Vertex-disjoint cycles containing specified edges in a bipartite graph

Guantao Chen

Department of Mathematics and Statistics
Georgia State University
Atlanta, GA 30303, USA

Hikoe Enomoto
Ken-ichi Kawarabayashi
Katsuhiro Ota
Department of Mathematics
Keio University
Yokohama 223-8522, Japan

Dingjun Lou
Department of Computer Science
Zhongshan University
Guangzhou 510275, China

Akira Saito
Department of Mathematics
Nihon University
Tokyo 156-8550, Japan

Abstract

Dirac and Ore-type degree conditions are given for a bipartite graph to contain vertex disjoint cycles each of which contains a previously specified edge. This solves a conjecture of Wang in [6].

1 Introduction

In this paper, we only consider finite undirected graphs without loops and multiple edges. For a vertex x of a graph G, the neighborhood of x in G is denoted by $N_{G}(x)$,
and $d_{G}(x)=\left|N_{G}(x)\right|$ is the degree of x in G. For a subgraph H of G and a vertex $x \in V(G)-V(H)$, we also denote $N_{H}(x)=N_{G}(x) \cap V(H)$ and $d_{H}(x)=\left|N_{H}(x)\right|$. For a subgraph H and a subset S of $V(G)$, define $d_{H}(S)=\sum_{x \in S} d_{H}(x)$. The subgraph induced by S is denoted by $\langle S\rangle$, and define $G-S=\langle V(G)-S\rangle$ and $G-H=$ $\langle G-V(H)\rangle$. For a graph $G,|G|=|V(G)|$ is the order of $G, \delta(G)$ is the minimum degree of G, and

$$
\sigma_{2}(G)=\min \left\{d_{G}(x)+d_{G}(y) \mid x, y \in V(G), x \neq y, x y \notin E(G)\right\}
$$

is the minimum degree sum of nonadjacent vertices. (When G is a complete graph, we define $\sigma_{2}(G)=\infty$.) For a bipartite graph G with partite sets V_{1} and V_{2},

$$
\delta_{1,1}(G)=\min \left\{d_{G}(x)+d_{G}(y) \mid x \in V_{1}, y \in V_{2}\right\}
$$

and

$$
\sigma_{1,1}(G)=\min \left\{d_{G}(x)+d_{G}(y) \mid x \in V_{1}, y \in V_{2}, x y \notin E(G)\right\}
$$

(When G is a complete bipartite graph, we define $\sigma_{1,1}(G)=\infty$.) Two edges e and f are adjacent if they have a common endvertex, and they are independent if they are nonadjacent. A set F of independent edges in G is a perfect matching when $|F|=|G| / 2$.

In this paper, "disjoint" means "vertex-disjoint," since we only deal with partitions of the vertex set.

Suppose H_{1}, \cdots, H_{k} are disjoint cycles of G such that $V(G)=\bigcup_{i=1}^{k} V\left(H_{i}\right)$. Then the union of these H_{i} is a 2 -factor of G with k components. A sufficient condition for the existence of a 2 -factor with a specified number of components was given by Brandt et al. [1].

Theorem A Suppose $|G|=n \geq 4 k$ and $\sigma_{2}(G) \geq n$. Then G can be partitioned into k cycles, that is, G contains k disjoint cycles H_{1}, \cdots, H_{k} satisfying $V(G)=$ $\bigcup_{i=1}^{k} V\left(H_{i}\right)$.

Wang [4] considered partitioning a graph into cycles passing through specified edges, and conjectured that if $k \geq 2, n$ is sufficiently large compared with k, and $\sigma_{2}(G) \geq n+2 k-2$, then for any independent edges e_{1}, \cdots, e_{k}, G can be partitioned into cycles H_{1}, \cdots, H_{k} such that $e_{i} \in E\left(H_{i}\right)$. This conjecture was completely solved by Egawa et al. [3].

Theorem B Suppose $k \geq 2,|G|=n \geq 3 k$ and either

$$
\sigma_{2}(G) \geq \max \left\{n+2 k-2,\left\lfloor\frac{n}{2}\right\rfloor+4 k-2\right\}
$$

or

$$
\delta(G) \geq \max \left\{\left\lceil\frac{n}{2}\right\rceil+k-1,\left\lceil\frac{n+5 k}{3}\right\rceil-1\right\}
$$

Then for any independent edges e_{1}, \cdots, e_{k}, G can be partitioned into cycles H_{1}, \cdots, H_{k} such that $e_{i} \in E\left(H_{i}\right)$.

In this paper, we consider analogous results for a bipartite graph, and in the rest of this paper, G denotes a bipartite graph with partite sets V_{1} and V_{2} satisfying $\left|V_{1}\right|=\left|V_{2}\right|=n$.

Wang [5] proved the following analogue of Theorem A for bipartite graphs.
Theorem C Suppose $n \geq 2 k+1$ and $\delta(G) \geq n / 2+1$. Then G can be partitioned into k cycles.

The assumption $\delta(G) \geq n / 2+1$ is sharp when $n=2 k+1$. However, a weaker condition is sufficient when n is large.

Theorem D (Chen et al. [2]) Suppose $n \geq \max \left\{51, k^{2} / 2+1\right\}$ and $\delta_{1,1}(G) \geq n+1$. Then G can be partitioned into k cycles.

Wang [6] conjectured that if $k \geq 2, n$ is sufficiently large compared with k, and $\sigma_{1,1}(G) \geq n+k$, then for any independent edges e_{1}, \cdots, e_{k}, G can be partitioned into cycles H_{1}, \cdots, H_{k} such that $e_{i} \in E\left(H_{i}\right)$, and verified it when $k \leq 3$.

In this paper, we solve this conjecture affirmatively.
Theorem 1 Suppose $k \geq 2, n \geq 2 k$, and either

$$
\sigma_{1,1}(G) \geq \max \left\{n+k,\left\lceil\frac{2 n-1}{3}\right\rceil+2 k\right\}
$$

or

$$
\delta(G) \geq \max \left\{\left\lceil\frac{n+k}{2}\right\rceil,\left\lceil\frac{2 n+4 k}{5}\right\rceil\right\}
$$

Then for any independent edges e_{1}, \cdots, e_{k}, G can be partitioned into cycles H_{1}, \cdots, H_{k} such that $e_{i} \in E\left(H_{i}\right)$.

