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Abstract

The study of distance-regular directed graphs can be reduced to that of
short distance-regular directed graphs. We consider the eigenspaces of
the intersection matrix of a short distance-regular directed graph and
show that nearly all the eigenvalues are nonreal. Next we show that a
nontrivial short distance-regular directed graph is primitive.

1. INTRODUCTION

Distance-regular and distance-transitive directed graphs are the directed ver-
sions of distance-regular and distance-transitive (undirected) graphs. However,
in the directed case, very few examples are known. Distance-transitive directed
graphs were introduced by Lam [8] and have also been considered by others, for
example in [1], [3], [4], [5], [9], [10], [11] and [12].

A directed graph or digraph T is a pair I' = (V, E) consisting of a finite set V'
of vertices and a set E of edges. The elements of E are ordered pairs of distinct
elements of V. A (directed) path of length h from z to y is a sequence of vertices
T = Lg,%1,...,Th = ¥, such that h > 0 and (z;,zi41) € Efor i =0,1...,h—-1.
If 2 = y then the path is a circuit. A digraph I' is strongly connected if, for every
z,y € V, there is a path from x to y. The length of a shortest path from a vertex
z to a vertex y is the distance from z to y, and is denoted d(z,y). The diameter
d of a strongly connected digraph is the maximum value taken by this distance
function over all z,y € V. The girth g is the minimum length of a circuit. Clearly
g<d+1.

For every vertex = we define the ith directed shell T';(z) to be

Ti(z)={weV:dzw) =i}
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A digraph T is distance-regular if it is strongly connected and for all vertices
and y, and for 0 < 4,5 < d, |Ts(z) NT;(y)| depends only on 1, j and d(z,y).

An automorphism of a digraph is a permutation p of the vertices which preserves
the edges; that is (z,y) € E if and only if (2¢,y?) € E. A strongly connected
digraph is distance-transitive if, for all vertices z,y,z, w with d(z,y) = d(z,w),
there is an automorphism of the digraph such that z* = z and y* = w. Clearly a
distance-transitive digraph is distance-regular.

A directed circuit with n vertices is an example of a distance-transitive digraph
with girth ¢ = d +1 = n. For each prime power ¢ = 3 (mod 4), the Paley
tournament with g vertices is the digraph whose vertices are the elements of the
finite field with ¢ elements. There is an edge from z to y if and only ify—zisa
nonzero square in the field. A Paley tournament is a distance-transitive digraph
with girth g =d+ 1= 3.

Let T be a distance-regular digraph. A distance-regular digraph of girth 2 is
essentially the same as the underlying undirected graph and so from now on we
always assume I has girth at least 3. We define an involutory permutation on the
set {0,1,...,g}, by setting 0* =0, g* = gand ¢* = g—1 for 0 < i < g. Damerell [4]
showed that for all vertices z,y of I", the distance function satisfies d(y, z) = d(z, y)*
and hence the girth and diameter differ by at most 1. A distance-regular digraph is
said to be short if g = d + 1, otherwise it is said to be long. Damerell showed that
every long graph can be constructed from an associated short graph thus reducing
the classification of distance-regular directed graphs to those which are short.

Leonard and Nomura [9] showed that a short distance-regular directed graph
which is not simply a directed circuit has girth at most 8, and, furthermore, that
there always exist edges within the first directed shell of any vertex. There are
examples of short distance-regular directed graphs of girth 3 or 4, see for example
8], [5], or [10]. Bannai, Cameron and Kahn [1] showed that if the girth of a short
distance-transitive directed graph is odd, then g = 3. It is known [7] that in this
case the directed graph is a Paley tournament.

In §2 we recall definitions and results concerning the adjacency and intersection
algebras of a short distance-regular digraph and prove the first result of this paper.
This result was known (Cameron [2]) in the case where the digraph has a distance
transitive group of automorphisms.

Theorem A. Let C be the intersection matriz of a short distance-regular directed
graph with girth g and valency k. Then C has g distinct eigenvalues, and

(i) if g is odd, then C has ezactly one real eigenvalue k, and
(i4) if g is even, then C has exactly two real eigenvalues, one of which is k, the
other of which is a negative real number.

