Two results concerning distance-regular directed graphs

D. Combe

School of Mathematics The University of New South Wales. NSW 2052 Australia diana@maths.unsw.edu.au

D. E. Taylor

School of Mathematics and Statistics The University of Sydney. NSW 2006 Australia don@maths.usyd.edu.au

Abstract

The study of distance-regular directed graphs can be reduced to that of short distance-regular directed graphs. We consider the eigenspaces of the intersection matrix of a short distance-regular directed graph and show that nearly all the eigenvalues are nonreal. Next we show that a nontrivial short distance-regular directed graph is primitive.

1. INTRODUCTION

Distance-regular and distance-transitive directed graphs are the directed versions of distance-regular and distance-transitive (undirected) graphs. However, in the directed case, very few examples are known. Distance-transitive directed graphs were introduced by Lam [8] and have also been considered by others, for example in [1], [3], [4], [5], [9], [10], [11] and [12].

A directed graph or digraph Γ is a pair $\Gamma = (V, E)$ consisting of a finite set V of vertices and a set E of edges. The elements of E are ordered pairs of distinct elements of V. A (directed) path of length h from x to y is a sequence of vertices $x = x_0, x_1, \ldots, x_h = y$, such that h > 0 and $(x_i, x_{i+1}) \in E$ for $i = 0, 1, \ldots, h - 1$. If x = y then the path is a circuit. A digraph Γ is strongly connected if, for every $x, y \in V$, there is a path from x to y, and is denoted d(x, y). The diameter d of a strongly connected digraph is the maximum value taken by this distance function over all $x, y \in V$. The girth g is the minimum length of a circuit. Clearly $g \leq d + 1$.

For every vertex x we define the *i*th *directed shell* $\Gamma_i(x)$ to be

$$\Gamma_i(x) = \{ w \in V : d(x, w) = i \}.$$

Australasian Journal of Combinatorics 23(2001), pp.27-36

A digraph Γ is distance-regular if it is strongly connected and for all vertices x and y, and for $0 \le i, j \le d$, $|\Gamma_i(x) \cap \Gamma_j(y)|$ depends only on i, j and d(x, y).

An automorphism of a digraph is a permutation ρ of the vertices which preserves the edges; that is $(x, y) \in E$ if and only if $(x^{\rho}, y^{\rho}) \in E$. A strongly connected digraph is distance-transitive if, for all vertices x, y, z, w with d(x, y) = d(z, w), there is an automorphism of the digraph such that $x^{\rho} = z$ and $y^{\rho} = w$. Clearly a distance-transitive digraph is distance-regular.

A directed circuit with n vertices is an example of a distance-transitive digraph with girth g = d + 1 = n. For each prime power $q \equiv 3 \pmod{4}$, the Paley tournament with q vertices is the digraph whose vertices are the elements of the finite field with q elements. There is an edge from x to y if and only if y - x is a nonzero square in the field. A Paley tournament is a distance-transitive digraph with girth g = d + 1 = 3.

Let Γ be a distance-regular digraph. A distance-regular digraph of girth 2 is essentially the same as the underlying undirected graph and so from now on we always assume Γ has girth at least 3. We define an involutory permutation on the set $\{0, 1, \ldots, g\}$, by setting $0^* = 0$, $g^* = g$ and $i^* = g - i$ for 0 < i < g. Damerell [4] showed that for all vertices x, y of Γ , the distance function satisfies $d(y, x) = d(x, y)^*$ and hence the girth and diameter differ by at most 1. A distance-regular digraph is said to be *short* if g = d + 1, otherwise it is said to be *long*. Damerell showed that every long graph can be constructed from an associated short graph thus reducing the classification of distance-regular directed graphs to those which are short.

