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Abstract

We determine, for each v = 1 mod 3, the maximum (resp. minimum)
number of near-triangle factors possible on v points so that each pair of
distinct points occurs in a triple in at most (resp. at least) one of the near-
triangle factors. In particular, we show that for each v = 1 mod 3,v # 7,
there exists a near-resolvable exact 2-covering of v points by triples whose
near-triangle factors admit a partition into a maximum packing and a
minimum covering of v points by near-triangle factors.

1 Introduction

We assume a basic familiarity with the terminology and notations of design theory
and graph theory; we refer the reader to [3] and [12] for general references.

Let X be a set of v points. A packing (resp. covering) of X is a collection B of
subsets of X (called blocks) such that any pair of distinct points in X occur together
in at most (resp. at least) one block in the collection. The case where each pair of
points belongs to ezactly one block is called an ezact covering. A packing or covering
is called near-resolvable if its block set can be partitioned into near-parallel classes,
each near-parallel class being a partition of X\{z} for some x € X (we will refer to
x = z(P) as being the residue of the near-parallel class P). In this paper, we are
concerned with near-resolvable packings and coverings of a v-set by triples (whence
v = 1 mod 3); we refer to a near-parallel class of triples as being a near-triangle
factor. We prove that for each v = 1 mod 3, v # 7, there exists a near-resolvable
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exact 2-covering of v points by triples whose near-triangle factors admit a partition
into a maximum packing and a minimum covering of v points by near-triangle factors.

We will determine, for each v = 1 mod 3, the maximum (resp. minimum) number
of near-triangle factors possible on v points so that each pair of distinct points occurs
in a triple in at most (resp. at least) one of the near-triangle factors. Now, Colbourn
and Zhao [5] have in fact determined the solution for the packing problem, in the
context of unipolar communication systems. We will require that the packings have
an additional property, however, that being that there be a minimum covering of the
same v points such that the uncovered pairs in the packing coincide precisely with
the doubly-covered pairs in the covering: see Theorem 1.8.

Thus we are, in a sense, considering an analogue of Kirkman’s famous Schoolgirl
Problem in the case where the number of schoolgirls is congruent to 1 mod 3. Such
analogues have been considered in the past. In particular, Hanani [7] determined
the spectrum for exact 2-coverings of a v-set by near-triangle factors, i.e. each pair
of distinct points occur together in exactly two triples:

Theorem 1.1 There ezists a near-resolvable ezact 2-covering of v points by triples
if and only if v =1 mod 3.

Carter et al. [1] considered what they called Hanani Triple Systems (HTS’s), i.e.a
Steiner Triple System on v points whose block set can be partitioned into (v=1)/2
near-triangle factors, together with one further class of (v — 1)/6 disjoint triangles
(which exactly cover the residues of the (v — 1)/2 near-triangle factors):

Theorem 1.2 There ezists a Hanani Triple System HTS(v) if and only if v = 1
mod 6 and v > 19.

More recently, Cerny, Hordk and Wallis 2] considered the problem of determining
the maximum number of factors possible in a packing on v = 1 mod 3 points, where
each factor is composed of the disjoint union of a block of size 4 with (v—4)/3 triples.
A maximum packing of this type whose leave is a triangle (K3) when v =1 mod 6,
or the disjoint union of a Ky and (v —4)/2 edges (K3's) when v = 4 mod 6, is called
a Canonical Kirkman Packing Design (CKPD(v)). The following was determined in
[2], [9], and [4]:

Theorem 1.3 There ezists a Canonical Kirkman Packing Design CKPD(v) if and
only ifv =1 mod 3 and v > 22, ezcept possibly for v =55,61,67,73,85 and 109.

The authors in [9] also defined a Canonical Kirkman Covering Design (CKCD(v))
to be a minimum covering of v = 1 mod 3 points by factors of the foregoing type,
whose excess is a near-triangle factor when v = 1 mod 6, or the disjoint union of
(v —4)/2 edges (K3's) when v = 4 mod 6. They determined the following result.

Theorem 1.4 A Canonical Kirkman Covering Design CKCD(v) ezists if and only
ifv=1 mod 3 and v > 10, except possibly for v =13,16 and 67.
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The problem that we are considering here may be posed in terms of Kirkman’s
original problem, as follows: Given a class of v = 1 mod 3 students, what is the
maximum (resp. minimum) number of outings possible if, on each outing, some
student is designated the leader and the remaining students line up in rows of three
behind the leader, and if, over the course of the outings, each pair of students walks
together in the same row at most (resp. at least) once? Now, as with the packing
and covering designs introduced in {2], there are many types of solutions in terms
of the various leaves and excesses that may occur. For example, if v = 4 mod 6,
then a solution to our packing problem can be obtained by simply designating one
student to be the leader on all outings and constructing a Kirkman Triple System
on the remaining v — 1 students, for a total of v/2 — 1 outings. This is not a
particularly interesting solution, however. (Indeed, if our packing was designed to
be a tournament schedule on v players (where each game involves 3 simultaneous
participants) then the foregoing solution would be useless, since it would assign the
bye to the same player in every round.) Thus, we will say that a solution to our
foregoing packing/covering problem is equitable if

(i) no point (or student, or player) occurs as the residue (or leader, or bye) in
more than one near-triangle factor (or outing, or round), and, for the covering
problem,

(ii) no pair of points occur together in more than two triples in the covering.