Note that $n+k \geq\left\lceil\frac{2 n-1}{3}\right\rceil+2 k$ if and only if $n \geq 3 k-1$, and $\left\lceil\frac{n+k}{2}\right\rceil \geq\left\lceil\frac{2 n+4 k}{5}\right\rceil$ if and only if $n=3 k-5, n=3 k-3$ or $n \geq 3 k-1$.

Theorem 1 is an immediate corollary of the following two theorems: One solves the packing problem, and the other one extends a packing to a partition.

Theorem 2 Suppose $n \geq 2 k$, and either

$$
\sigma_{1,1}(G) \geq \max \left\{n+k,\left\lceil\frac{2 n-1}{3}\right\rceil+2 k\right\}
$$

or

$$
\delta(G) \geq \max \left\{\left\lceil\frac{n+k}{2}\right\rceil,\left\lceil\frac{2 n+4 k}{5}\right\rceil\right\}
$$

Then for any independent edges e_{1}, \cdots, e_{k}, G contains k disjoint cycles C_{1}, \cdots, C_{k} such that $e_{i} \in E\left(C_{i}\right)$ and $\left|C_{i}\right| \leq 6$.

Theorem 3 Suppose $k \geq 2, \sigma_{1,1}(G) \geq n+k, C_{1}, \cdots, C_{k}$ are disjoint cycles and $e_{i} \in E\left(C_{i}\right)$. Then there exist disjoint cycles H_{1}, \cdots, H_{k} satisfying $V(G)=\bigcup_{i=1}^{k} V\left(H_{i}\right)$ and $e_{i} \in E\left(H_{i}\right)$.

The sharpness of the assumptions will be discussed in the final section.
We will use the notation $C[u, v]$ to denote the segment of the cycle C from u to v (including u and v) under some orientation of C, and $C[u, v)=C[u, v]-\{v\}$ and $C(u, v)=C[u, v]-\{u, v\}$. Given a cycle C with an orientation, we let v^{+} (resp. v^{-}) denote the successor (resp. the predecessor) of v along C according to this orientation, and $v^{++}=\left(v^{+}\right)^{+}$(resp. $\left.v^{--}=\left(v^{-}\right)^{-}\right)$.

Let $F=\left\{e_{1}, \cdots, e_{k}\right\}$ be a set of independent edges, where $e_{i}=x_{i} y_{i}, x_{i} \in V_{1}, y_{i} \in$ V_{2}, and set $T=\left\{x_{1}, y_{1}, \cdots, x_{k}, y_{k}\right\}$. A set of disjoint cycles $\left\{C_{1}, \cdots, C_{r}\right\}$ is called admissible for F if $\left|E\left(C_{i}\right) \cap F\right|=1$ and $\left|V\left(C_{i}\right) \cap T\right|=2$ for $1 \leq i \leq r$.

2 Proof of Theorem 2

The following lemma will be used several times in the proof of Theorem 2.
Lemma 4 Suppose C is a cycle in $G, e \in E(C), u \in V(G-C) \cap V_{1}, v \in V(G-C) \cap V_{2}$ and $d_{C}(u)+d_{C}(v) \geq|C| / 2+2$. Then, either $\langle V(C) \cup\{v\}\rangle$ contains a shorter cycle than C passing through e, or there exists $w \in N_{C}(u)$ such that $\langle V(C) \cup\{v\}-\{w\}\rangle$ contains a cycle passing through e.

Proof. If $d_{C}(v) \geq 3,\langle V(C) \cup\{v\}\rangle$ contains a shorter cycle than C passing through e. Hence we may assume that $d_{C}(v) \leq 2$. Then $d_{C}(v)=2$ and $d_{C}(u)=|C| / 2$, that is, $N_{C}(u)=V(C) \cap V_{2}$. We may assume that $N_{C}(v)=\{a, b\}$ with $e \in E(C[b, a])$. If $|C(a, b)|>1,\langle V(C) \cup\{v\}\rangle$ contains a shorter cycle than C passing through e. Hence we may assume that $C(a, b)=\{w\}$. Then $w \in N_{C}(u)$ and $\langle V(C) \cup\{v\}-\{w\}\rangle$ contains a (spanning) cycle passing through e.

Let G be an edge-maximal counterexample of Theorem 2, and set $F=\left\{e_{1}, \cdots, e_{k}\right\}$. In the rest of the proof, 'admissible' means 'admissible for F,' and a cycle is called short if its length is equal to 4 or 6 . If G is a complete bipartite graph, G contains k admissible cycles of length 4 . Hence G is not complete bipartite. Let $x \in V_{1}$ and $y \in V_{2}$ be nonadjacent vertices of G, and define $G^{\prime}=G+x y$, the graph obtained from G by adding the edge $x y$. Then G^{\prime} is not a counterexample by the maximality of G, and so G^{\prime} contains admissible short cycles C_{1}, \cdots, C_{k}. Without loss of generality, we may assume that $x y \notin \bigcup_{i=1}^{k-1} E\left(C_{i}\right)$. This means that G contains $k-1$ admissible short cycles C_{1}, \cdots, C_{k-1} such that $\sum_{i=1}^{k-1}\left|C_{i}\right| \leq 2 n-4$. We choose those admissible short cycles C_{1}, \cdots, C_{k-1} so that $\sum_{i=1}^{k-1}\left|C_{i}\right|$ is as small as possible. Let L be the subgraph of G induced by $\bigcup_{i=1}^{k-1} V\left(C_{i}\right)$.

We may assume that $e_{i} \in E\left(C_{i}\right), 1 \leq i \leq k-1$. Let $e_{i}=x_{i} y_{i}$ with $x_{i} \in V_{1}$ and $y_{i} \in V_{2}$ for $1 \leq i \leq k, M=G-L,|M|=2 m$, and $D=M-\left\{x_{k}, y_{k}\right\}$. Note that $|D| \geq 2$ and $\left|\bar{V}(D) \cap V_{1}\right|=\left|V(D) \cap V_{2}\right|$. In most parts of the proof, we only use the assumption that $\sigma_{1,1}(G) \geq n+k$.

Claim 2.1 We may assume that $d_{D}\left(x_{k}\right)>0$ and $d_{D}\left(y_{k}\right)>0$.

