 {l + a(x - a) + a 2(x a)} I1 {2 - a(x - b) - a 2(x - b)}. 
XE~ aEA bEB 

Now, by Lemma 2.3 we have 

g~2nq-(ti-l_i+ 1)2\[q. 

Consider 

g-f= L TI{1+a(x-a)+a2(x-a)}TI{2-a(x b)-a2(x-b)}. 
xeAvB aEA b EB 

Since, in the product n { 1 + a(x - a) + a 2(x a)} each factor is at most 3 and one factor 
aEA 

is 1 and in the product n {2 - a(x - b) a\x -- b)} each factor is at most 3 and one 
beB 

factor is 2 we have 

g - f:::; 3 t - 1m + 3 t - ) 2n 

= (m + 2n)3 t
-

1
• 

Consequently, 

f~ 2nq (t2t
-

1 - i + l)i.Jq - (m + 2n)3 t
-

l
• 

Now, if inequality (3.2) holds, then f> (k - 1)3t as required. Since A and B are arbitrary, 

this completes the proof of the theorem. o 

For the case n = 0, we have the following sharper result. 

Theorem 3.3. Let q == 1 (mod 3) be a prime power and k a positive integer. If 

q> [1 - m2 + m + (2m - 3)3 m
-

1].Jq + (m2 
- m) + (3k - 2)3 m

-
1
, (3.3) 
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then G ~3) E 9(m,O,k). 

Proof: Let A be any subset of m vertices of G~), Then there are at least k other 

vertices, each of which is adjacent to every vertex of A if and only if 

f= L f1{ 1 +a(x--a)+a2(x-a)} >(k-l)3m
• 

xeFq aeA 
XIl!A 

Let 

g = L n { 1 + a(x - a) + a 2(x - a)}. 
xeFq aeA 

Then, by Lemma 2.4 we have 

gzq [l.-m2 +m+(2m-3)3m
-

I)]..[q -(m2 -m). 

Consider 

g - f = L n { 1 + a:(x - a) + a 2(x - a)} 
xeA aeA 

since, each factor is at most 3 and one factor is 1. 

Therefore, 

f~q-[l m2 +m+(2m--3)3 m
-

I)]fc!-(m2 -m) 3m
-

I
, 

Now, if inequality (3.3) holds, then f> (k - 1)3m as required. As A is arbitrary, this 

completes the proof of the theorem. o 

We now turn our attention to the adjacent properties of the quadruple Paley 

graph G~4). 

Theorem 3.4. Let q == 1 (mod 8) be a prime power and k a positive integer. If 

q>[~(291 + .J1024k+85193)f, (3.4) 

then G~4) E Q(2,2,k). 

Proof: Let S = {a, b, c, d} be any set of distinct vertices of G ~4). Then n(a, blc, d) z kif 

and only if 
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f= L {[I + ~(x-a) + ~2(x-a) + ~3(x-a)][1 + ~(x - b) + ~2(X b) + ~3(X - b)] 
xeFq 
XES 

[3 - ~(x -c) - ~2(X -c) ~\x -c)][3 - ~(x - d) - ~2(X - d) - ~3(X - d)]} 

> (k - 1)44
, 

We can write 

g = I {[I + ~(x-a) + ~\x-·a) + ~\x-a)][l + ~(x- b) + ~2(x··-b) + ~3(X b)] 
xeFq 

[3 - ~(x - c) - ~2(X -c) ~\x -c)][3 - ~(x - d) - ~2(X d) - ~\x -d)]}. 

N ow using an argument similar to that used in the proof of Theorem 3 .1 (except here we 

do not use (2.2)) we obtain: 

I g - 9q I S 9(9 ..[q ) + 12(9 Jq ) + 9 Jq + 54(2 ..[q ) + 162(2..[q) + 81 (3 jq ) 

= 873jq, . 

Observe that 

g - f::;; 384, 

since g - f achieves its maximum value when ab, cd ~ E(G) and ac, ad, bc, bd E E(G). 

Consequently, 

f-c 9q - 873 jq 384. 

Hence, f> (k - 1)44 when (3.4) holds. As S is arbitrary, this completes the proof. 0 

For the class q(m,n,k), we have the following result. 

Theorem 3.5. Let q == 1 (mod 8) be a prime power and k a positive integer. If 

q> (tt- 1
- i + 1)3m.fq + (m + 3n + 4k - 4)rn4 t

-
l
, 

then G~4) E q(m,n,k) for all m, n with m + n s t. 

(3.5) 

Proof: It clearly suffices to establish the result for m + n = t. Let A and B be disjoint 

subsets ofV(G~4)) with I A I = m and I B I = n. Then, n(A/B) -c k if and only if 

f= L D{ 1 +~(x-a)+~2(x-a)+~3(x-a)} TI{3-.-~(x-b)-~2(x-b) ~3(x-b)} 
xeFq aeA beB 

xEAvB 

144 



Let 

g = L n {I + p(x-a)+ p2(x-a)+p\x-a)} n {3 -P(x-b)_p2(x-b)-p3(x-b)}. 
XEFq aEA bEB 

Now, by Lemma 2.5, we have 

g::::3nq (t2 t l_i+ 1)3t.jq. 

Consider 

g-f= L D{ 1 +p(x-a)+p2(x-a)+p\x-a)} TI{3-P(x-b) p2(x-b)-p3(x_b)}. 
XEAuB aeA bEB 

Since, in the product 11 { 1 + P(x - a) + p2(X - a) + p\x a)} each factor is at most 4 
aeA 

and one factor is 1 and in the product n {3 - pex - b) p2(X b) - p\x - b)} each 
bEB 

factor is at most 4 and one factor is 3 we have 

g f~4t Im+4t-13~ 

(m + 3n)4t
-

1• 

Consequently, 

f:::: 3nq (ti- J - i + 1)31..{ci - (m + 3n)41
-

1
• 

Now, if inequality (3.5) holds, then f> (k - 1)4t as required. Since A and B are arbitrary, 

this completes the proof of the theorem. 

For the case n = 0, we have the following result. 

Theorem 3.6. Let q == 1 (mod 8) be a prime power and k a positive integer. If 

q> [1 +(3m-4)4m- 1].jq +(4k-3)4m- 1
, 

then G ~4) E q(m,O,k). 

a 

(3.6) 

Proof: Let A be any subset of m vertices of G ~4). Then there are at least k other 

vertices, each of which is adjacent to every vertex of A if and only if 

f= L TI { 1 + P(x - a) + p2(X - a) + p3(X - a)} > (k 1)4m. 
xeFq aeA 
XEA 

Now using the method of proof of Theorem 3.3 together with Lemma 2.6, we 
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get f> (k 1)4m when (3.6) holds. Hence, the result. o 
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