We will refer to an equitable solution to the packing problem as an equitable Kirkman
Packing Design (EKPD) if it has |(v — 1)/2] near-triangle factors, and we will refer
to an equitable solution to the covering problem as an equitable Kirkman Covering
Design (EKCD) if it has [(v + 1)/2] near-triangle factors. Note that these numbers
obviously represent the maximum (resp. minimum) possible number of near-triangle
factors in any solution to the packing (resp. covering) problem, as a near-triangle
factor covers v — 1 pairs. An interesting phenomenon occurs when we examine the
leave and excess graphs of these designs. Suppose first that v = 1 mod 6. Then an
EKPD(v) has as its leave a 2-regular graph on the (v — 1)/2 residues, for a total
of (v — 1)/2 edges, while an EKCD(v) has as its excess a 2-regular graph on the
(v = 1)/2 non-residues, again for a total of (v — 1)/2 edges. On the other hand,
suppose that v = 4 mod 6. Then an EKPD(v) contains v/2—1 near-triangle factors,
whence its leave is a graph on v vertices in which each of the v/2 — 1 residues has
degree 3 and each of the v/2 + 1 non-residues has degree 1, for a total of v — 1 edges;
an EKCD(v) contains v/2 + 1 near-triangle factors, whence its excess is a graph on
v vertices in which each of the v/2 — 1 non-residues has degree 3 and each of the
v/2+ 1 residues has degree 1, again for a total of v — 1 edges. It is reasonable to ask,
therefore, for which v = 1 mod 3 can we construct an EKPD(v) and an EKCD(v) in
which the leave graph of the former is isomorphic to the excess graph of the latter.
In such a case we can, by relabelling the points of one of the designs if necessary,
form a near-resolvable exact 2-covering of v points by simply taking the union of the
set of near-triangle factors in the EKPD(v) with the set of those in the EKCD(v)
(see Lemma 1.9 ahead). A near-resolvable exact 2-covering (of v points by triples)
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will be called separable if it arises in this way, i.e. if its set of near-triangle factors
can be partitioned into an EKPD(v) and an EKCD(v). Consider the following small
examples:

Proposition 1.5 There ezists a separable exact 2-covering for v =4,10, and 13.

Proof. For each v = 4,10, and 13 we present the 2-covering by listing the near-
triangle factors of the EKPD(v) in the left-hand column and those of the EKCD(v)
in the right-hand column.

v=4

123(4) 234(1)
341(2)
412 (3)

v =10

289 157 4610(3) 125 346 7810(9)
359 267 1810(4) 126 345 T789(10)
479 368 2510(1) 137 248 6910(5)
169 458 3710(2) 138 247 5910(6)
149 2310 568(7)
1410 239 567(8)
v=13:
478 2910 61112 3513(1) 125 4612 8910 31113 (7)
1710 2411 5812 6913(3) 236 4510 7911 11213 (8)
379 41213 168 51011 (2) 134 5611 7812 21013 (9)
2712 459 81013 1311(6) 3512 1811 267 4913 (10)
71113 4610 238 1912(5) 1610 2912 348 5713 (11)
567 8911 1213 31012(4) 2411 3710 159 6813 (12)
147 258 369 101112 (13)
O

It is of interest to note that, up to isomorphism, there is only one partial triple
system on 13 points which admits a partition into six edge-disjoint near-triangle
factors, since the non-existence of an HTS(13) forces the leave of such a system to
be a hexagon. (See [6].)

Proposition 1.6 There does not exist an EKPD(7) or an EKCD(T7).

Proof. It is easy to see that a maximum packing of near-triangle factors on 7 points
contains just one near-triangle factor; i.e. if we start with the factor 123 456
(7) then any triangle which is edge disjoint from 1 2 3 and 4 5 6 contains 7. Now
suppose that there were a covering of 7 points with 4 near-triangle factors. Then
the excess would have to be a triangle (K3), which we call T. Now since there are
only 4 near-triangle factors, then we can assume that T appears as a triangle in one
of them. But removing T leaves a Steiner Triple System STS(7), from which no
(second) near-triangle factor can be extracted, a contradiction. [

Remark 1.7 From Proposition 1.6, there is no separable ezact 2-covering for v ="7.
We note that there is a covering of 7 poinis by 5-near-triangle factors, viz:
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abl  235(4)
ab2  341(5)
ab3  452(1)
abd  513(2)

abb  124(3)
This is not an equitable covering, however, as ab appears together in 5 triples in the
covering.