Proof. Suppose $d_{D}\left(x_{k}\right)=0$ and take any $z \in V(D) \cap V_{2}$. Then

$$
d_{M}\left(x_{k}\right)+d_{M}(z) \leq 1+(m-1)=m .
$$

This implies that

$$
d_{L}\left(x_{k}\right)+d_{L}(z) \geq n+k-m=k+\sum_{i=1}^{k-1} \frac{\left|C_{i}\right|}{2}>\sum_{i=1}^{k-1}\left(\frac{\left|C_{i}\right|}{2}+1\right) .
$$

This means that for some $i, 1 \leq i \leq k-1$,

$$
d_{C_{\mathbf{i}}}\left(x_{k}\right)+d_{C_{\mathbf{i}}}(z) \geq \frac{\left|C_{i}\right|}{2}+2 .
$$

By Lemma 4, there exists $w \in N_{C_{i}}\left(x_{k}\right)$ such that $\left\langle V\left(C_{i}\right) \cup\{z\}-\{w\}\right\rangle$ contains a cycle passing through e_{i}.

Similarly, by replacing cycles if necessary, we may assume that $N_{D}\left(y_{k}\right) \neq \emptyset$.
Take any $z \in N_{D}\left(x_{k}\right)$ and $z^{\prime} \in N_{D}\left(y_{k}\right)$. Since M does not contain an admissible short cycle, z and z^{\prime} are nonadjacent.

We distinguish two cases according to the value $|D|$.
Case 1. $|D| \geq 4$.
Claim 2.2 We may assume that $d_{D}(z)>0$ and $d_{D}\left(z^{\prime}\right)>0$.
Proof. Suppose $N_{D}(z)=\emptyset$ and take any $w \in V(D) \cap V_{1}-\left\{z^{\prime}\right\}$. Then

$$
d_{M}(z)+d_{M}(w) \leq 1+(m-1)=m .
$$

The rest of the proof is similar to that of Claim 2.1.
Take any $w \in N_{D}(z)$ and $w^{\prime} \in N_{D}\left(z^{\prime}\right)$. Let

$$
D_{1}=N_{D}\left(y_{k}\right) \cap N_{D}\left(w^{\prime}\right)-\left\{z^{\prime}\right\},
$$

and

$$
D_{2}=N_{D}\left(x_{k}\right) \cap N_{D}(w)-\{z\} .
$$

Claim 2.3 We may assume that $\left|D_{1}\right|+\left|D_{2}\right| \leq m-3$.
Proof. Suppose $\left|D_{1}\right|+\left|D_{2}\right| \geq m-2$. Then $D_{1} \neq \emptyset$ and $D_{2} \neq \emptyset$. Take any $u \in D_{2}$ and $u^{\prime} \in D_{1}$. Since $N_{D_{1}}(u)=\emptyset$ and $N_{D_{2}}\left(u^{\prime}\right)=\emptyset$,

$$
d_{M}(u)+d_{M}\left(u^{\prime}\right) \leq\left(m-\left|D_{1}\right|-1\right)+\left(m-\left|D_{2}\right|-1\right)=2 m-\left(\left|D_{1}\right|+\left|D_{2}\right|\right)-2 \leq m .
$$

By Lemma 4, we can replace the cycles to decrease $\left|D_{1}\right|+\left|D_{2}\right|$.

Let $S=\left\{w, z, x_{k}, y_{k}, z^{\prime}, w^{\prime}\right\}$. Since

$$
d_{M}(S)=10+|E(S, M-S)| \leq 10+|M-S|+\left|D_{1}\right|+\left|D_{2}\right| \leq 3 m+1
$$

we get

$$
d_{L}(S) \geq 3(n+k)-3 m-1=\sum_{i=1}^{k-1} \frac{3}{2}\left|C_{i}\right|+3 k-1>\sum_{i=1}^{k-1}\left(\frac{3}{2}\left|C_{i}\right|+3\right) .
$$

This means that for some i,

$$
d_{C_{i}}(S) \geq \frac{3}{2}\left|C_{i}\right|+4
$$

First, suppose $C_{i}=x_{i} y_{i} a a^{\prime} x_{i}$ and $d_{C_{i}}(S) \geq 10$. If $w a^{\prime}, y_{k} a, z^{\prime} y_{i}, w^{\prime} x_{i}$ are edges in $G,\left\langle S \cup V\left(C_{i}\right)\right\rangle$ contains two admissible cycles $x_{k} y_{k} a a^{\prime} w z x_{k}$ and $x_{i} y_{i} z^{\prime} w^{\prime} x_{i}$. So $\left|E(G) \cap\left\{w a^{\prime}, y_{k} a, z^{\prime} y_{i}, w^{\prime} x_{i}\right\}\right| \leq 3$. Similarly, $\left|E(G) \cap\left\{w^{\prime} a, x_{k} a^{\prime}, z x_{i}, w y_{i}\right\}\right| \leq 3$. This means that $z a$ and $z^{\prime} a^{\prime}$ are edges. If $z x_{i}$ and $x_{k} a^{\prime}$ are edges, $\left\langle S \cup V\left(C_{i}\right)\right\rangle$ contains two admissible cycles $x_{k} y_{k} z^{\prime} a^{\prime} x_{k}$ and $x_{i} y_{i} a z x_{i}$. So $\left|E(G) \cap\left\{z x_{i}, x_{k} a^{\prime}\right\}\right| \leq 1$. Similarly, $\left|E(G) \cap\left\{z^{\prime} y_{i}, y_{k} a\right\}\right| \leq 1$. This means that $w a^{\prime}, w y_{i}, w^{\prime} x_{i}, w^{\prime} a$ are edges. Then $\left\langle S \cup V\left(C_{i}\right)\right\rangle$ contains two admissible cycles $x_{k} y_{k} z^{\prime} a^{\prime} w z x_{k}$ and $x_{i} y_{i} a w^{\prime} x_{i}$.

