
Path achievement games 

I. M. Wanless 

Department of Mathematics and Statistics 
University of Melbourne 

Parkville Vic 3052 Australia 

Abstract 

Starting with the empty graph on n vertices, two players alternately add 
edges until the graph contains a p-path. The last player to move wins. 
Assuming both players play optimally, the winner will depend only on 
p and n. We analyse the game for p ::; 6 and arbitrary n, determining 
the winner and providing a winning strategy. The results illustrate how 
deceptive computing the results of small cases can be. 

§1. Introduction 

The p-path achievement game is played by two players as follows. The game 
graph G starts off as K n (that is, n isolated points), for some n > p. The first 
player to move is designated Player A (or simply A), and the other player is known 
as Player B (or B). These two players take turns to add a single undistinguished 
edge to G, with play halting when G first contains a path of length at least p. The 
player who made the last move wins. 

Since the conlplete graph Kn contains a p-path the game must finish (after 
finitely many moves) in a win to one of the players. In fact, by a famous theorem 
of von Neumann, one player will have a winning strategy. Call this player Wand 
call W's opponent L. Whatever moves L makes, W can always choose moves in 
reply which eventually lead to W being victorious. 

For fixed p we can view W as a function from the set of integers greater than 
p to {A, B}. If this function is eventually periodic, with period T, then we say that 
the p-path achievement game has period T. This notion of period was introduced in 
[3] where the periods of a number of graph games were studied. The computational 
complexity of identifying W is considered in [1], for a number of games involving 
the construction of a path within a graph, although the games are not of the form 
to be discussed here. 
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In a path achievement game, let M refer to the player whose turn it is to move 
and let N be M's opponent. We can assume that M never considers a move which 
would allow N to win immediately. Specifically, M never creates a (p - 1 )-path; nor 
two vertex disjoint paths whose combined length is p - 1. Furthermore, we assume 
that M will concede defeat when all available moves breach this criterion. 

§2. Terminology and Notation 

A path of length p (also called a p-path) is a sequence Vo, Vb ... , vp of P + 1 
distinct vertices of G, such that Vi-l and Vi are adjacent in G for each i = 1,2, ... , p. 
The vertices Vo and vp are the endpoints of the path. For c ~ 3, a cycle of length 
c (or c-cycle) is a c-path, except that Vo = vp. A chord of a cycle is an edge which 
is itself not part of the cycle but which connects two vertices on the cycle. 

Analogous to the terminology of [2], we say that a player who adds an edge 
between isolated vertices in G is moving conservatively and the move itself is a 
conservative move. 

We denote by c(G) the essence of G, being the isomorphism class of Gonce 
all isolated vertices have been removed. It should be clear that the state of the 
game is entirely determined by knowledge of n, p and c(G). Bya configuration we 
mean a class representative of c( G) for some game graph G. In each configuration 
C we distinguish a subset d( C) of the vertices. If C and D are configurations then 
C + D and CD are also configurations defined as follows: 

C + D is a graph whose vertices, edges and distinguished vertices 
are the disjoint union of the corresponding sets in C and 
D (relabelling vertices and edges if necessary to avoid a 
conflict). 

CD is derived from C + D by identifying all the vertices in 
d(C + D). By choice, d(CD) is always the single vertex 
corresponding to the vertices in d(C + D). 

We use the obvious shorthands of mC for C + C + ... + C and cm for CC ... C. 
, V # "---v----' 

m times m times 

The configurations we will need include 

(1) Pa is an a-path with one endpoint distinguished. 
(2) Ca is an a-cycle with anyone point distinguished. 
(3) C~ is the same as Ca except that any number of chords may be included. 
(4) Ka is the same as Ca except that all chords are included. 

There remains only one type of configuration which we need to define. Let 
al, a2,' .. am be positive integers and C, D be any two configurations. Then 
P~l ,a2 , ... am denotes the configuration consisting of two distinguished vertices VI 

and V2 together with m edge disjoint paths (of respective lengths aI, a2, '" am) 

between VI and V2' Moreover, C 0 P~1,a2, ... am 0 D is formed from C+P~1,a2, ... am +D 
by identifying Vl with the vertices in d( C) and then identifying V2 with the vertices 
in d(D). 
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+ p4 
1 P' 2,1,3 

Figure 1: Some examples of configurations . 
• = Distinguished vertex 0 = Other vertex 

Configurations such as those in Figure 1 will be used to describe progress in our 
path achievement games. Recalling the assumption at the end of the introduction, 
we stress that configurations such as pl PI, (C3Pd 0 P{ 0 Pf and (P2P1 ) 0 P{ 0 Pf 
need never be considered. 