In this paper we will prove the following result.

Theorem 1.8 There exists a separable exzact 2-covering of v points by near-triangle
factors if and only if v=1 mod 3, except for v="717.

We will use the following observation, which we noted earlier:

Lemma 1.9 If there exists an EKPD(v) and an EKCD(v) in which the leave graph
of the former is isomorphic to the excess graph of the latter, then there egzists a
separable exact 2-covering of v points by near-triangle factors.

Proof. Let G be the leave graph of the EKPD(v) and H be the excess graph of the
EKCD(v), where each of G and H have v vertices. Let o : G — H be an isomorphism,
and relabel each point z in the EKPD(v) as a(z). Let Py, Py, ..., Py-1) be the
near-triangle factors in the EKPD(v) and a(Py), a(Py),...,a(P|(v-1)/2)) be these
same near-triangle factors with the points relabelled. Let Cy,Cy,...,Cjwi1y/21 be
the near-triangle factors in the EKCD(v). We claim that C = {a(P),a(P),...,
a(Pw-1)/2)), C1,Ca, . . ., Cirw11y/21 } is an exact 2-covering of v points by near-triangle
factors. It is clear from the discussion proceeding Proposition 1.5 that each of the v
points appears as a residue in exactly one of the near-triangle factors in C. Moreover,
if @ and b are any pair of distinct points (in V(H)), then either {a,b} € E(H),
whereupon a and b appear together in two triples in the EKCD(v) and no triples in
the (relabelled) EKPD(v), or {a,b} ¢ E(H), whereupon a and b appear together in
exactly one triple in each of the EKCD(v) and the (relabelled) EKPD(v). In either
case, a and b appear together in exactly two triples among the near-triangle factors
in C. This establishes our claim. [0

2 Preliminaries

In this section we establish the terminology, notation, and some preliminary results
that will be used in the sequel.

We begin by establishing the existence of separable exact 2-coverings in the easiest
case, that being when v =1 mod 6 :

Theorem 2.1 There exisis a separable exact 2-covering of v points by near-triangle
factors for every v =1 mod 6 except v =17.
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Proof. With regards v = 7 and 13, see Proposition 1.5 and Remark 1.7. Now let
v =1 mod 6,v > 19. From Theorem 1.2, there exists an HTS(v). Let P be the set
of (v—1)/2 near-triangle factors in this system. Then P is an EKPD(v) whose leave
consists of (v —1)/6 vertex disjoint triangles (K3s) together with (v+1)/2 isolated
vertices. Let T be the set of (v — 1)/6 disjoint triangles in the HTS(v) together
with a further set of (v — 1)/6 disjoint triangles, each disjoint from those in the first
set. Then PU{T} is an EKCD(v) whose excess consists of (v —1)/6 vertex disjoint
triangles (K3's) together with (v + 1)/2 isolated vertices. Now apply Lemma 1.9.

|

We are thus henceforth concerned with the case v = 4 mod 6.

A group-divisible design (GDD) is a triple (X, G, B) where X is a set of points, G
is a partition of X into groups, and B is a collection of subsets of X (blocks) so that
any pair of distinct points occur together in either one group or exactly one block,
but not both. A K-GDD of type gi'g% ... gim has t; groups of size g;,i = 1,2,...,m
and |B;| € K for every block B; € B. A transversal design TD (k,m) is a {k}-
GDD of type n*; it is well known that a TD (k,n) is equivalent to k — 2 mutually
orthogonal Latin squares of order n. A GDD is called resolvable if its block set B
admits a partition into parallel classes, each parallel class being a partition of the
point set X. A GDD is called frame resolvable if its block set B admits a partition
into holey parallel classes, each holey parallel class being a partition of X — G for
some G; € G. A Kirkman frame is a frame resolvable GDD in which all the blocks
have size three. It is a simple consequence of the definition that to each group G; in
a Kirkman frame (X, G, B) there correspond exactly %[G i holey parallel classes of
triples that partition X — G;. The groups in a Kirkman frame are often referred to
as holes. Kirkman frames were formally introduced by Stinson [11], who established
their spectrum in the case where all of the holes have the same size.

Theorem 2.2 A Kirkman frame of type g* exists if and only if u > 4, g is even and
g(u—1) =0 mod 3.

We will also require Kirkman frames in which the holes are not all of the same
size. To get these, we use Stinson’s ‘weighting’ construction (see [11}):

Construction 2.3 Suppose that there is a K-GDD of type giigh ... gtm and that for
ecach k € K there is a Kirkman frame of type h*. Then there exists a Kirkman frame
of type (hg1)" (hg2)" ... (hgm)'™.