Next, suppose $C_{i}=x_{i} y_{i} a b b^{\prime} a^{\prime} x_{i}$ and $d_{C_{\mathbf{i}}}(S) \geq 13$. Note that $d_{C_{i}}(s) \leq 2$ for every $s \in S-\left\{x_{k}, y_{k}\right\}$ by the minimality of L. Hence $d_{C_{i}}\left(\left\{x_{k}, y_{k}, z, z^{\prime}\right\}\right) \geq 9$. By symmetry, we may assume that $d_{C_{i}}\left(x_{k}\right)=3$ and $d_{C_{\mathrm{i}}}\left(z^{\prime}\right)=2$. Then $x_{k} b$ and $z^{\prime} b$ are edges, and $x_{k} y_{k} z^{\prime} b x_{k}$ is an admissible cycle shorter than C_{i}.

Case 2. $|D|=2$.
Claim 2.4 For some $i,\left|C_{i}\right|=4$ and $d_{C_{i}}(z)=d_{C_{i}}\left(z^{\prime}\right)=2$.
Proof. Since $d_{M}(z)=d_{M}\left(z^{\prime}\right)=1$,

$$
\sum_{i=1}^{k-1} d_{C_{i}}\left(\left\{z, z^{\prime}\right\}\right) \geq n+k-2=\sum_{i=1}^{k-1}\left|C_{i}\right| / 2+k>\sum_{i=1}^{k-1}\left(\left|C_{i}\right| / 2+1\right) .
$$

This means that $d_{C_{i}}\left(\left\{z, z^{\prime}\right\}\right) \geq\left|C_{i}\right| / 2+2$ for some i. On the other hand, $d_{C_{i}}\left(\left\{z, z^{\prime}\right\}\right) \leq$ 4. Hence $\left|C_{i}\right|=4$ and $d_{C_{i}}(z)=d_{C_{i}}\left(z^{\prime}\right)=2$.

We may assume that $d_{C_{k-1}}(z)=d_{C_{k-1}}\left(z^{\prime}\right)=2$ and $C_{k-1}=x_{k-1} y_{k-1} w w^{\prime} x_{k-1}$. Let $L^{\prime}=L-C_{k-1}, M^{\prime}=G-L^{\prime}$ and $S=\left\{w, z, x_{k}, y_{k}, z^{\prime}, w^{\prime}\right\}$.

Now we use the assumption that $\sigma_{1,1}(G) \geq \frac{2 n-1}{3}+2 k$ or $\delta(G) \geq \frac{2 n+4 k}{5}$. First, suppose $\sigma_{1,1}(G) \geq \frac{2 n-1}{3}+2 k$. Since $w y_{k}, z z^{\prime}, x_{k} w^{\prime} \notin E(G)$,

$$
d_{G}(S) \geq 3 \sigma_{1,1}(G) \geq 2 n+6 k-1
$$

Since $d_{M^{\prime}}(S) \leq 18$,

$$
d_{L^{\prime}}(S) \geq 2 n+6 k-19=\sum_{i=1}^{k-2}\left|C_{i}\right|+6 k-11>\sum_{i=1}^{k-2}\left(\left|C_{i}\right|+6\right) .
$$

This means that $d_{C_{i}}(S) \geq\left|C_{i}\right|+7$ for some $i, 1 \leq i \leq k-2$.
Suppose $C_{i}=x_{i} y_{i} a a^{\prime} x_{i}$ and $d_{C_{i}}(S) \geq 11$. By symmetry, we may assume that $d_{C_{i}}\left(x_{k}\right)=d_{C_{i}}\left(z^{\prime}\right)=d_{C_{i}}\left(w^{\prime}\right)=2$. If $y_{k} a$ is an edge, $\left\langle V\left(M^{\prime}\right) \cup V\left(C_{i}\right)\right\rangle$ contains three admissible cycles $x_{k} y_{k} a a^{\prime} x_{k}, x_{k-1} y_{k-1} w z x_{k-1}$ and $x_{i} y_{i} z^{\prime} w^{\prime} x_{i}$. On the other hand, if $z x_{i}$ and $z a$ are edges, $\left\langle V\left(M^{\prime}\right) \cup V\left(C_{i}\right)\right\rangle$ contains three admissible cycles $x_{k} y_{k} z^{\prime} a^{\prime} x_{k}$, $x_{k-1} y_{k-1} w w^{\prime} x_{k-1}$ and $x_{i} y_{i} a z x_{i}$.

Suppose $C_{i}=x_{i} y_{i} a b b^{\prime} a^{\prime} x_{i}$ and $d_{C_{i}}(S) \geq 13$. By symmetry, we may assume that $d_{C_{i}}\left(x_{k}\right)=3$ and $d_{C_{i}}\left(z^{\prime}\right)=2$. Then $x_{k} b$ and $z^{\prime} b$ are edges, and $x_{k} y_{k} z^{\prime} b x_{k}$ is an admissible cycle shorter than C_{i}.

Next, suppose $\delta(G) \geq \frac{2 n+4 k}{5}$, and let $S^{\prime}=\left\{x_{k}, y_{k}, z, z^{\prime}\right\}$. Then

$$
\begin{aligned}
d_{L^{\prime}}\left(\left\{w, w^{\prime}\right\}\right)+2 d_{L^{\prime}}\left(S^{\prime}\right) & \geq 10 \delta(G)-30 \geq 4 n+8 k-30 \\
& =2 \sum_{i=1}^{k-2}\left|C_{i}\right|+8 k-14>\sum_{i=1}^{k-2}\left(2\left|C_{i}\right|+8\right) .
\end{aligned}
$$

This means that

$$
d_{C_{i}}\left(\left\{w, w^{\prime}\right\}\right)+2 d_{C_{\mathbf{i}}}\left(S^{\prime}\right) \geq 2\left|C_{i}\right|+9
$$