Leonard and Nomura [9] showed that a short distance-regular directed graph which is not simply a directed circuit has girth at most 8, and, furthermore, that there always exist edges within the first directed shell of any vertex. There are examples of short distance-regular directed graphs of girth 3 or 4, see for example [8], [5], or [10]. Bannai, Cameron and Kahn [1] showed that if the girth of a short distance-transitive directed graph is odd, then g = 3. It is known [7] that in this case the directed graph is a Paley tournament.

In §2 we recall definitions and results concerning the adjacency and intersection algebras of a short distance-regular digraph and prove the first result of this paper. This result was known (Cameron [2]) in the case where the digraph has a distance transitive group of automorphisms.

Theorem A. Let C be the intersection matrix of a short distance-regular directed graph with girth g and valency k. Then C has g distinct eigenvalues, and

- (i) if g is odd, then C has exactly one real eigenvalue k, and
- (ii) if g is even, then C has exactly two real eigenvalues, one of which is k, the other of which is a negative real number.

In §3 we recall the definition of primitivity for a directed graph. Damerell [4] showed that a long distance-regular digraph is imprimitive. It follows immediately that its automorphism group acts imprimitively on the vertices. For short distance-regular digraphs we prove the following theorem:

Theorem B. Let Γ be a short distance-regular directed graph with valency k and n vertices.

- (i) If k = 1, then Γ is a directed circuit with n vertices and is primitive if and only if n is prime.
- (ii) If k > 1, then Γ is primitive.

Corollary. Let Γ be a short distance-regular directed graph with valency k > 1. Then any distance-transitive group of automorphisms acts primitively on the vertices.

2. Adjacency and intersection matrices.

In this section we will always assume that Γ is a short distance-regular digraph with *n* vertices, diameter *d*, girth g = d + 1, and labelled vertex set $V = \{x_1, x_2, \ldots, x_n\}$. For $i, j, k = 0, 1, \ldots, d$, the intersection numbers $p_{i,j,k}$ are

 $p_{i,j,k} = |\Gamma_i(x) \cap \Gamma_{j^*}(y)|, \text{ for } x, y \text{ any vertices of } \Gamma \text{ with } d(x, y) = k.$

For any matrix M of complex numbers, M^{T} denotes the transposed matrix and \overline{M} denotes the complex conjugate.

For any digraph with vertex set $\{y_1, y_2, \ldots, y_m\}$ the *adjacency matrix* A is the matrix of 0s and 1s whose (r, s)-th entry is $(A)_{r,s}$, where

$$(A)_{r,s} = 1$$
 if and only if (y_r, y_s) is an edge.

For i = 0, 1, ..., d, the distance matrix A_i of Γ is the matrix of 0s and 1s with

$$(A_i)_{r,s} = 1$$
 if and only if $d(x_r, x_s) = i$.

Thus A_0 is the identity matrix. The matrix $A = A_1$ is the *adjacency matrix* of the digraph. It is clear that in general $A_{i^*} = A_i^{\mathrm{T}}$, and that A_i is a symmetric matrix if and only if i = 0 or i = g/2.

By counting paths it is easy to see that, for $0 \leq i, h \leq d$, the distance matrices satisfy $A_i A_h = \sum_{j=0}^d p_{i,h,j} A_j$. Hence the linear span of A_1, A_2, \ldots, A_d , is closed under multiplication and is thus an algebra. This is the *adjacency algebra* \mathcal{A} of the digraph. It is well known (see [8]) that the adjacency algebra is commutative with dimension g = d + 1. Each of the sets $\{A_0, A_1, \ldots, A_d\}$ and $\{I, A^1, A^2, \ldots, A^d\}$ forms a basis of \mathcal{A} , where the A_i are the distance matrices and the A^i are the powers of A.

For each i = 0, 1, ..., d-1, we have $p_{i,1,i+1} > 0$ and $A_i A = \sum_{j=0}^{i+1} p_{i,1,j} A_j$. Thus for i = 1, 2, ..., d, this equation recursively defines real polynomials $V_i(x)$ of degree i such that $V_i(A) = A_i$, where $V_0(x) = 1$.