In §3 we recall the definition of primitivity for a directed graph. Damerell [4]
showed that a long distance-regular digraph is imprimitive. It follows immediately
that its automorphism group acts imprimitively on the vertices. For short distance-
regular digraphs we prove the following theorem:
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Theorem B. Let T be a short distance-regular directed graph with valency k and
n vertices.
(i) Ifk =1, thenT is a directed circuit with n vertices and is primitive if and
only if n is prime.
(it) If k > 1, then T' is primitive.

Corollary. Let I’ be a short distance-regular directed graph with valency k > 1.
Then any distance-transitive group of automorphisms acts primitively on the ver-
tices.

2. ADJACENCY AND INTERSECTION MATRICES.

In this section we will always assume that I' is a short distance-regular di-
graph with n vertices, diameter d, girth g = d + 1, and labelled vertex set V =
{z1,22,...,&n}. Fori,j,k=0,1,...,d, the intersection numbers p; ; are

pijk = |Ti(z) NI (y)|, for z,y any vertices of I' with d(z,y) = k.

For any matrix M of complex numbers, MT denotes the transposed matrix and
M denotes the complex conjugate.

For any digraph with vertex set {y1,%2,...,Ym} the adjacency matriz A is the
matrix of Os and 1s whose (r, s)-th entry is (A), s, where

(A)rs =1 if and only if (y,,ys) is an edge.
Fori=0,1,...,d, the distance matriz A; of I is the matrix of Os and 1s with
(A3)rs =1 if and only if d(z,, z,) = i.

Thus Ag is the identity matrix. The matrix A = A; is the adjacency matriz
of the digraph. It is clear that in general A;» = AT, and that A; is a symmetric
matrix if and only if ¢ =0 or i = g/2.

By counting paths it is easy to see that, for 0 < 4, h < d, the distance matrices
satisfy A;A, = Z?:o Pih,jAj. Hence the linear span of Aj, As,..., Ay, is closed
under multiplication and is thus an algebra. This is the adjacency algebra A of the
digraph. It is well known (see [8]) that the adjacency algebra is commutative with
dimension g = d + 1. Each of the sets {Ao, A1,..., A4} and {I, A, A%, ... A%}
forms a basis of A, where the A; are the distance matrices and the A* are the
powers of A. ‘

For each ¢ = 0,1,...,d—1, we have p; ; ;41 > 0 and 4;4 = E;";t pi,jA;. Thus
for i = 1,2,...d, this equation recursively defines real polynomials V;(z) of degree
i such that V;(A) = 4;, where Vy(z) = 1.

For h =0,1,...,d, the h-th intersection matriz C}, is defined to be the (d+1) x
(d + 1) matrix whose (7, j)-th entry is

(Ch)ij = Pihj = Phiij-
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The matrix Cp is the identity matrix. The matrix C' = C is called the inter-
section matriz. The algebra A acts on itself by multiplication on the right. Right
multiplication by Ap, regarded as a linear mapping of the adjacency algebra to
itself with respect to the basis {Ao, A1,..., A4} can be faithfully represented by
the transposed h-th intersection matrix Cj .

The two matrices A and C have the same minimum polynomial and so have the
same eigenvalues.

The matrix A is a real nonsymmetric matrix which commutes with its transpose.
Therefore A is a normal matrix and hence is diagonalizable; that is, there is a basis
of C* which consists of eigenvectors of A. Since the minimum polynomial of A has
degree d + 1, A has d + 1 distinct eigenvalues, which we denote by Ay = 1, Ay,
coiy Ade

We call an eigenvector of a matrix standard if its first coordinate is 1.

Lemma 2.1. Let )\ be an eigenvalue of C. Then

(i) we can construct a unique standard left eigenvector w(}), and a unique
standard right eigenvector v()) corresponding to A,
(i) for i = 0,1,...,d, the eigenvectors w(X) and v(}) are standard left and
right eigenvectors of C; with corresponding eigenvalue Vi(A),
(i41) the eigenvalue X is real if and only if v()\) is a real vector if and only if
w(\) is a real vector, and
(iv) v(¥) = v(}) and w(}) = w().