for some $i, 1 \leq i \leq k-2$. Suppose $C_{i}=x_{i} y_{i} a a^{\prime} x_{i}$ and $d_{C_{i}}\left(\left\{w, w^{\prime}\right\}\right)+2 d_{C_{i}}\left(S^{\prime}\right) \geq$ 17. In particular, $d_{C_{i}}\left(S^{\prime}\right) \geq 7$. By symmetry, we may assume that $d_{C_{i}}\left(x_{k}\right)=$ $d_{C_{i}}\left(z^{\prime}\right)=2$. If $z x_{i}$ and $z a$ are edges, $\left\langle V\left(M^{\prime}\right) \cup V\left(C_{i}\right)\right\rangle$ contains three admissible cycles. Similarly, if $w^{\prime} x_{i}$ and $w^{\prime} a$ are edges, $\left\langle V\left(M^{\prime}\right) \cup V\left(C_{i}\right)\right\rangle$ contains three admissible cycles. Hence $\left|E(G) \cap\left\{z x_{i}, z a\right\}\right| \leq 1$ and $\left|E(G) \cap\left\{w^{\prime} x_{i}, w^{\prime} a\right\}\right| \leq 1$. This means $w a^{\prime}, w y_{i}, y_{k} a$ are edges. Furthermore, either $z x_{i}$ or $z a$ is an edge, but in either case $\left\langle V\left(M^{\prime}\right) \cup V\left(C_{i}\right)\right\rangle$ contains three admissible cycles. Suppose $C_{i}=x_{i} y_{i} a b b^{\prime} a^{\prime} x_{i}$ and $d_{C_{i}}\left(\left\{w, w^{\prime}\right\}\right)+2 d_{C_{i}}\left(S^{\prime}\right) \geq 21$. By symmetry, we may assume that $d_{C_{i}}\left(x_{k}\right)=3$ and $d_{C_{i}}\left(z^{\prime}\right)=2$. Then $x_{k} b$ and $z^{\prime} b$ are edges, and $x_{k} y_{k} z^{\prime} b x_{k}$ is an admissible cycle shorter than C_{i}.

This completes the proof of Theorem 2.

3 Proof of Theorem 3

We prepare several lemmas before proving Theorem 3.
Lemma 5 Suppose $k \geq 2, G$ is not complete bipartite, and $\sigma_{1,1}(G) \geq n+k$. Then G is $(k+1)$-connected.

Proof. Suppose G is not ($k+1$)-connected. Then $G-S$ is disconnected for some S with $|S| \leq k$. Let A be a component of $G-S$, and $B=V(G)-(S \cup A)$. We may assume that $\left|A \cap V_{1}\right|+\left|B \cap V_{2}\right| \geq\left|A \cap V_{2}\right|+\left|B \cap V_{1}\right|$. First, suppose $A \cap V_{1} \neq \emptyset$ and $B \cap V_{2} \neq \emptyset$, and take $u \in A \cap V_{1}$ and $v \in B \cap V_{2}$. Then

$$
\begin{aligned}
d_{G}(u)+d_{G}(v) & \leq\left|A \cap V_{2}\right|+\left|B \cap V_{1}\right|+|S| \\
& \leq|G-S| / 2+|S| \\
& \leq n+k / 2,
\end{aligned}
$$

but this contradicts the assumption. Next, suppose $A \cap V_{1}=\emptyset$ or $B \cap V_{2}=\emptyset$. By symmetry, we may assume that $A \cap V_{1}=\emptyset$. If $B \cap V_{1}=\emptyset, n=\left|V_{1}\right| \leq|S| \leq k$. On the other hand, $k \leq n-2$, since $\sigma_{1,1}(G) \leq 2 n-2$ when G is not complete bipartite. This is a contradiction. Hence $B \cap V_{1} \neq \emptyset$. Take $u \in B \cap V_{1}$ and $v \in A \cap V_{2}$. Then $d_{G}(u) \leq n-1$ and $d_{G}(v) \leq|S| \leq k$. This contradicts the assumption that $\sigma_{1,1}(G) \geq n+k$.

Lemma 6 Suppose C is a cycle in $G, e \in E(C), u \in V(G-C) \cap V_{1}, v \in V(G-C)$ $\cap V_{2}$, and G contains no cycle D satisfying $e \in E(D)$ and $V(D)$ properly contains $V(C)$. Then
(1) $d_{C}(u)+d_{C}(v) \leq|C| / 2+1$.
(2) If $d_{C}(u)+d_{C}(v)=|C| / 2+1$, u and v belong to different components of $G-C$.

Proof. We may assume that $C=w_{1} w_{2} \cdots w_{r} w_{1}$ with $e=w_{1} w_{r}$ and $w_{1} \in V_{1}$.
(1) If $d_{C}(u)+d_{C}(v) \geq|C| / 2+2$, there exist i and $j(1 \leq i<j \leq r-1)$ with $v w_{i}, u w_{i+1}, v w_{j}, u w_{j+1} \in E(G)$. Then the cycle

$$
w_{1} \cdots w_{i} v w_{j} \cdots w_{i+1} u w_{j+1} \cdots w_{r} w_{1}
$$

passes through e and properly contains $V(C)$.
(2) Suppose $d_{C}(u)+d_{C}(v)=|C| / 2+1$ and u and v belong to the same component of $G-C$. Then there exists $i(1 \leq i \leq r-1)$ with $v w_{i}, u w_{i+1} \in E(G)$, and a path P connecting u and v in $G-C$. By joining P and $u w_{i+1} \cdots w_{r} w_{1} \cdots w_{i} v$, we get a cycle that passes through e and properly contains $V(C)$.

A set of admissible cycles $\left\{C_{1}, \cdots, C_{r}\right\}$ is called maximal if there are no admissible cycles D_{1}, \cdots, D_{r} such that $\bigcup_{i=1}^{r} V\left(D_{i}\right)$ properly contains $\bigcup_{i=1}^{r} V\left(C_{i}\right)$.

Lemma 7 Suppose $\left\{C_{1}, \cdots, C_{k}\right\}$ is a maximal set of admissible cycles, and $\sigma_{1,1}(G) \geq$ $n+k$. Then $G-\bigcup_{i=1}^{k} V\left(C_{i}\right)$ is connected.