For h = 0, 1, ..., d, the h-th intersection matrix C_h is defined to be the $(d+1) \times (d+1)$ matrix whose (i, j)-th entry is

$$(C_h)_{i,j} = p_{i,h,j} = p_{h,i,j}.$$

The matrix C_0 is the identity matrix. The matrix $C = C_1$ is called the *intersection matrix*. The algebra \mathcal{A} acts on itself by multiplication on the right. Right multiplication by A_h , regarded as a linear mapping of the adjacency algebra to itself with respect to the basis $\{A_0, A_1, \ldots, A_d\}$ can be faithfully represented by the transposed *h*-th intersection matrix C_h^{T} .

The two matrices A and C have the same minimum polynomial and so have the same eigenvalues.

The matrix A is a real nonsymmetric matrix which commutes with its transpose. Therefore A is a normal matrix and hence is diagonalizable; that is, there is a basis of \mathbb{C}^n which consists of eigenvectors of A. Since the minimum polynomial of A has degree d + 1, A has d + 1 distinct eigenvalues, which we denote by $\lambda_0 = 1$, λ_1 , \ldots , λ_d .

We call an eigenvector of a matrix *standard* if its first coordinate is 1.

Lemma 2.1. Let λ be an eigenvalue of C. Then

- (i) we can construct a unique standard left eigenvector $\mathbf{w}(\lambda)$, and a unique standard right eigenvector $\mathbf{v}(\lambda)$ corresponding to λ ,
- (ii) for i = 0, 1, ..., d, the eigenvectors $\mathbf{w}(\lambda)$ and $\mathbf{v}(\lambda)$ are standard left and right eigenvectors of C_i with corresponding eigenvalue $V_i(\lambda)$,
- (iii) the eigenvalue λ is real if and only if $\mathbf{v}(\lambda)$ is a real vector if and only if $\mathbf{w}(\lambda)$ is a real vector, and
- (*iv*) $\mathbf{v}(\overline{\lambda}) = \overline{\mathbf{v}(\lambda)}$ and $\mathbf{w}(\overline{\lambda}) = \overline{\mathbf{w}(\lambda)}$.

Proof. Let λ be any eigenvalue of C. The corresponding left (or right) eigenspace has dimension 1 and so any standard eigenvector must be unique. Right and left eigenvectors in standard form can be constructed in the following manner:

If $\mathbf{v} = [v_0, v_1, \dots, v_d]^T$ then the equation $C\mathbf{v} = \lambda \mathbf{v}$ becomes $\sum_{j=0}^{i+1} p_{i,1,j} v_j = \lambda v_i$. Setting $v_0 = 1$ we get the same system of equations as for the distance matrices. Therefore $v_i = V_i(\lambda)$. The vector $\mathbf{v}(\lambda) = [1, \dots, V_i(\lambda), \dots, V_d(\lambda)]^T$ is the unique standard right eigenvector corresponding to λ .

Similarly a left eigenvector $\mathbf{w}(\lambda)$ corresponding to λ can be constructed. If $\mathbf{w} = [w_0, w_1, \ldots, w_d]$ then the system $\mathbf{w}\lambda = \mathbf{w}C$ becomes $\sum_{i=0}^d w_i p_{1,i,j} = \lambda w_j$. This time each w_j is w_d times a polynomial in λ . Setting $w_d = \frac{\lambda}{k} \neq 0$, we get $\lambda w_0 = w_d p_{d,1,0} = w_d p_{1,d,0} = \frac{\lambda}{k} k = \lambda$. Therefore $w_0 = 1$, and $\mathbf{w}(\lambda) = [1, \ldots, \frac{\lambda}{k}]$, the unique standard left eigenvector corresponding to λ .

For each $i, C_i = V_i(C)$, and so an eigenvector of C corresponding to eigenvalue λ is an eigenvector of C_i with corresponding eigenvalue $V_i(\lambda)$.