Before proceeding, we will require the notion of an incomplete equitable packing
(covering) design. Let v = w = 4mod 6. An EKPD(v)-EKPD(w) is a triple
(X,Y, B) where X is a set of v points, ¥ is a subset of X of size w (Y is called the
hole), and B is a collection of 3-subsets of X (triples) such that

(i) |Y N By <1 for all B; € B;

(ii) any pair of distinct elements in X occur together in Y or in at most one triple;
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(iii) B admits a partition into (v — w) near-parallel classes on X, each of which
has a distinct residue in X\Y, and a further (w — 2) holey parallel classes of
triples on X\Y.

An EKCD(v)-EKCD(w) is defined similarly, changing ‘at most’ to ‘at least’ in Con-
dition (ii), and requiring 1(w+2) holey parallel classes of triples on X\Y in Condition
(iii), with the further requirement that no pair of points occur together in more than
two triples of B. ,

The following is an immediate consequence of the definitions.

Proposition 2.4 If there exist an EKPD(v)-EKPD(w) (resp. EKCD(v)-EKCD(w))
and an EKPD(w) (resp. EKCD(w)) then there exists an EKPD(v) (resp. EKCD(v)).

Example 2.5 An EKPD(16)-EKPD(4) and an EKCD(16)-EKCD(4).
EKPD(16)-EKPD(4)

X = (Zﬁ X {172}) U {aO;alabO;bl}
Y = {ao,ahbo,bl}

Near-Parallel Classes:

Develop the class 010513 agli159 a12143 bod132 515125 (31) mod 6, where ag, a1, by, b
are fized points;

Holey Parallel Classes:
012141 113151 022242 123252.

EKCD(16)-EKCD(4)

X andY as above.

Near-Parallel Classes:

Develop the class 215125 ag0235 a1011; bgdaby 1314y (12) mod 6, where the subscripts
on a and b are evaluated mod 2;

Holey Parallel Classes:
Develop the triples 012115 and 4,0525 mod 6, for 3 holey parallel classes.

Lemma 2.6 There is a separable exact 2-covering for v = 16.
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Proof. For an EKPD(16), apply Proposition 2.4 to the EKPD(16)-EKPD(4) in
Example 2.5 and the EKPD(4)(aoaiby (b1)) in Proposition 1.5; for an EKCD(16),
apply Proposition 2.4 to the EKCD(16)-EKCD(4) in Example 2.5 and the EKCD(4)
(arboby (aq) bobiag (a1) biagay (b)) in Proposition 1.5. It is easily checked that the
Jeave graph of the EKPD (16) is the same as the excess graph of the EKCD(16); now
apply Lemma 1.9. 0O

By the leave of an EKPD(v)-EKPD(w) (X,Y, B), we will mean the leave with
respect to the point set X\Y; similarly, by the excess of an EKCD(v)-EKCD(w)
(X,Y, B), we will mean the excess with respect to the point set X\Y.

We now illustrate the main technique that we will be using throughout the re-
mainder of the paper (which is a variant of Stinson’s ‘Filling in Holes’ construction,
see [11]) by establishing the following result.

Theorem 2.7 There exists a separable exact 2-covering of v points by near-triangle
factors for every v = 4 mod 12 with v > 52.

Proof. From Theorem 2.2, there exists a Kirkman frame of type 120=9/12 on the
point set X = {1,2,3,...,12} x {j : 1 < j < (v — 4)/12}, having holes G; =
{1,2,3,...,12} x {j} for j = 1,2,..., (v — 4)/12. To each hole G, there correspond
6 holey parallel classes Pjy, Pj, . . ., Pjg of triples that partition X — G;. Now adjoin
four new points {00y, 00g, 003,004} to this frame.

For each hole G}, construct a copy of the EKPD (16)-EKPD(4) on G;U{001, 002,
003,004}, aligning the hole in the incomplete EKPD on {001, 009,003,004}, hav-
ing Cj1,Cja,...,Cjs as its near-parallel classes. Then for each j = 1,2,...,(v —
4)/12,P; = {C;1UPj1,C2U Py, ..., CjeU Pje} is a set of six near-parallel classes on
X U {o00y,002,003,004}; it is clear that U;P;, together with the single holey parallel
class on X formed by the union of the holey parallel classes on each Gj, forms an
EKPD(v)-EKPD(4).

Similarly, for each hole G; we can construct a copy of the EKCD(16)-EKCD(4) on
G U {001, 002,003,004}, aligning the hole in the incomplete EKCD on {00;, 002, 003,
ooy}, having Dji, Dy, ..., Djs as its near-parallel classes and Hji, Hjs, H;3 as its
holey parallel classes. Then for each j = 1,2,..., (v —4)/12,C; = {Dj1 U Pj1, Dja U
Pjs,...,Djs U Pjg} is a set of six near-parallel classes on X U {001, 002,003,004}
Moreover, each of U;Hj; is a holey parallel class on X, where i = 1,2,3. Thus, U;C;
together with these 3 holey parallel classes form an EKCD(v)-EKCD(4).