Proof. Suppose $M=G-\bigcup_{i=1}^{k} V\left(C_{i}\right)$ is not connected. Let M_{0} be a component of M and set $M_{1}=M-M_{0}$. We may assume that $\left|V\left(M_{0}\right) \cap V_{1}\right| \geq\left|V\left(M_{0}\right) \cap V_{2}\right|$. Then $\left|V\left(M_{1}\right) \cap V_{1}\right| \leq\left|V\left(M_{1}\right) \cap V_{2}\right|$. Take $u \in V\left(M_{0}\right) \cap V_{1}$ and $v \in V\left(M_{1}\right) \cap V_{2}$. Then

$$
d_{M}(u)+d_{M}(v) \leq\left|V\left(M_{0}\right) \cap V_{2}\right|+\left|V\left(M_{1}\right) \cap V_{1}\right| \leq|M| / 2 .
$$

Hence

$$
\sum_{i=1}^{k}\left(d_{C_{\mathrm{i}}}(u)+d_{C_{\mathrm{i}}}(v)\right) \geq n+k-|M| / 2=\sum_{i=1}^{k}\left(\left|C_{i}\right| / 2+1\right) .
$$

If $d_{C_{i}}(u)+d_{C_{i}}(v) \geq\left|C_{i}\right| / 2+2$ for some i, there exists a cycle D in $\left\langle V\left(C_{i}\right) \cup V(M)\right\rangle$ that passes through e_{i} and properly contains $V\left(C_{i}\right)$ by Lemma 6. This contradicts the maximality of $\left\{C_{1}, \cdots, C_{k}\right\}$. Hence $d_{C_{i}}(u)+d_{C_{i}}(v)=\left|C_{i}\right| / 2+1$ for all i and $d_{M}(u)+d_{M}(v)=|M| / 2$. This means that $\left|V\left(M_{0}\right) \cap V_{1}\right|=\left|V\left(M_{0}\right) \cap V_{2}\right|$, $\left|V\left(M_{1}\right) \cap V_{1}\right|=\left|V\left(M_{1}\right) \cap V_{2}\right|$, and $d_{M}(u)=V\left(M_{0}\right) \cap V_{2}$ and $d_{M}(v)=V\left(M_{1}\right) \cap V_{1}$. This
holds for any $u \in V\left(M_{0}\right) \cap V_{1}$ and $v \in V\left(M_{1}\right) \cap V_{2}$. Hence M_{0} and M_{1} are complete bipartite. Take any $u^{\prime} \in V\left(M_{0}\right) \cap V_{2}$ and $v^{\prime} \in V\left(M_{1}\right) \cap V_{1}$. By the same arguments as above, $d_{C_{i}}\left(u^{\prime}\right)+d_{C_{i}}\left(v^{\prime}\right)=\left|C_{i}\right| / 2+1$ for all i. Then $d_{C_{1}}\left(\left\{u, u^{\prime}, v, v^{\prime}\right\}\right)=\left|C_{1}\right|+2$. By symmetry, we may assume that $d_{C_{1}}(u)+d_{C_{1}}\left(u^{\prime}\right) \geq\left|C_{1}\right| / 2+1$. Since u and u^{\prime} belong to the same component of M, there exists a cycle D in $\left\langle V\left(C_{1}\right) \cup V(M)\right\rangle$ that passes through e_{1} and properly contains $V\left(C_{1}\right)$ by Lemma 6 . This contradicts the maximality of $\left\{C_{1}, \cdots, C_{k}\right\}$.

Proof of Theorem 3. Let $F=\left\{e_{1}, \cdots, e_{k}\right\}, e_{i}=x_{i} y_{i}, x_{i} \in V_{1}, y_{i} \in V_{2}$, and in the rest of the proof, 'admissible' means 'admissible for F.'

Choose admissible cycles C_{1}, \cdots, C_{k} such that $\sum_{i=1}^{k}\left|C_{i}\right|$ takes the maximum value, and set $\mathcal{C}=\left\{C_{1}, \cdots, C_{k}\right\}$. Let $L=\left\langle\bigcup_{i=1}^{k} V\left(C_{i}\right)\right\rangle$ and $M=G-L$. Since \mathcal{C} is maximal, M is connected by Lemma 7 .

Claim 3.1 Either $N_{C_{\mathbf{i}}}(M) \cap V_{1}=\emptyset$ or $N_{C_{i}}(M) \cap V_{2}=\emptyset$ for every $i, 1 \leq i \leq k$.
Proof. Suppose $N_{C_{i}}(M) \cap V_{1} \neq \emptyset$ and $N_{C_{i}}(M) \cap V_{2} \neq \emptyset$. We may assume $i=1$, and choose $u w$ and $v z \in E(G)$ with $u \in V(M) \cap V_{1}, v \in V(M) \cap V_{2}$, and $w, z \in V\left(C_{1}\right)$ satisfying $e_{1} \in E\left(C_{1}[z, w]\right)$ and $N(M) \cap C_{1}(w, z)=\emptyset$. If $z=w^{+}$, there exists a longer admissible cycle than C_{1} in $\left\langle V\left(C_{1}\right) \cup V(M)\right\rangle$, which contradicts the choice of \mathcal{C}. Hence $\left|C_{1}(w, z)\right| \geq 2$. Let D be the cycle obtained by joining $C_{1}[z, w]$, a path P connecting u and v in M, and the two edges $u w$ and $v z$. If

$$
d_{C_{1}[z, w]}\left(\left\{w^{+}, z^{-}\right\}\right) \geq\left|C_{1}[z, w]\right| / 2+2,
$$

$C_{1}\left[w^{+}, z^{-}\right]$can be inserted into D, and $\left\langle V(D) \cup C_{1}\left[w^{+}, z^{-}\right]\right\rangle$contains a spanning cycle passing through e_{1}. This contradicts the choice of \mathcal{C}. Hence

$$
d_{C_{1}[z, w]}\left(\left\{w^{+}, z^{-}\right\}\right) \leq\left|C_{1}[z, w]\right| / 2+1 .
$$

Similarly, if

$$
d_{C_{\mathbf{i}}}\left(\left\{w^{+}, z^{-}\right\}\right) \geq\left|C_{i}\right| / 2+1
$$

for some $i(2 \leq i \leq k),\left\langle V\left(C_{i}\right) \cup C_{1}\left[w^{+}, z^{-}\right]\right\rangle$contains a spanning cycle passing through e_{i}, and this contradicts the choice of \mathcal{C}. Hence

$$
d_{C_{i}}\left(\left\{w^{+}, z^{-}\right\}\right) \leq\left|C_{i}\right| / 2
$$

On the other hand, if

$$
d_{C_{1}[z, w]}(\{u, v\}) \geq\left|C_{1}[z, w]\right| / 2+2
$$

P can be inserted into C_{1}, and $\left\langle V\left(C_{1}\right) \cup V(P)\right\rangle$ contains a spanning cycle passing through e_{1}, a contradiction. Also,

$$
d_{C_{i}}(\{u, v\}) \leq\left|C_{i}\right| / 2
$$

by Lemma 6 . Since $d_{C_{1}(w, z)}(\{u, v\})=0, d_{C_{1}(w, z)}\left(\left\{w^{+}, z^{-}\right\}\right) \leq\left|C_{1}(w, z)\right|, d_{M}(\{u, v\}) \leq$ $|M|$ and $d_{M}\left(\left\{w^{+}, z^{-}\right\}\right)=0$,

$$
d_{G}\left(\left\{u, v, w^{+}, z^{-}\right\}\right) \leq|M|+\sum_{i=1}^{k}\left|C_{i}\right|+2=2 n+2 .
$$

This is not possible when $k \geq 2$, since $d_{G}(u)+d_{G}\left(z^{-}\right) \geq n+k$ and $d_{G}(v)+d_{G}\left(w^{+}\right) \geq$ $n+k$.