Finally, since C is a real matrix, $\mathbf{v}(\overline{\lambda}) = \overline{\mathbf{v}(\lambda)}$ and $\mathbf{w}(\overline{\lambda}) = \overline{\mathbf{w}(\lambda)}$. Furthermore the eigenvalues corresponding to real eigenvectors must be real. Conversely, if λ is a real eigenvalue then for each *i*, the *i*th entry of $\mathbf{v}(\lambda)$ is $V_i(\lambda)$ which is real. Similarly the entries of $\mathbf{w}(\lambda)$ are the values of real polynomials evaluated at λ , and hence are real. Therefore the eigenvalue λ is real if and only if $\mathbf{v}(\lambda)$ is a real vector if and only if $\mathbf{w}(\lambda)$ is a real vector. \Box

The next lemma is a standard result.

Lemma 2.2. If $\lambda_i \neq \lambda_j$ then $\mathbf{w}(\lambda_i)\mathbf{v}(\lambda_j) = 0$. \Box

With respect to the eigenvalues $\lambda_0, \lambda_1, \ldots, \lambda_d$ of C, we define the eigenmatrix Λ of the digraph Γ to be $(d+1) \times (d+1)$ matrix whose *j*th column is the standard eigenvector $\mathbf{v}(\lambda_j)$. We denote the (i, j)th entry of Λ by λ_{ij} . By the previous construction, $\lambda_{ij} = V_i(\lambda_j)$, and the *i*th row of Λ consists of the eigenvalues of C_i . Row 0 of Λ consists of all 1s, and column 0 is $\mathbf{v}(k) = [k_0, k_1, \ldots, k_d]^{\mathrm{T}}$. We prove first that Λ has at most two real columns.

Denote by **K** the diagonal matrix $\mathbf{K} = \text{diag}(k_0, k_1, \dots, k_d)$. For each *i*, the distance matrices A_i and A_{i^*} are related by $A_{i^*} = A_i^{\mathrm{T}}$. The next lemma links C_{i^*} , C_i^{T} and **K**.

Lemma 2.3. For i = 0, 1, ..., d, $C_{i^*}^{\mathrm{T}} = \mathbf{K}^{-1}C_i\mathbf{K}$.

Proof. Let $h, j \in \{0, 1, \ldots, d\}$ and x be a vertex of Γ . We count in two ways the elements of the set $\mathbf{P} = \{(u, v) : u \in \Gamma_i(x), v \in \Gamma_j(x) \text{ and } d(u, v) = h\}$. For each $u \in \Gamma_i(x)$ there are $p_{j,h^*,i} = p_{h^*,j,i}$ corresponding vertices v, and for each $v \in \Gamma_j(x)$ there are $p_{i,h,j} = p_{h,i,j}$ corresponding vertices u.

Therefore $|\mathbf{P}| = k_i p_{h^*,j,i} = k_j p_{h,i,j}$, and thus we have

$$(C_{h^*}^{\mathrm{T}})_{i,j} = p_{h^*,j,i} = k_j p_{h,i,j} k_i^{-1} = k_j (C_h)_{i,j} k_i^{-1}.$$

Hence $C_{i^*}^{\mathrm{T}} = \mathbf{K}^{-1} C_i \mathbf{K}$. \Box

For each $i = 0, 1, \ldots, d$, the matrices C_i and C_{i^*} have the same set of eigenvalues and the same set of standard eigenvectors. The eigenvalues of C are distinct and we define σ to be the permutation of $\{0, 1, \ldots, d\}$ such that $\lambda_{dj} = \lambda_{1j^{\sigma}} (= \lambda_{j^{\sigma}})$. This gives rise to a permutation of the eigenvalues of C which is in fact complex conjugation.

Lemma 2.4. For j = 0, 1, ..., d,

- (i) for i = 0, 1, ..., d we have $\lambda_{ij^{\sigma}} = \overline{\lambda}_{ij} = \lambda_{i^*j}$, and
- (ii) the standard right eigenvector is $\mathbf{v}(\overline{\lambda_i}) = \mathbf{K}\mathbf{w}(\lambda_i)^{\mathrm{T}}$.