Proof. Let A be any eigenvalue of C. The corresponding left (or right) eigenspace
has dimension 1 and so any standard eigenvector must be unique. Right and left
eigenvectors in standard form can be constructed in the following manner:

If v = [vg,v1,. . -, vg)T then the equation C'v = Av becomes }:;‘:,lbpi)l)jvj = Av;.
Setting vo = 1 we get the same system of equations as for the distance matrices.
Therefore v; = Vi(A). The vector v(A) = [1,...,Vi(}),. .., Va(\)]T is the unique
standard right eigenvector corresponding to A.

Similarly a left eigenvector w(X) corresponding to A can be constructed. If
w = [wo,w1,...,wq] then the system wA = wC' becomes E?:o WiP1ij = AWj.
This time each w; is wq times a polynomial in A. Setting wq = % # 0, we get
AWy = WePd1,0 = WaP1,d,0 = %k = \. Therefore wg = 1, and w(}) = [1,..., %],
the unique standard left eigenvector corresponding to A.

For each i, C; = V;(C), and so an eigenvector of C' corresponding to eigenvalue
A is an eigenvector of C; with corresponding eigenvalue V;().

Finally, since C is a real matrix, v(}) = v(\) and w(}) = w(}). Furthermore
the eigenvalues corresponding to real eigenvectors must be real. Conversely, if A
is a real eigenvalue then for each i, the ith entry of v(}) is Vi(A) which s real.
Similarly the entries of w()) are the values of real polynomials evaluated at A, and
hence are real. Therefore the eigenvalue X is real if and only if v() is a real vector
if and only if w(}) is a real vector. O

The next lemma is a standard result.
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Lemma 2.2. If A; # Aj then w(\)v(A;) =0. O

With respect to the eigenvalues Ag, A1, ..., Az of C, we define the eigenmatriz
A of the digraph I" to be (d+1) x (d+ 1) matrix whose jth column is the standard
eigenvector v(\;). We denote the (7,j)th entry of A by A;;. By the previous
construction, A;; = V;();), and the ith row of A consists of the eigenvalues of C;.
Row 0 of A consists of all 1s, and column 0 is v(k) = [ko, k1, ...,kq)T. We prove
first that A has at most two real columns.

Denote by K the diagonal matrix K = diag(ko, k1,...,kq). For each %, the
distance matrices A; and A;- are related by A;« = A;-r. The next lemma, links Cj+,
CT and K.

Lemma 2.3. Fori=0,1,...,d, Ct = K 'CK.

Proof. Let h,j € {0,1,...,d} and = be a vertex of I'. We count in two ways the
elements of the set P = {(u,v) : u € I'y(z), v € I';(x) and d(u,v) = h}. For each
u € T;(z) there are pjp+,i = Ph- j,i corresponding vertices v, and for each v € I'j(z)
there are p; n ; = Ph,i,; corresponding vertices u.

Therefore |P| = kipn~,j,i = kjph,,j, and thus we have

(Cie)ij = Phe i = kiphi kit = kj(Chn)ijki
Hence Cf = K™!C;K. O

For each i = 0,1, ...,d, the matrices C; and C;- have the same set of eigenvalues
and the same set of standard eigenvectors. The eigenvalues of C' are distinct and
we define o to be the permutation of {0,1,...,d} such that Ag; = Ayje (= Ajo).
This gives rise to a permutation of the eigenvalues of C which is in fact complex
conjugation.

Lemma 2.4. For j =0,1,...,d,
(1) fori=0,1,...,d we have Ajjo = Xij = Ai»j, and
(i3) the standard right eigenvector is v(};) = Kw(;)T.

Proof. For j =0,1,...,d we have
CKw()\)T = (KC])w())"
= K(w();)Ca)T
=KAgw(l)"
= Alj” (KW()\J)T)

Therefore Kw();)T = v();-) because the first entry in Kw(X;)T is 1.
Since K is a diagonal matrix with positive diagonal entries,

w(Xj)v(dje) = wKw(A;)T > 0.

Hence X; = Ajo, and thus v(};) = v(Ajr) = Kw(A;)T. Furthermore Ajjo =
Vi(Aje) = Vi(dj) = Vi(X3) = Aij.
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Finally, for i,j € {0,1,...,d} we have

Aigw(Aj) = w(Xg)Cir
= V(Xj)TK—]'C,,w
= v(X)TCIK™!
= (Cov(3))TK™
= )\ijov(_)\-j)TK—l
= Xijw(Xj).