Now we just fill the hole of size 4 in each of these designs, as we did in Lemma
2.6, to obtain an EKPD(v) and an EKCD(v) in which the leave of the former is the
same graph as the excess of the latter. Then apply Lemma 1.9. O

We finish this section by establishing the existence of separable exact 2-coverings
in the last two 4( mod 12) cases, namely v = 28 and 40. In these and all subsequent
direct constructions, points labelled co; are fixed points with respect to the relevant
automorphism group.

Lemma 2.8 There is a separable ezact 2-covering for v = 28 and 40.
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Proof. For each order, we establish the existence of an EKPD(v) and an EKCD(v)
in which the leave of the former is isomorphic to the excess of the latter, and then
apply Lemma 1.9.

EKPD(28)

Point Set (Z12 X {1,2}) u {60,01,001,002}.

Near-Parallel Classes:

We get 12 near-parallel classes by developing the triples 2;7,02 11310215 011,95 619:8;
315169 ag10;59 018129 0011133 009414, (71) mod 12, where ag and a, are fixed points.
The last class is given by 0,4;8; 02458, mod 12 together with a;00;009 (ag).
EKCD(28)

Point Set (Z12 X {1, 2}) U {a,(), ap, 001, 002}.

Near-Parallel Classes:

We get 12 near-parallel classes by developing the triples 3;5,72 819192 1,7:105 4,052,
0152115 ag2111; 13262 00110145 0026115 (82) mod 12, where the subscripts on a
are evaluated mod 2. The last three classes are obtained by developing the triples
0,1;5; and 05155, mod 12 (which generate three holey parallel classes on Zy3x {1,2})
together with coj009a9 (a1), 0028001 (001), and apa;00; (00).

EKPD(40)

Point Set (Z]g X {1, 2}) U {001, OQa, 003,004}.

Near-Parallel Classes:

We get 18 near-parallel classes by developing the triples 11,159, 6,13;16; 10514517,
913282 101152162 1415272 014102 517122 2115142 001121132 00281122 0033162 00411112
(17;) mod 18. The last class is given by 0,6,12; 0,6,12, mod 18 together with
0010092003 (004)

EKCD(40)
Point Set (Z,s X {1,2}) U {001, 002, 003, 004}

Near-Parallel Classes:

We get 18 near-parallel classes by developing the triples 10,16,132 5,12,11, 6;15,17,
9117142 41142162 2122102 14152122 81111131 026292 0013172 0021182 0030112 0047132
(155) mod 18. The last three classes are obtained by developing the triples 0,1;5; and
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0,155, mod 18 (which generate three holey parallel classes on Z;g x {1, 2}) together
with 009003004 (001), 003004001 (002), and 00400;005 (003).

Note that the leave of the EKPD(28) consists of a 3-edge star, together with
edges at pure differences £5 and &6 on Ziz x {1}, and edges at pure difference -6
on Zz x {2}; the excess of the EKCD(28) consists of a 3-edge star, together with
edges at pure differences £1 and £6 on Zg x {1}, and edges at pure difference +6
on Ziz x {2}. The leave of the EKPD(40) consists of a 3-edge star, together with
edges at pure differences +1 and £9 on Z;g x {1}, and edges at pure difference +9
on Zg x {2}; the excess of EKCD(40) consists of a 3-edge star, together with edges
at pure differences 5 and £9 on Z;s x {1}, and edges at pure difference £9 on
Zqg x {2}. For each of the two orders then, the relevant leave and excess graphs are
isomorphic. O

Remark 2.9 Each of the EKPDs and EKCDs constructed in Lemma 2.8 has a
subdesign on 4 points; thus (by removing the triples in these subdesigns) we have
EKPD(28)-EKPD(4), EKCD(28)-EKCD(4), EKPD(40)-EKPD(4), and EKCD(40) -
EKCD(4).

3 The Case v =10 mod 12

In this section, we construct separable exact 2-coverings for the remaining orders
v = 10 mod 12.

Lemma 3.1 There ezist separable exact 2-coverings for v = 10, 22, 34, 46, 58, 70
and 82.

Proof. For v = 10 see Proposition 1.5. For v = 22,34 and 46, we proceed as in the
proof of Lemma 2.8, viz:

EKPD(22)
Point Set (Zg X {1, 2}) U {ao,al, ag, 001}.

Near-Parallel Classes:

We get 9 near-parallel classes by developing the triples 4,125; 61456, 015182 ap118;
a17109 a22235 0013,72 (21) mod 9, where the subscripts on a are evaluated mod 3.
The last class is given by 0,3,6; 02326, mod 9 together with aoaiaz (001).