Proof. For $j = 0, 1, \ldots, d$ we have

$$\begin{aligned} C\mathbf{K}\mathbf{w}(\lambda_j)^{\mathrm{T}} &= (\mathbf{K}C_d^{\mathrm{T}})\mathbf{w}(\lambda_j)^{\mathrm{T}} \\ &= \mathbf{K}(\mathbf{w}(\lambda_j)C_d)^{\mathrm{T}} \\ &= \mathbf{K}(\lambda_{dj}\mathbf{w}(\lambda_j))^{\mathrm{T}} \\ &= \lambda_{1j^{\sigma}}(\mathbf{K}\mathbf{w}(\lambda_j)^{\mathrm{T}}). \end{aligned}$$

Therefore $\mathbf{Kw}(\lambda_j)^{\mathrm{T}} = \mathbf{v}(\lambda_{j^{\sigma}})$ because the first entry in $\mathbf{Kw}(\lambda_j)^{\mathrm{T}}$ is 1.

Since \mathbf{K} is a diagonal matrix with positive diagonal entries,

$$\mathbf{w}(\overline{\lambda}_j)\mathbf{v}(\lambda_{j^{\sigma}}) = \overline{\mathbf{w}(\lambda_j)}\mathbf{K}\mathbf{w}(\lambda_j)^{\mathrm{T}} > 0.$$

Hence $\overline{\lambda}_j = \lambda_{j\sigma}$, and thus $\mathbf{v}(\overline{\lambda}_j) = \mathbf{v}(\lambda_{j\sigma}) = \mathbf{K}\mathbf{w}(\lambda_j)^{\mathrm{T}}$. Furthermore $\lambda_{ij\sigma} = V_i(\lambda_{j\sigma}) = V_i(\overline{\lambda}_j) = \overline{V_i(\lambda_j)} = \overline{\lambda}_{ij}$.

Finally, for $i, j \in \{0, 1, \ldots, d\}$ we have

$$\begin{split} \lambda_{i^{\star}j} \mathbf{w}(\lambda_j) &= \mathbf{w}(\lambda_j) C_{i^{\star}} \\ &= \mathbf{v}(\overline{\lambda}_j)^{\mathrm{T}} \mathbf{K}^{-1} C_{i^{\star}} \\ &= \mathbf{v}(\overline{\lambda}_j)^{\mathrm{T}} C_i^{\mathrm{T}} \mathbf{K}^{-1} \\ &= (C_i \mathbf{v}(\overline{\lambda}_j))^{\mathrm{T}} \mathbf{K}^{-1} \\ &= \lambda_{ij^{\sigma}} \mathbf{v}(\overline{\lambda}_j)^{\mathrm{T}} \mathbf{K}^{-1} \\ &= \overline{\lambda_{ij}} \mathbf{w}(\lambda_j). \end{split}$$

Therefore $\lambda_{i^*j} = \overline{\lambda}_{ij}$. \Box

As a corollary to this lemma we have

Corollary 2.5. The eigenmatrix Λ has at most two real rows. Furthermore,

- (i) if the girth g is odd, Λ has 1 real row: the 0th row;
- (ii) if the girth g is even, Λ has 2 real rows: the 0th row and row g/2.

Proof. The eigenmatrix is nonsingular since its columns are the d + 1 standard eigenvectors corresponding to the d + 1 distinct eigenvalues of C. Therefore the rows are certainly distinct. However, the previous proposition shows that row i^* and row i are conjugate. Therefore the *i*th row of Λ is real if and only if $i^* = i$. If g is odd, then $i^* = i$ if and only if i = 0. If g is even, then $i^* = i$ if and only if i = 0. If g is even, then $i^* = i$ if and only if i = 0 or g/2. \Box

We can now prove Theorem A.