By Lemma $5,\left|N_{L}(M)\right| \geq k+1$. This means $\left|N_{C_{i}}(M)\right| \geq 2$ for some i, and we may assume that $i=1$. Choose two vertices w and z in $N_{C_{1}}(M)$ such that $e_{1} \in E\left(C_{1}[z, w]\right)$ and $N(M) \cap C_{1}(w, z)=\emptyset$. By Claim 3.1, we may assume that $w, z \in V_{2}$.

Claim 3.2 $\left|C_{1}(w, z)\right| \geq 3$.
Proof. Suppose $C_{1}(w, z)=\{a\}$. Then $\left\langle C_{1}[z, w] \cup V(M)\right\rangle$ contains an admissible cycle D such that $V(D)$ properly contains $C_{1}[z, w]$. Since $N_{M}(a)=\emptyset, G-(V(D) \cup$ $\left.\bigcup_{i=2}^{k} V\left(C_{i}\right)\right)$ is disconnected, and $\left\{D, C_{2}, \cdots, C_{k}\right\}$ is not maximal by Lemma 7. This contradicts the choice of \mathcal{C}.

Take any $u \in N_{M}(w), u^{\prime} \in N_{M}(z)$ and $v \in V(M) \cap V_{2}$, and set $S=\left\{w^{+}, z^{--}, u, v\right\}$. Note that $z^{--} \in C_{1}(w, z) \cap V_{2}$ by Claim 3.2. If $e_{1} \neq a a^{+}$and $\left\{a, a^{+}\right\} \subset N\left(\left\{w^{+}, z^{--}\right\}\right)$ for some $a \in C_{1}[z, w)$, then there is an admissible cycle that contains $\left(V\left(C_{1}\right)-\right.$ $\left.\left\{z^{-}\right\}\right) \cup\left\{u, u^{\prime}\right\}$. If $u \neq u^{\prime}$, this contradicts the maximality of the choice of \mathcal{C}. Even if $u=u^{\prime}$, let D be the admissible cycle such that $V(D)=\left(V\left(C_{1}\right)-\left\{z^{-}\right\}\right) \cup\{u\}$. Since $N_{M}\left(z^{-}\right)=\emptyset, G-V(D)-\bigcup_{i=2}^{k} V\left(C_{i}\right)$ is disconnected. By Lemma $7,\left\{D, C_{2}, \cdots, C_{k}\right\}$ is not maximal, but this contradicts the choice of \mathcal{C}. Hence $d_{C_{1}[z, w]}\left(\left\{w^{+}, z^{--}\right\}\right) \leq$ $\left(\left|C_{1}[z, w]\right|+1\right) / 2$. Also, $d_{C_{1}[z, w]}(v)=0$ by Claim 3.1, $d_{C_{1}[z, w]}(u) \leq\left(\left|C_{1}[z, w]\right|+1\right) / 2$, $d_{C_{1}(w, z)}(S)=d_{C_{1}(w, z)}\left(\left\{w^{+}, z^{--}\right\}\right) \leq\left|C_{1}(w, z)\right|, d_{M}(S)=d_{M}(\{u, v\}) \leq|M|$, and $d_{C_{i}}\left(\left\{w^{+}, z^{--}\right\}\right) \leq\left|C_{i}\right| / 2$ and $d_{C_{i}}(\{u, v\}) \leq\left|C_{i}\right| / 2$ for $2 \leq i \leq k$. Summing up these inequalities,

$$
d_{G}(S) \leq|M|+\left|C_{1}(w, z)\right|+\left|C_{1}[z, w]\right|+1+\sum_{i=2}^{k}\left|C_{i}\right|=2 n+1 .
$$

On the other hand, $d_{G}(S) \geq 2(n+k)$ since $w^{+} v, z^{--} u \notin E(G)$. This is a contradiction.

This completes the proof of Theorem 3.

4 Examples

The degree conditions of Theorem 2 are sharp in the following sense. (In the following examples, $E_{i, j}=\left\{x y \mid x \in V_{i}, y \in V_{j}\right\}$.)

Example 1. Suppose $n \geq 2 k$, and let $V(G)=V_{1} \cup V_{2} \cup V_{3} \cup V_{4}$, where $\left|V_{1}\right|=k$, $\left|V_{2}\right|=2 k-1,\left|V_{3}\right|=n-k$ and $\left|V_{4}\right|=n-2 k+1$, and $E(G)=E_{1,2} \cup E_{2,3} \cup E_{3,4}$. Then any k independent edges in $\left\langle V_{1} \cup V_{2}\right\rangle$ cannot be contained in k disjoint cycles, while $\sigma_{1,1}(G)=(2 k-1)+(n-k)=n+k-1$.