§3. Some Endgames 

The game will be analysed in terms of three phases; the opening, mid game 
and endgame. These phases will not be rigorously defined but rather serve only 
for convenience of terminology. We look first at. endgames. 

Endgame 1. For p ~ 4, the winner of p-path achievement from C;-l is Player A 
lfp == 0,3 mod 4 and Player B lfp == 1,2 mod 4. 

Proof: The only edges which can be added are chords, so play will proceed to 
K p- 1 at which point (p;l) edges have been played and M concedes defeat. 0 

Endgame 2. For.p ~ 5 and e ;::: 1 the winner ofp-path achievement from C;_2 + 
ePl is Player A if 

{ 
p == 0,1 mod 4 and n - p == 2,3 mod 4; or 
p == 2,3 mod 4 and n - p == 0,1 mod 4 

and Player B otherwise. 

Proof: Only chords of the C;_2 or extra disjoint edges can be added. Hence play 
will proceed to K p - 2 + In-~+2JP1' 0 

Endgame 3. For p ~ 4 and a;::: 2 the winner ofp-path achievement from Kp-2Pf 
is Player A if 

{ 
p == 0,1 mod 4 and n - p is even; or 
p == 2, 3 mod 4 and n - p is odd 

and Player B otherwise. 

Proof: Play proceeds to Kp_2P~-P+2 at which point M concedes defeat. 0 

§4. The p-path achievement game; p :::; 5 

We first observe that p-path achievement is trivial for p ~ 3; being won on the 
pth move of the game. Obviously, each of these games has period 1, with Player A 
winning 1-path and 3-path achievement and Player B winning 2-path achievement. 
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The 4-path achievement game is very simple too. Since A wins from C3 

(Endgame 1), B will not open with P2• Also, after the second move of the game any 
non-conservative move loses immediately. We conclude that both players will play 
conservatively as long as possible, and that A will win if n == 2, 3 mod 4, whereas 
B wins if n == 0,1 mod 4. 

To discuss 5-path achievement we divide into 3 cases. 

Case 1: n even (B wins) 

Player B opens with P2• Whatever move A then makes, B can reach either 
C3 PI or p{ P2 . Then, assuming that A avoids C4 (Endgame 1), Player B can play 
to C3Pr which is handled by Endgame 3. 

Case 2: n == 1 mod 4 (B wins) 

Player B is content to play conservatively until Player A makes a non-conserv­
ative move (which A will be forced to do eventually since n == 1 mod 4). If A 
creates a P2 component then B makes it into a C3 and wins by Endgame 2. Player 
A's only other option is to open with P3 , which allows B to win via C4 (Endgame 1). 

Case 3: n == 3 mod 4 (A wins) 

This case is similar to the previous case with the roles of A and B reversed. 
Player B must make the first non-conservative move, and unless it is done imme­
diately Endgame 2 will be reached. On the other hand if B opens with P2 then 
A plays to C3 and B must choose either C3 + Pl (losing by Endgame 2) or C3Pl 

which A converts to C3 P? (a win to A by Endgame 3). 

We note at this point that both 4-path achievement and 5-path achievement 
have period 4. 

§5. 6-path achievement 

We begin our solution to 6-path achievement by looking at some more end­
games. 

Endgame 4. For any a ~ 0, the winner of 6-path achievement from C§Pf is 
Player A if n is even and Player B if n is odd. The same ending is reached from 
piPf for a ~ 2. 