Theorem A. Let C be the intersection matrix of a short distance-regular directed graph with girth g and valency k. Then C has g distinct eigenvalues, and

- (i) if g is odd, then C has exactly one real eigenvalue k, and
- (ii) if g is even, then C has exactly two real eigenvalues, one of which is k, the other of which is a negative real number.

Proof. The eigenmatrix Λ is nonsingular. The permutation of the entries which takes $\lambda_{ij} \mapsto \lambda_{i^*j}$ is an involution and comes from an involutory permutation of the rows of Λ . Let L be the permutation matrix such that $\Lambda \mapsto L\Lambda$ effects this permutation of the rows. Then $(L\Lambda)_{ij} = \lambda_{i^*j} = \overline{\lambda_{ij}}$.

The action on the columns of Λ , given by $\mathbf{v}(\lambda_j) \mapsto \mathbf{v}(\overline{\lambda_j})$, is also an involution. Let R be the permutation matrix such that $\Lambda \mapsto \Lambda R$ effects this permutation. Then the matrix entry $(\Lambda R)_{ij} = (\mathbf{v}(\overline{\lambda_j}))_i = \overline{\mathbf{v}(\lambda_j)}_i = \overline{\lambda_{ij}} = (L\Lambda)_{ij}$.

Therefore $L\Lambda = \Lambda R$, and so $L = \Lambda^{-1}R\Lambda$. The number of fixed points of a permutation is equal to the trace of the corresponding permutation matrix, and the traces of similar matrices are equal. Therefore L and R have the same number of fixed points in their actions.

By the previous corollary, there are at most two fixed rows, and so C has at most two real standard right eigenvectors and thus at most two real eigenvalues.

The eigenvalue $\lambda_0 = k$ is real and the nonreal eigenvalues occur in conjugate pairs. The number of eigenvalues is g. Therefore, if g is odd, then C has exactly one real eigenvalue. If g is even, then C has exactly two real eigenvalues, one of which is $\lambda_0 = k$, and the rest are pairs of complex conjugate eigenvalues. The product of the eigenvalues is the determinant of C which can be conveniently calculated by expanding down the first column. Thus $\det(C) = -k \prod_{j=0}^{d-1} C_{j,j+1}$, which is $-k \times a$ product of positive integers, and so the second real eigenvalue must be negative. \Box

Note that the argument used in the proof that L and R have the same number of fixed points in their actions is a special case of a combinatorial lemma due to Brauer. (See Feit [6; 12.1, page 66].)

3. Primitivity

Throughout this section $\Gamma = (V, E)$ is a distance-regular digraph, not necessarily short. If the valency k is 1 the digraph is said to be *trivial*, and in this case it is clear that it is simply a directed circuit.

Let $\mathbb{V} = \{I, E_1, \ldots, E_d\}$ be the partition of V^2 defined by $(x, y) \in E_i$ if and only if $y \in \Gamma_i(x)$. For each *i*, we define Γ_i to be the digraph with vertex set *V* and edge set E_i and so Γ_i is the directed graph with adjacency matrix A_i . If i = g/2 then Γ_i has girth 2. The digraphs Γ_i are not necessarily connected.

The digraph Γ is said to be *primitive* if the two trivial relations, I and V^2 , are the only equivalence relations which are unions of members of \mathbb{V} , otherwise Γ is called *imprimitive*.

Lemma 3.1. The digraph Γ is primitive if and only if each Γ_i is connected.

Proof. Clear. \Box

Lemma 3.2. (Damerell [4]) A long distance-regular digraph is imprimitive.

Proof. If Γ is a long distance-regular digraph, then $E = I \cup \Gamma_g$ is a nontrivial equivalence relation and so Γ is imprimitive. \Box

Before we complete the proof of Theorem B, we need several results concerning edges and circuits within directed shells when Γ is nontrivial.