EKCD(22)
Point Set (Zg x {1,2}) U {ao, a1, az, 001}.
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Near-Parallel Classes:

We get 9 near-parallel classes by developing the triples 70,72 112151 022255 a¢6:3;
413,62 a38;4; 0014:85(15) mod 9, where ag, a1, and ae are fixed points. The last
three classes are obtained by developing the triples 0,152, and 1,20, mod 9 (which
generate three holey parallel classes on Zgx {1, 2}) together with a;az00; {ap), az001a9
((11), and e 3R %1451 (ag).

EKPD(34)

Point Set (Zy5 x {1,2}) U {ao, a1, az,001}.

Near-Parallel Classes:

We get 15 near-parallel classes by developing the triples 13,658, 0,11514; 2,6,4,
313272 8111152 a0121132 0,114122 a241102 00171122 1191101 021292 (51) mod 15 where
ag, a1, and ao are fixed points. The last class is given by 0;5;10; 025210, mod 15
together with agaiaq (001).

EKCD(34)

Point Set (Z15 X {1, 2}) U {ao,al, as, 001}.

Near-Parallel Classes:

We get 15 near-parallel classes by developing the triples 11,1315, 4,762 512:9;
21101132 611272 019102 3182112 a0102122 a; 121141 (128142 00111142 (32) mod 15, where
the subscripts on @ are evaluated mod 3. The last three classes are obtained by de-
veloping the triples 0;1;5; and 02155, mod 15 (which generate three holey parallel
classes on Zi5 x {1,2}) together with ajaz00; (ag), az001a0 (@1), and cojapa; (asz).
EKPD(46)

Point Set (Zg; X {1,2}) U {ag, a1, as,001}.

Near-Parallel Classes:

We get 21 near-parallel classes by developing the triples 13,1019, 17;19,20; 157,11,
9115192 1112182 5114162 317152 1112242 21132182 1610232 61152162 000181 a1122202
a318,17; 00;10;14; (4;) mod 21, where the subscripts on a are evaluated mod 3.
The last class is given by 0,714, 057145 mod 21 together with agajas (00;).
EKCD(46)

Point Set (Zo; x {1,2}) U {aq, a1, a2,00:}.
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Near-Parallel Classes:

We get 21 near-parallel classes by developing the triples 8,10,5; 0,20,20, 4;19,17>
31121145 11718145 13125185 516295 7112155 1617219, 052,13, 619:171 agl51112 011,10,
a514,35 00,2:85 (165) mod 21, where ag, a1, and a, are fixed points. The last three
classes are obtained by developing the triples 011;5; and 02125, mod 21 (which gen-
erate three holey parallel classes on Zg; X {1,2}) together with a,a200, (o), ago0100
(@), and coyagay (az).

Note that in each of the foregoing packings (resp. coverings) the leave (resp.
excess) consists of a 3-edge star on {ay, a1, as, 001} together with a ‘sun’ on Zy_g)/2 X
{1,2}, i.e. a (v — 4)/2-cycle on Z,_g)/2 % {1} and a matching M on Ly-gy72 % {1,2}
where each edge in M has one end-vertex in orbit 1 and one end-vertex in orbit 2. For
each of the three orders then, the relevant leave and excess graphs are isomorphic.

There remain the orders v = 58,70, and 82. For v = 58, we construct EKPD(58)-
EKPD(16) and EKCD(58)-EKCD(16), in which the leave of the former is isomorphic
to the excess of the latter, in the Appendix. Now apply Proposition 2.4, filling in
the EKPD(16) (resp. EKCD(16)) from Lemma 2.6. Similarly, for v = 70 and 82,
we construct EKPD(v)-EKPD(22) and EKCD(v)-EKCD(22) in the Appendix, and
then apply Proposition 2.4, filling in EKPD(22) or EKCD(22) from above. [

Remark 3.2 Each of the EKPDs and EKCDs of orders 22, 34, and 46 constructed in
Lemma 8.1 has a subdesign on 4 points; thus as with Remark 2.9 we have EKPD(v)-
EKPD(4) and EKCD(v)-EKCD(4) for v = 22,34 and 46.

Lemma 3.3 If there is a GDD on s points with block sizes from the set {k € Z :
k > 4} and group sizes from the set {1,2,...,8}, in which there is at most one
group of size 1, then there is a separable ezact 2-covering of v = 6s + 4 points by
near-triangle factors.