Proof: Play proceeds to C§pr- 5 which contains n + 1 edges. Note that if a = ° 
then A also has the option from C§ of moving to C5, but this is a win for B by 
Endgame 1. 0 

Endgame 5. For a, b ~ 1 Player A wins 6-path achievement from Pf 0 P~ 21 0 pt 
and Pf 0 P~,2 0 pt. ' , 
Proof: Let VI and V2 be the two distinguished vertices. Separate 2-paths can be 
constructed from VI to V2 via each other vertex of G. The only other edge allowable 
is directly between VI and V2. Hence an odd numbered total of 2(n - 2) + 1 edges 
will be played to reach P{,2,2,2, ... ,2' where B concedes defeat. 0 
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Endgame 6. Let a, b ~ 2. Then M wins 6-path achievement from C3Pf + bPI if 
and only if n - a - 2b =I=- 0 mod 3. 

Proof: The number 'IjJ of isolated points remaining in G is 'IjJ = n - 3 - a - 2b. The 
only two legitimate moves are to C3Pf+l + bPl or C3Pf + (b + l)Pb reducing 'IjJ by 
1 or 2 respectively. The winning strategy is to ensure your opponent always moves 
from a state where 'IjJ == 0 mod 3. That way your opponent will have to concede 
defeat when 'IjJ = O. 0 

Endgame 7. Let a ~ 2, b 2:: 2 and c 2:: 1 be integers. Then M wins from 
Pf 0 P{ 0 Pf + cPI if and only if n - a - b - 2c =I=- 2 mod 3. 

Proof: Similar to the previous endgame. The only available moves decrease the 
number of isolated points by 1 or 2, whilst remaining in this Endgame. 0 

Next we study a few midgames. 

Midgame 1. From P4 or Pf P3 play will reach Endgame 3 (without loss of gener­
ality). 

Proof: If A plays PIP:] from P4 then B creates the configuration in Figure 2 and 
A must immediate concede defeat. Since B also wins Endgame 1, Player A has 
only one move from P4 which might avoid defeat, namely Pf P3. Now Player B's 
only move which avoids defeat via Endgame 5 is C3 0 P{ 0 Pf. Endgame 3 is now 
inevitable. 0 

Figure 2: A win for Player B. 

Midgame 2. Suppose that a ~ 2 and e ~ 2. Then M wins from Pf P2 + ePl if 
and only if n - a - 2e =I=- 2 mod 3. 

Proof: If n - a - 2e == 0 mod 3 then M wins by moving to Endgame 6 whereas M 
wins by moving to Endgame 7 when n - a - 2e == 1 mod 3. The only other options 
are to play to Pf+1 P2 + ePI or Pf P2 + (e + l)PI , but N will win from both by the 
same logic. 0 

Midgame 3. Suppose that play has reached ePI for some e 2:: 3 and that M loses 
Endgame 2. Then N can choose between Endgame 6 and Endgame 7. 

Proof: M cannot choose a move which will stop N reaching P3 + (e - l)PI. From 
there the only move which prevents Endgame 2 is Pf P2 + (e - l)PI . Endgames 6 
and 7 can each be reached in the next move. 0 

We can now solve 6-path achievement on an odd number of points. 
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Case 1: n == 1 mod 4 (B wins) 

Player B opens with 2PI , then play is similar to Midgame 3. B forces to 
P3 + Pl. Now A must avoid Endgame 2 by playing either Pf P2 + PI or pi Pl. 
From either B can reach Pi Pf which leads inexorably to Endgame 4 and a win to 
B. 

Case 2: n == 3 mod 4 (A wins) 
Player A opens by playing 3-path achievement. From P3 Player B has a 

number of options. However, the only one which avoids both Endgame 2 and 
Midgame 1 is C3PI after which A plays to C4. Since A wins Endgame 2, Endgame 3 
and Endgame 5 there is no escape now for B. 

The game on an even number of points is more complicated. Our first ob­
servation is that, without loss of generality, the opening will be 3PI. For suppose 
that instead, B opened with P2 and that A then moved to Pr. Whatever B then 
played, A could reach either C3Pr or Pr P2 • There would then be no way B could 
prevent A reaching Endgame 4 via C§ PI or pi Pr or Endgame 5 via Pr 0 P~ 0 Pr, 
Pr 0 P~,2 0 PI or Pr 0 P{'2 0 pr. We conclude that B will open with 2Pl . On the 
third turn if A chooses any move other than 3PI then B can move to P4, which A 
loses via Midgame 1. It follows immediately that 

Case 3: n == 2 mod 4 and n 1= 2 mod 3. A wins by employing Midgame 3 from 
3Pl . 