Lemma 3.3. (Leonard and Nomura [9]). If Γ is short and nontrivial then $p_{1,1,1} > 0$. That is, there are edges in the first directed shell. \Box

Corollary 3.4. If Γ is short and nontrivial, and x is any vertex, then there is a closed path entirely contained in $\Gamma_1(x)$.

Proof. Let u_0 be any vertex in $\Gamma_1(x)$. Choose u_1 to be any out-neighbour of u_0 in $\Gamma_1(x)$. Choose u_2 to be any out-neighbour of u_1 in $\Gamma_1(x)$. Continue in this way constructing a path $u_0, u_1, \ldots u_j$ in $\Gamma_1(x)$. Since $\Gamma_1(x)$ is finite, for some smallest m we have $u_m = u_h$ for some h < m. Then $u_h \longrightarrow u_{h+1} \longrightarrow \cdots \longrightarrow u_m = u_h$ is a closed path with all u_j in $\Gamma_1(x)$. \Box

As a further corollary we have that in the first directed shell of any vertex there are vertices y and z with d(y, z) = j for every $j \leq d$; that is, the entries in column 1 of C are all nonzero.

Corollary 3.5. If Γ is short and nontrivial then $p_{1,i,1} > 0$ for $i = 0, 1, \ldots, d$. \Box

Corollary 3.6. If Γ is short and nontrivial then $p_{d,1,i} > 0$ for $i = 0, 1, \ldots, d$.

Proof. Let x, y, z be vertices with d(x, y) = 1, $d(y, z) = i^*$ and d(x, z) = 1. These exist since $p_{1,i^*,1} > 0$. Then $d(z, x) = 1^* = d$, d(x, y) = 1 and $d(z, y) = (i^*)^* = i$. Therefore $p_{d,1,i} > 0$. \Box

Lemma 3.7. If Γ is a short nontrivial distance-regular digraph, and $0 < i \leq g/2$, $x \in V$ and $y \in \Gamma_i(x)$, then there is a vertex $z \in \Gamma_i(x)$ such that 0 < d(y, z) < i.

Proof. Suppose that $0 < i \leq g/2$. We use the commutativity of the intersection matrices and, in particular, the equality $(C_1C_d)_{1i} = (C_dC_1)_{1i}$.

On the one hand we have

$$(C_1 C_d)_{1i} = \sum_{j=0}^d p_{1,1,j} p_{d,j,i} = p_{1,1,1} p_{d,1,i} + p_{1,1,2} p_{d,2,i}$$

and on the other

$$(C_d C_1)_{1i} = \sum_{j=0}^d p_{d,1,j} p_{1,j,i} = p_{d,1,i-1} p_{1,i-1,i} + p_{d,1,i} p_{1,i+1,i} \cdots + p_{d,1,d} p_{1,d,i}.$$

Now $p_{1,1,1} = p_{d,1,d}$ and $p_{d,1,i} = p_{1,d,i}$. Therefore $p_{1,1,2}p_{d,2,i} \ge p_{d,1,i-1}p_{1,i-1,i} > 0$ and so $p_{d,2,i} > 0$. Therefore there are edges from $\Gamma_i(x)$ to $\Gamma_2(x)$.

Now suppose $y \in \Gamma_i(x)$. Since $p_{2,d,i} = p_{d,2,i} > 0$, there exists $w \in \Gamma_2(x) \cap \Gamma_1(y)$. Since d(x, w) = 2 we have $d(w, x) = 2^* = d - 1$ and there is a (minimal) closed path of length g of the form

$$x_0 = x \longrightarrow x_1 \longrightarrow x_2 = w \longrightarrow x_3 \longrightarrow \cdots \longrightarrow x_i \longrightarrow x_{i+1} \longrightarrow \cdots \longrightarrow x_g = x.$$

Setting $z = x_i$ we have $z \in \Gamma_i(x)$, with d(w, z) = i - 2. Since $d(w, y) = d \neq i - 2$, the vertices z and y are distinct elements of $\Gamma_i(x)$.