Proof. Let the given GDD have type girg¥ ... gt». Apply Construction 2.3 to
this GDD, using ‘weight’ h = 6, to yield a Kirkman frame of type (6g1)% (6g2)%2 . ..
(6gm)tm. If there is a group of size 1 in the GDD, then we assume that g, =
tm = 1. Adjoin four new points {001,002,003,004} to the frame and apply the
‘Filling in Holes’ construction (see, e.g. Theorem 2.7), constructing on each hole
of size 6g; (except the last hole of size 6gm) together with the four new points an
EKPD(6g; + 4)-EKPD(4) (resp. EKCD(6g; + 4)-EKCD(4)) aligning the hole in the
incomplete packing (resp. covering) on the four new points; then on the last hole of
size Bgy, together with the four infinite points construct an EKPD(6m + 4) (resp.
EKCD(6m + 4)). All the required input designs exist by Proposition 1.5, Lemma
2.6, Theorem 2.7, Lemma 2.8 and Remark 2.9, and Lemma 3.1 and Remark 3.2.
The result is an EKPD(6s + 4) (resp. EKCD(6s + 4)) in which the leave graph of
the former is isomorphic to the excess graph of the latter. (Note that with regards
the last hole H of size 6gm, 3gm of the near-parallel classes in the EKPD(6gm, + 4)
(resp. EKCD(6g,, +4)) are paired with the 3¢, holey parallel classes in the Kirkman
frame corresponding to H. The remaining near-parallel class or classes is /are paired
with the holey parallel class or classes in each of the incomplete packings (resp.
coverings).) Now apply Lemma 1.9. 0O
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Theorem 3.4 There exists a separable exact 2-covering of v points by near-triangle
factors for every v = 10 mod 12 with v > 94.

Proof. For each odd s > 15 we construct a GDD on s points with blocks sizes from
the set {k € Z : k > 4} and groups sizes from the set {1,2,...,8} and apply Lemma
3.3.

If s > 49, we can write s = 4n +m where n > 11 is odd and 4 < m < n (e.g.
let m = s mod 8 +4 and n = (s — m)/4). Take a TD (5,n) with a parallel class of
blocks and truncate a group to m points. By viewing the resulting parallel class of
blocks on the truncated TD as groups, we have produced a {4,5, m,n}-GDD of type
47~m5™ on 4(n — m) + 5m = s points, as desired.

If 15 < s < 47, we construct the appropriate GDD according to the following
table.

s GDD Source
15 4 — GDD of type 3° TD (4,4)
17,19 {4,5} — GDD of type 4%1!,43! TD (5,4)

21,23,25  {4,5} — GDD of type 5'1',53!,5%!  TD (5,5)
27,29, 31 {4,5} — GDD of type 3%3',3%5!,3%7"  resolvable
4-GDD of

type 3° [8]

33,35,37,39 {4,5} — GDD of type 8'1',8'3!, 85!, 87" TD (5, 8)
41,43, 45,47 {5,6} — GDD of type 8°1!,8°31,8%5 857" TD (6, 8)

4 Conclusion

Theorem 1.8 now follows from the results in Sections 2 and 3, together with Propo-
sitions 1.5 and 1.6.
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Appendix

EKPD(58)-EKPD(16)
Point Set (Z; x {1,2}) U {ag,a1,...,as} U {001,009,...,00g}.

Near-Parallel Classes:
We get 21 near-parallel classes by developing the triples

1210292 (1391102 003201162 009161152
1011242 a4151 192 0045132 (21)
0131142 (15171 172 00514162

001171 (152282 005131182
a118172 001111132 00719152
a241202 00261122 00381112

mod 21, where the subscripts on a are evaluated mod 7. We then obtain 7 holey
parallel classes on Zs; % {1, 2} by developing the triples 0;115; 031559, 012,107 0225105,
and 0171141 0272142 mod 21.

EKCD(58)-EKCD(16)
Point Set (Zgl X {]., 2}) U {ao, ay, ... ,ae} U {001, 002y« vy OOQ}.

Near-Parallel Classes:
We get 21 near-parallel classes by developing the triples

118162 a3181162 003171182 00920182

71 131132 a451202 00421152 (102)
1110272 (1531192 0054132
a0141112 6615152 005191122
ay 121142 00191172 00716122
a210112 0020142 0036192

mod 21, where ap, a4, . . ., ag are fixed points. We then obtain 9 holey parallel classes
on Zy; x {1,2} by constructing a resolvable 3-GDD of type 37 (i.e. a Kirkman Triple
System KTS(21)) on each of Zg; x {1} and Zg X {2}, in which the groups are
represented by the pairs at pure difference 7 in each of the two orbits.

Now the leave of the EKPD(58)-EKPD(16) consists of the edges at pure difference
+9 on orbit 1 and the edges at mixed difference 8 between orbits 1 and 2. The excess
of the EKCD(58)-EKCD(16) consists of the edges at pure difference 6 on orbit 1
and the edges at mixed difference 19 between orbits 1 and 2. These two graphs are
isomorphic.