Case 4: n == 0 mod 4 and n 1= 1 mod 3. B opens with 4PI then wins by 
Midgame 3. 

Next we contend that when n == 2 mod 12, Player B can be assumed to reach 
whichever of C3 + P2 + PI and C3 + P2 + 3PI is most advantageous. 
Proof: We have already seen that play reaches 3PI . If B now plays 4PI then 
A will play 5PI and win by Midgame 3. Alternately, if B plays P3 + PI then A 
wins by moving to Endgame 2. So B is forced to play to P2 + 2PI • Now A must 
prevent B from reaching Pf P2 + 2PI and can only do this via 2P2 + PI or C3 + 2PI . 
However, the former is no good since B can just convert it to Pr 0 Pi 0 Pr + PI 
which A loses (Endgame 7). Hence play reaches C3 + 2PI and B may choose to 
move straight to C3 + P2 + Pl' The other options are C3 P I + 2Pl (which A will 
win by playing to Endgame 2) and C3 + 3PI . From the latter A cannot afford to 
play to 03PI + 3PI because B wins from C3Pf + 3Pl (Endgame 6). It follows that 
from C3 + 3PI Player B can force to C3 + P2 + 3Pl - It only remains to show that 
B cannot do better. From C3 + 3Pl Player A can choose 0 3 + 4PI . If B is avoiding 
C 3 + P2 + 3PI and Endgame 2 (which A wins) the only alternative now is C3 + 5PI . 

However, A simply plays C3 PI + 5PI and B loses; either by playing to C3Pf + 5PI 

(Endgame 6) or allowing A to reach Endgame 2. 8 

When n == 4 mod 12 Player A will choose to reach whichever of C3 + P2 + 2Pl 

and C3 + P2 + 4Pl is most advantageous. 
Proof: If play reaches 4Pl then it continues exactly as it did in the previous 
example with the roles of A and B reversed (and an extra PI) _ The only question 
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is whether B can profit by making a different move from 3PI . Any move other 
than 4PI allows A to play to pi P2 + Pl' Now B has no attractive choice. Playing 
to Pf P2 + 2PI (Midgame 2) or Pf 0 P{ 0 Pf + PI (Endgame 7) both lose, and any 
other play leads to Endgame 4. 0) 

Thus we see that in the two as yet unsolved cases, play can be assumed to 
reach a state 03 + P2 + ePI for some e E {I, 2, 3, 4}. Notice that in such a state 
the game has effectively become one of 3-path avoidance. That is, the first player 
to create a 3-path will lose immediately (and such a path must be created before 
anyone can win). 

§6. The 3-path avoidance phase 

It was shown in [3] that 3-path avoidance has period 7. We therefore need to 
establish who wins from 03 + P2 + ePl for each residue class of n modulo 7, and 
for 1 ::; e :::; 4. This will be done by a series of ten lemmas below. A reference of 
the form [3,Prop.X) will refer to Proposition X in paper [3]. 

We note that the vertices in a 3-cyde can have no further edges joined to them 
without a 3-path being created. It follows that a 3-cycle can be excised from G to 
reach an equivalent game G' of 3-path avoidance on three fewer points. The only 
difference in the new game is that the roles of the two players will be interchanged 
because an odd number of edges have been removed. Whenever we determine the 
winner of a game by means of this observation we will say that we are performing 
a reduction or that G reduces to G'. 

Lemma 1: Suppose that it is M's move from a03 + bP2 + cP1 (a, band c being 
positive integers) and that n - 3a - 5b - 6c == 5 mod 7 and n ~ 3a + 5b + 6c + 5. 
Then M must play to (a + 1)03 + (b - 1)P2 + cPI to avoid defeat. 
Proof: If M plays any move other than (a + 1)03 + (b -1)P2 + cP1 then N will be 
able to reach either a03 + (b - I)P2 + (c + l)PI + Pr or a03 + bP2 + (c -1)PI + Pr, 
both of which result in M losing by [3,Prop.3(i)]. 0) 