Therefore $0 < d(y, z) \le d(y, w) + d(w, z) = i - 1 < i$. \Box

Setting i = 2 in this lemma we have that there are edges in the second directed shell.

Corollary 3.8. If Γ is short and nontrivial, then $p_{1,2,2} > 0$. \Box

Corollary 3.9. If Γ is short and nontrivial, and x is any vertex, then there is a closed path entirely contained in $\Gamma_2(x)$. \Box

We can now prove Theorem B.

Theorem B. Let Γ be a short distance-regular directed graph with valency k and n vertices.

- (i) If k = 1 then Γ is a directed circuit with n vertices and is primitive if and only if n is prime.
- (ii) If k > 1 then Γ is primitive.

Proof. (i) If k = 1 then Γ is a directed circuit with n vertices. Clearly in this case Γ is primitive if and only if n is prime.

(ii) Suppose k > 1 and that E is an equivalence relation on V which is a union of members of \mathbb{V} . Then for some ℓ , a divisor of g, $E = I \cup E_{\ell} \cup E_{2\ell} \cup \cdots \cup E_{g-\ell}$. Any two vertices y and z are in the same equivalence class if and only if ℓ divides d(y, z).

Suppose $1 < \ell \leq g/2$, and $x \in V$. The equivalence class containing x also contains $\Gamma_{\ell}(x)$. By the previous lemma there exist $y, z \in \Gamma_{\ell}(x)$ such that $0 < d(y, z) < \ell$. However, since y and z are in the same equivalence class ℓ divides d(y, z). This is a contradiction, and so $\ell = 1$ and the equivalence relation is trivial. Therefore any short nontrivial distance-regular digraph is primitive. \Box

A group G which acts transitively on a set acts *primitively* if the only partitions of the set which it preserves are the trivial ones, and so the corollary follows immediately.

Corollary. Let Γ be a short distance-regular directed graph with valency k > 1. Then any distance-transitive group of automorphisms acts primitively on the vertices.

References

- 1. E. Bannai and P.J. Cameron and J. Kahn, Nonexistence of certain distancetransitive digraphs, J. Combinatorial Theory, Ser. B **31** (1981), 105-110.
- P.J. Cameron, Suborbits in Transitive Permutation Groups, Combinatorics (M. Hall and J. H. Van Lint, eds.), 1974, pp. 98-129.
- 3. D. Combe, Distance-transitive directed graphs and multiplicity free primitive permutation representations with almost no real irreducible constituents, PhD thesis, University of Sydney, 1998.
- R.M. Damerell, *Distance-transitive digraphs*, J. Combinatorial Theory, Ser. B 31 (1981), 46-53.
- H. Enomoto and R.A. Mena, Distance-regular digraphs of girth 4, J. Combinatorial Theory, Ser. B 43 (1987), 293-302.
- 6. W. Feit, Characters of Finite Groups, W.A.Benjamin, Amsterdam, 1967.
- W.M. Kantor, Automorphism groups of designs, Math. Z. 109 (1967), 246-252.
- 8. C.W.H. Lam, Distance-transitive digraphs, Discrete Math. 9 (1980), 265–274.
- D.A. Leonard and K. Nomura, The girth of a directed distance-regular graph, J. Combinatorial Theory, Ser. B 58 (1993), 34-39.
- 10. R.A. Liebler and R.A. Mena, Certain distance-regular digraphs and related rings of characteristic 4, J. Combinatorial Theory, Ser. A 47 (1988), 111-123.

- 11. T. Takashi, Distance-regular digraphs of girth 6, Mem. Fac. Sci., Kyushu Univ., Ser. A 45 (1991), 155-166.
- 12. M. Yamada, Distance regular digraphs of girth 4 over an extension ring of $\mathbb{Z}/4\mathbb{Z}$, Graphs and Combinatorics 6 (1990), 381-394.

(Received 18/6/99)