Therefore Aj-; = Aij. O
As a corollary to this lemma we have

Corollary 2.5. The eigenmatriz A has at most two real rows. Furthermore,

(i) if the girth g is odd, A has 1 real row: the 0th row;
(ii) if the girth g is even, A has 2 real rows: the 0th row and row g/2.

Proof. The eigenmatrix is nonsingular since its columns are the d + 1 standard
eigenvectors corresponding to the d + 1 distinct eigenvalues of C. Therefore the
rows are certainly distinct. However, the previous proposition shows that row ¢*
and row i are conjugate. Therefore the ith row of A is real if and only if ¢* = 4.
If g is odd, then ¢* = ¢ if and only if i = 0. If g is even, then ¢* =4 if and only if
i=0org/2. O

‘We can now prove Theorem A.

Theorem A. Let C be the intersection matriz of a short distance-regular directed
graph with girth g and valency k. Then C has g distinct etgenvalues, and

(i) if g is odd, then C has ezactly one real eigenvalue k, and
(ii) if g is even, then C has ezactly two real eigenvalues, one of which is k, the
other of which is a negative real number.

Proof. The eigenmatrix A is nonsingular. The permutation of the entries which
takes A;; = Ai+; is an involution and comes from an involutory permutation of
the rows of A. Let L be the permutation matrix such that A — LA effects this
permutation of the rows. Then (LA)i; = Xiej = Aij-

The action on the columns of A, given by v(};) = v(};), is also an involution.
Let R be the permutation matrix such that A — AR effects this permutation.
Then the matrix entry (AR)i; = (v(X;))i = v(¥;); = Xij = (LA)y5.

Therefore LA = AR, and so L = A~'RA. The number of fixed points of a
permutation is equal to the trace of the corresponding permutation matrix, and
the traces of similar matrices are equal. Therefore L and R have the same number
of fixed points in their actions.

By the previous corollary, there are at most two fixed rows, and so C has at
most two real standard right eigenvectors and thus at most two real eigenvalues.
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The eigenvalue Ao = k is real and the nonreal eigenvalues occur in conjugate
pairs. The number of eigenvalues is g. Therefore, if g is odd, then C has exactly one
real eigenvalue. If g is even, then C has exactly two real eigenvalues, one of which
is A\g = k, and the rest are pairs of complex conjugate eigenvalues. The product
of the eigenvalues is the determinant of C which can be conveniently calculated
by expanding down the first column. Thus det(C) = —k Hg;é Cj j+1, which is
—k x a product of positive integers, and so the second real eigenvalue must be
negative. [

Note that the argument used in the proof that L and R have the same number
of fixed points in their actions is a special case of a combinatorial lemma due to
Brauer. (See Feit [6; 12.1, page 66].)

3. PRIMITIVITY

Throughout this section I' = (V, E) is a distance-regular digraph, not necessarily
short. If the valency k is 1 the digraph is said to be trivial, and in this case it is
clear that it is simply a directed circuit.

Let V={I,Ey,..., E4} be the partition of V2 defined by (z,y) € E; if and only
if y € I'y(z). For each ¢, we define I'; to be the digraph with vertex set V and edge
set E; and so I'; is the directed graph with adjacency matrix A;. If i = g/2 then
I'; has girth 2. The digraphs I'; are not necessarily connected.

The digraph I is said to be primitive if the two trivial relations, I and V2, are
the only equivalence relations which are unions of members of V, otherwise I' is
called imprimitive.

Lemma 3.1. The digraph T is primitive if and only if each T'; is connected.
Proof. Clear. [
Lemma 3.2. (Damerell [4]) A long distance-regular digraph is imprimitive.

Proof. If T is a long distance-regular digraph, then E = I UL, is a nontrivial
equivalence relation and so I' is imprimitive. [

Before we complete the proof of Theorem B, we need several results concerning
edges and circuits within directed shells when I is nontrivial.

Lemma 3.3. (Leonard and Nomura [9]). IfT is short and nontrivial then py 1,1 >
0. That is, there are edges in the first directed shell. )

Corollary 3.4. IfT" is short and nontrivial, and z is any vertez, then there is a
closed path entirely contained in I'y (z).