Lemma 2: Ifn+e == 0,3,5 mod 7 and n-6e ~ 7 then M wins from 03+P2+ePI. 
Proof: M wins by playing to 03 + Pr + ePI which is handled by [3,Prop.3]. 0) 

Lemma 3: If n + e == 6 mod 7 and n - 6e ~ 20 then N wins from 0 3 + P 2 + ePl' 
Proof: [3,Prop.8]. 0) 

Lemma 4: If n + e == 0,2 mod 7 and n - 6e ~ 18 then M wins from 0 3 + P 2 + ePI . 
Proof: M wins by playing to 2C3 + ePI , again using [3,Prop.8]. 0) 

Lemma 5: Player A wins from 0 3 + P2 + PI if n == 0 mod 7 and n ~ 35. 
Proof: Player A moves to 0 3 + 2P2 which reduces to [3,Prop.l0(b)]. 0) 

Lemma 6: Let k + e == 4 mod 7 and k ~ 32 + 6e. If Player A wins from 
03 + P2 + ePI when n = k - 3 then B wins from 0 3 + P2 + ePI when n = k. 
Proof: Assume that n + e == 4 mod 7 and that play has reached 0 3 + P2 + ePI . 
We split into two cases depending on the parity of e. If e is even then B moves to 
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2C3 + ePl . Whatever move A now makes, B can reach 203 + P2 + ePl . On the 
other hand if e is odd then it is A's turn to move and 

• If A moves to C3 + pf + ePl then B wins via 0 3 + Pi + ePl ([3,Prop.3(ii)]). 

• If A moves to 203 +ePl then B moves to 2C3 + (e+ I)Pl . Now A can move to 
2C3 +P2 +ePl or to 203 +(e+2)Pl . From the latter B wins via 2C3+(e+3)Pl 
and [3,Prop.8 or Prop.7(ii)]. 

• If A plays to either C3 + 2P2 + (e - l)Pl or C3 + P2 + (e + l)Pl then Bean 
play to 0 3 + 2P2 + ePl . Now by Lemma 1, A must play to 203 + P2 + ePl . 

In conclusion, we see that in every case Player B can guide play to 203 + P2 + 
eP1 which reduces to 0 3 + P2 + ePl . 0 

Lemma 7: Let e E {2,4}, k + e == 1 mod 7 and k ~ 24 + 6e. If Player B wins 
from C3 + P2 + (e - 1)P1 when n = k - 3 then A wins from 0 3 + P2 + ePl when 
n = k. 

Proof: Whatever move B makes from C3 + P2 + ePl , Player A can always reach 
one of the three states 203 + (e + l)Pl , 0 3 + pt + ePl or 203 + P2 + (e - l)Pl . 
Assuming that n + e == 1 mod 7, Player A wins from the first two by [3,Prop.8] 
and [3,Prop.3(i)] respectively, whilst the third reduces to 0 3 + P2 + (e - l)Pl . 0 

We notice that by combining Lemmas 5, 6 and 7 the winner from 0 3 + P2 + ePl 

can be determined for e E {I, 2} and n + e == 1, 4 mod 7. Lemma 8 will use several 
reductions to these games. 

Lemma 8: Player A wins from C3 + P2 + 3Pl provided n == 5 mod 7 and n ~ 47. 

Proof: Player A's first move is to 03+2P2+2Pl. IfB immediately plays to 203 + 
P2 + 2Pl then A wins by reduction and if B allows A to play to 0 3 + Pf + 2P2 + P l 

then A wins by [3,Prop.3(ii)]. Hence B is forced to play to 0 3 + 2P2 + 3Pl and A 
then chooses 0 3 + 3P2 + 2Pl . If B next plays to 203 + 2P2 + 2Pl then A wins via 
a reduction from 303 + P2 + 2P1 and if B chooses 0 3 + Pf + 2P2 + 2Pl instead 
then A wins from 0 3 + pt + 2P2 + 2Pl [3,Prop.3(ii)]. It follows that B is forced 
to make a move which allows A to reach 0 3 + 4P2 + 2Pl . At this stage B has to 
play to 203 + 3P2 + 2Pl (Lemma 1) and A replies with 303 + 2P2 + 2Pl . Player B 
cannot now play 303 + Pf + P2 + 2Pl because A would win with 403 + Pf + 2Pl 
[3,Prop.3(iii)] and nor can B afford to let A reduce to 403 + P2 + 3Pl (Lemma 3). 
After B selects the only other option, 303 + 3P2 + Pl , A moves to 403 + 2P2 + Pl 
and B is again forced by Lemma 1 to play to 503 + P2 + Pl. Since A wins this 
reduction as well (Lemma 5), B has no recourse. 0 