Example 2. Suppose $2 k \leq n \leq 3 k-2$, and let $V(G)=\bigcup_{i=1}^{8} V_{i}$, where $\left|V_{1}\right|=$ $\left|V_{2}\right|=n-2 k+1,\left|V_{3}\right|=\left|V_{6}\right|=\lceil(2 n-1) / 3\rceil-k,\left|V_{4}\right|=\left|V_{5}\right|=n-\lceil(2 n-1) / 3\rceil$ and $\left|V_{7}\right|=\left|V_{8}\right|=3 k-1-n$, and $E(G)=\bigcup_{i=1}^{5} E_{i, i+1} \cup E_{6,1} \cup E_{7,8} \cup \bigcup_{i=1}^{3}\left(E_{7,2 i} \cup E_{8,2 i-1}\right)$. Let F_{1} be any perfect matching in $\left\langle V_{1} \cup V_{2}\right\rangle$ and F_{2} be any perfect matching in $\left\langle V_{7} \cup V_{8}\right\rangle$. Then $\left|F_{1} \cup F_{2}\right|=k$, but $F_{1} \cup F_{2}$ cannot be contained in k disjoint cycles. (In fact, if such cycles exist, only edges in F_{2} can be contained in cycles of length 4. Hence $n \geq 3 k-(3 k-1-n)=n+1$, which is impossible.) On the other hand,

$$
\begin{aligned}
\sigma_{1,1}(G) & \geq 2 n-\max \left\{n-2 k+1+n-\left\lceil\frac{2 n-1}{3}\right\rceil, 2\left(\left\lceil\frac{2 n-1}{3}\right\rceil-k\right)\right\} \\
& =\min \left\{2 k-1+\left\lceil\frac{2 n-1}{3}\right\rceil, 2 k+2 n-2\left\lceil\frac{2 n-1}{3}\right\rceil\right\} \\
& =2 k-1+\left\lceil\frac{2 n-1}{3}\right\rceil .
\end{aligned}
$$

Example 3. Suppose $n \geq 2 k$, and let $V(G)=\bigcup_{i=1}^{6} V_{i}$, where $\left|V_{1}\right|=\left|V_{2}\right|=\lceil(n-$ $k+1) / 2\rceil,\left|V_{3}\right|=\left|V_{4}\right|=k-1$ and $\left|V_{5}\right|=\left|V_{6}\right|=\lfloor(n-k+1) / 2\rfloor$, and $E(G)=$ $E_{1,2} \cup E_{1,4} \cup E_{2,3} \cup E_{3,4} \cup E_{3,6} \cup E_{4,5} \cup E_{5,6} \cup\{u v\}$, where $u \in V_{1}$ and $v \in V_{6}$. Let F be any perfect matching in $\left\langle V_{3} \cup V_{4}\right\rangle$. Then $F \cup\{u v\}$ cannot be contained in k disjoint cycles, while $\delta(G)=\lfloor(n-k+1) / 2\rfloor+k-1=\lceil(n+k) / 2\rceil-1$.

Example 4. Suppose $2 k \leq n \leq 3 k-2, n \neq 3 k-3$ and let $s=\lceil(3 n-4 k+1) / 5\rceil$, and $V(G)=\bigcup_{i=1}^{8} V_{i}$, where $\left|V_{1}\right|=\left|V_{2}\right|=\cdots=\left|V_{6}\right|=s$ and $\left|V_{7}\right|=\left|V_{8}\right|=n-3 s$, and $E(G)=\bigcup_{i=1}^{5} E_{i, i+1} \cup E_{6,1} \cup E_{7,8} \cup \bigcup_{i=1}^{3}\left(E_{7,2 i} \cup E_{8,2 i-1}\right)$. Let F_{1} be any perfect matching in $\left\langle V_{1} \cup V_{2}\right\rangle$ and F_{2} be any matching of size $k-s$ in $\left\langle V_{7} \cup V_{8}\right\rangle$. (Note that $n-3 s \geq k-s$.) Then $F_{1} \cup F_{2}$ cannot be contained in k disjoint cycles. (In fact, if such cycles exist, the number of cycles of length 4 is at most $2(n-k-2 s)+(k-s)=2 n-k-5 s$. Hence $n \geq 3 k-(2 n-k-5 s)$, which is impossible.) On the other hand, $\delta(G)=n-s=\lceil(2 n+4 k) / 5\rceil-1$.

The degree condition of Theorem 3 is sharp in the following sense.
Example 5. Suppose $n \geq 2 k+1$, and let $V(G)=V_{1} \cup V_{2} \cup V_{3} \cup V_{4}$, where $\left|V_{1}\right|=1$, $\left|V_{2}\right|=k,\left|V_{3}\right|=n-1$ and $\left|V_{4}\right|=n-k$, and $E(G)=E_{1,2} \cup E_{2,3} \cup E_{3,4}$. Then k independent edges in $\left\langle V_{2} \cup V_{3}\right\rangle$ are contained in k disjoint cycles, but they cannot be extended to a partition. On the other hand, $\sigma_{1,1}(G)=k+(n-1)=n+k-1$.

Furthermore, the assumption $k \geq 2$ in Theorem 1 and in Theorem 3 is necessary.
Example 6. Let $V(G)=\bigcup_{i=1}^{6} V_{i}$, where $\left|V_{1}\right|=\left|V_{2}\right|=m,\left|V_{3}\right|=\left|V_{4}\right|=1,\left|V_{5}\right|=$ $\left|V_{6}\right|=n-m-1$, and $E(G)=E_{1,2} \cup E_{1,4} \cup E_{2,3} \cup E_{3,4} \cup E_{3,6} \cup E_{4,5} \cup E_{5,6}$. Then
$\sigma_{1,1}(G)=n+1$ and the edge e in $E_{3,4}$ is contained in a cycle, but there is no hamiltonian cycle containing e when $1 \leq m \leq n-2$.

From this example, we also see that the assumption $k \geq 2$ is necessary in Lemma 5 .

References

[1] S.Brandt, G.Chen, R.Faudree, R.J.Gould and L.Lesniak, Degree conditions for 2-factors, J. Graph Theory 24 (1997) 165-173.
[2] G.Chen, R.J.Faudree, R.J.Gould, M.S.Jacobson and L.Lesniak, Cycles in 2factors of balanced bipartite graphs, Graphs Combin. 16 (2000) 67-80.
[3] Y.Egawa, R.J.Faudree, E.Győri, Y.Ishigami, R.H.Schelp and H.Wang, Vertexdisjoint cycles containing specified edges, Graphs Combin. 16 (2000) 81-92.
[4] H.Wang, Covering a graph with cycles passing through given edges, J. Graph Theory 26 (1997) 105-109.
[5] H.Wang, On 2-factors of a bipartite graph, J. Graph Theory 31 (1999) 101-106.
[6] H.Wang, Covering a bipartite graph with cycles passing through given edges, Australas. J. Combin. 19 (1999) 115-121.