Proof. Let ug be any vertex in I'y (). Choose u; to be any out-neighbour of ug in
I'i(z). Choose uz to be any out-neighbour of u; in I';(z). Continue in this way
constructing a path wg,uy,...u; in I'y(z). Since I'y(z) is finite, for some smallest
m we have u,, = up, for some h < m. Then up, — Up41 — *++ — Uy = up is a
closed path with all u; in I'y(z). O
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As a further corollary we have that in the first directed shell of any vertex there
are vertices y and z with d(y, z) = j for every j < d; that is, the entries in column
1 of C are all nonzero.

Corollary 38.5. IfT is short and nontrivial then p1;1 > 0 fori=0,1,.. ,d. O
Corollary 3.6. IfT' is short and nontrivial then p4,1: > 0 fori=0,1,...,d.

Proof. Let x,y, z be vertices with d(z,y) = 1, d(y,z) = i* and d(z,2) = 1. These
exist since py 4+ 1 > 0. Then d(z,1) = 1* = d, d(z,y) = 1 and d(z,y) = (i*)* = 1.
Therefore pg,1; > 0. O

Lemma 3.7. If ' is a short nontrivial distance-regular digraph, and 0 <1 < g/2,
¢ €V andy € Di(z), then there is a vertez z € T';(z) such that 0 < d(y, z) < 1.

Proof. Suppose that 0 < i < g/2. We use the commutativity of the intersection
matrices and, in particular, the equality (C1Ca)1i = (CaCi1)1i
On the one hand we have

d
(C1Ca)1i = D P1,1,iPd,ji = P1,1,1Pd,1i + P1,1,2Pd2,i-

3=0
and on the other
d .
(CaCr)1i = Y Pa1,iP1ji = Pd,1,i-1PLi-1, + Pa,1iPLi+1i "+ Pa1,dPLde
3=0

Now p1,1,1 = Pd,1,a and pg1i = Pi,di- Therefore py12oPa2,i 2 Pd,1i-1P1i-1i > 0
and so pg2; > 0. Therefore there are edges from I';(z) to Ta(z).

Now suppose y € T';(z). Since pz,4,s = Pa,2,i > 0, there exists w € Ta(x)NTy(y).
Since d(z,w) = 2 we have d(w,z) = 2* = d — 1 and there is a (minimal) closed
path of length g of the form

To=2 — T, — Ty =W —3Tg —> - —FTi —> Tig1 — "~ Ty =T.

Setting z = x; we have z € I';(z), with d(w, z) = ¢ — 2. Since dw,y) =d#1i-2,
the vertices z and y are distinct elements of T';(x).
Therefore 0 < d(y, 2) < d(y,w) +d(w,2) =i—-1<i. O

Setting i = 2 in this lemma we have that there are edges in the second directed
shell.

Corollary 3.8. IfT is short and nontrivial, then py22>0. O

Corollary 3.9. IfT is short and nontrivial, and = is any verter, then there is a
closed path entirely contained in T'z(z). O

We can now prove Theorem B.
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Theorem B. Let I be a short distance-regular directed graph with valency k and
n vertices.

(i) If k =1 then T is a directed circuit with n vertices and is primitive if and
only if n is prime.
(it) If k > 1 then T is primitive.

Proof. (i) If k =1 then I is a directed circuit with n vertices. Clearly in this case
I’ is primitive if and only if n is prime.

(#) Suppose k > 1 and that F is an equivalence relation on V' which is a union
of members of V. Then for some £, a divisor of g, E=TUE,U Eq U---U Eg_,.
Any two vertices y and z are in the same equivalence class if and only if £ divides
d(y, z).

Suppose 1 < £ < g/2, and ¢ € V. The equivalence class containing x also
contains I'p(r). By the previous lemma there exist y,z € I'y(z) such that 0 <
d(y,z) < £. However, since y and z are in the same equivalence class £ divides
d(y, ). This is a contradiction, and so £ = 1 and the equivalence relation is trivial.

Therefore any short nontrivial distance-regular digraph is primitive. [

A group G which acts transitively on a set acts primitively if the only parti-
tions of the set which it preserves are the trivial ones, and so the corollary follows
immediately.

Corollary. Let I' be a short distance-regular directed graph with valency k > 1.
Then any distance-transitive group of automorphisms acts primitively on the ver-
tices.
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