The eight Lemmas above suffice to solve 3-path avoidance from 0 3 + P2 + ePl 

for all large nand e E {I, 2, 3, 4}. A summary of the results can be found in the 
table below (Figure 3). 
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e 

1 

2 

3 
4 

n mod 7 

0 1 2 3 4 5 

5A35 4A29 2A16 6B38 2A18 3B26 

4B35 2B22 6B44 2B24 3A32 2B26 
2A28 6B50 2A30 3B38 2A32 8A 47 
6B56 2B36 3A44 2B38 7A53 4B47 

Figure 3: Winner from C3 + P2 + ePI for sufficiently 
large n. An entry in the table of the form x Y z means 
that Lemma x can be used to show that Player Y wins 
whenever n 2:: z. 

There remain only a few small cases to attend to. 

6 

2A20 

7A4I 
4A41 
2B34 

Lemma 9: Suppose that n = 2e + 8 or n = 2e + 12. Then M wins from 
C3 +P2 +ePI. 
Proof: If n = 2e+8 then M moves to C3 +2P2 +(e-l)Pl and wins by [3,Prop.4(i)), 
whereas if n = 2e + 12 then M moves to 2C3 + ePI and wins by [3,Prop.4(vi)J. (0 

Lemma 10: Suppose that n = 6e + 4 or n = 6e + 16 where e ~ 2. Then M wins 
from C3 + P2 + ePI . 
Proof: M moves to 2C3 + ePI , winning by [3,Prop.5] or [3,Prop.7(iii)] when n = 
6e + 4 or n = 6e + 16 respectively. (0 

§7. Wrapping up: 

We are ready to establish the winner of 6-path avoidance in the two cases that 
were left unsolved in Section 5. 

Case 5: n == 2 mod 12. 

As shown already, Player B chooses between C3 + P2 + PI and C3 + P2 + 3PI. 
By inspecting Figure 3 we see that when n is large enough B will win if n == 
1,3,5 mod 7 whereas A will win in all other cases. The only small case which is 
not covered by this result is when n = 14, which Lemma 9 tells us conforms to the 
overall pattern (A wins). 

Case 6: n == 4 mod 12. 

Player A chooses between C3 + P2 + 2PI and C3 + P2 + 4PI. By inspecting 
Figure 3 we see that when n is large enough A will win if n == 2,4,6 mod 7 whereas 
B will win in all other cases. The only small cases which are not covered by this 
result are when n = 16, 28 or 40. Lemma 9 tells us that n = 16 does not conform 
to the overall pattern (B wins), whereas both n = 28 and n = 40 do conform by 
Lemma 10 (B wins both). 

Collating the results from all six cases gives the following theorem. 
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Theorem 1: The game of 6-path achievement on n points (n 2:: 7) has period 
84. Player B wins when n = 16, n == 1 mod 4, n == ° mod 12, n == 8 mod 12, or 
n == b mod 84 for some b E {26, 28, 38, 40, 50, 52, 64}. Player A wins otherwise. 

If nothing else, this theorem is a warning to empiricists. In small cases the 
winner of 6-path achievement can be computed by playing all possible games. A 
program would find the sequence of winners begins 

{A, B, B, A, A, B, B, A, A, B, B, A, A, B, B, A, A, B, B, ... }. (*) 

There is only one obvious conclusion, especially since 4-path and 5-path achieve­
ment both have period 4 (as do most of the graph games in the literature [3]). The 
first hint of the true pattern would not be found until n = 26, well out of reach 
of a simple exhaustive algorithm. Even then it might be just an isolated anomaly. 
Indeed, the sequence (*) already includes just such a glitch at n = 16. Did you 
spot it? 
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