EKPD(70)-EKPD(22)
Point Set (Z24 X {1, 2}) U {ao, Alyeony (l7} U {001,002, ey 0014}.
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Near-Parallel Classes:

We get 24 near-parallel classes by developing the triples

81 0242 a719122 0037172
0,016192 001111132 00951172
a1211122 002181212 0010141222
(12131232 00331162 0011231102
a310182 00422132 001241 12
0461202 00501192 001321112
(151152 00612162 0014151142
a691152 007171182 (201)

mod 24, where ag, a1, . . ., a7 are fixed points. We then obtain 10 holey parallel classes
on Zyq x {1,2} by constructing a resolvable 3-GDD of type 6 [10] on each of Zys x {1}
and Zgs x {2}, aligning the groups on differences +4,£8, and +12, and using the
edges at difference £8 to generate the tenth holey parallel class.

EKPD(70)-EKPD(22)
Point Set (Z24 X {1, 2}) U {(Lo, A1y .ny (17} U {001, 002, ¢ vy 0014}.

Near-Parallel Classes:

We get 24 near-parallel classes by developing the triples

810242 a719122 0087172
a016192 001111132 00951172
a1211122 002181212 0010141222
a2131232 00331162 00“231 102
0310182 00422132 00124112
a461202 00501192 001321112
CL51152 00612162 0014151142
0691152 007171182 (201)

mod 24, where ag, a1, . . ., a7 are fixed points. We then obtain 10 holey parallel classes
on Zaoy x {1, 2} by constructing a resolvable 3-GDD of type 6* [10] on each of Zs x {1}
and Zys x {2}, aligning the groups on differences 44,48, and +12, and using the
edges at difference +8 to generate the tenth holey parallel class.
EKCD(70)-EKCD(22)

Point Set (Z24 X {1, 2}) U {ao, apy.. .y a7} ) {001, 009, ..+, 0014}.
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Near-Parallel Classes:

We get 24 near-parallel classes by developing the triples

014172 a72161 008181222
601252 001221102 0098102
a131112 002121212 0010211182
a222142 003201132 0011101162
a3171172 00419182 00127132
0411131 005111121 0013161152
0591202 00615162 001451232
(1614192 00723142 (192)

mod 24, where the subscripts on a are evaluated mod 8. We then obtain 9 holey
parallel classes on Za4 X {1,2} by constructing a resolvable 3-GDD of type 6 [10]
on each of Zyy x {1} and Zy4 x {2}, aligning the groups on differences +4, -8, and
+12. We then get 3 further holey parallel classes on Zos x {1, 2} by developing the
triples 0;2510, and 2;10,0; mod 24.

The leave of the EKPD(70)-EKPD(22) consists of the edges at pure difference +4
and +12 on Zy x {1}, together with the edges at pure difference £12 on Zyq x {2}.
The excess of the EKCD(70)-EKCD(22) also consists of the edges at pure difference
+4 and +12 on Zyy x {1} together with the edges at pure difference +12 on Zy4 % {2}.

EKPD(82)-EKPD(22)
Point Set (Z3o % {1,2}) U {ag, a1, 001,004, ...,002}.

Near-Parallel Classes:

We get 30 near-parallel classes by developing the triples

410232 001211142 008261122 0015181252
1911272 00291282 0098152 0016141222
013162 00361232 0010161172 0017131242
12142162 004251202 001110182 0013151152
1171212 00529192 0012171192 0019281132
0021111 006271102 001351262 0020221272
0,122112 007201292 0014241182 (231)

mod 30, where the subscripts on a are evaluated mod 2. We then obtain 10 holey
parallel classes on Zjp x {1,2} by constructing a resolvable TD (3,10) on each of
Zs3o x {1} and Z3q x {2}, aligning the groups on differences +3, +:6, £9,+12 and +15.

EKCD(82)-EKCD(22)
Point Set (Z3o x {1,2}) U {ao, a1, 001,002, ...,002}
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Near-Parallel Classes:

We get 30 near-parallel classes by developing the triples

0151214
1,11,24,
319114,
161 1262
1512912,
(1021171
0,132182

001251272
002261252
003241202
004101 102
005121 192
006271222
007231152

00341282
00919182

001020102
001171132
001229172
0013181162
001422142

001581262
0016131 172
001721152
00156192
0019281292
0020141 232
(112)

mod 30, where the subscripts on a are evaluated mod 2. We then obtain 12 holey
parallel classes on Zsy x {1,2} by constructing a resolvable 3-GDD of type 6° [10]
on each of Zsy x {1} and Zz x {2}, aligning the groups on differences £5, 410, and

+15.

The leave of the EKPD(82)-EKPD(22) consists of the edges at pure difference
+12 and £15 on Zgyx {1}, together with the edges at pure difference +15 on Zgox {2}.
The excess of the EKCD{(82)-EKCD(22) consists of the edges at pure difference +6
and +15 on Zsy x {1}, and the edges at pure difference £15 on Zszy x {2}. These

two graphs are isomorphic.

(Received 17/12/99; revised 23/2/2000)
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