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Abstract 

The study of distance-regular directed graphs can be reduced to that of 
short distance-regular directed graphs. We consider the eigenspaces of 
the intersection matrix of a short distance-regular directed graph and 
show that nearly all the eigenvalues are nonreal. Next we show that a 
nontrivial short distance-regular directed graph is primitive. 

1. INTRODUCTION 

Distance-regular and distance-transitive directed graphs are the directed ver­
sions of distance-regular and distance-transitive (undirected) graphs. However, 
in the directed case, very few examples are known. Distance-transitive directed 
graphs were introduced by Lam [8] and have also been considered by others, for 
example in [1], [3], [4], [5], [9], [10], [11] and [12]. 

A directed graph or digraph r is a pair r = (V, E) consisting of a finite set V 
of vertices and a set E of edges. The elements of E are ordered pairs of distinct 
elements of V. A (directed) path of length h from x to y is a sequence of vertices 
x = XO,Xl, ... ,Xh = y, such that h > ° and (xi,xi+d E E for i = O,l. .. ,h-l. 
If x = y then the path is a circuit. A digraph r is strongly connected if, for every 
x, y E V, there is a path from x to y. The length of a shortest path from a vertex 
x to a vertex y is the distance from x to y, and is denoted d(x, y). The diameter 
d of a strongly connected digraph is the maximum value taken by this distance 
function over all x, y E V. The girth g is the minimum length of a circuit. Clearly 
g:S;d+l. 

For every vertex x we define the ith directed shell r i (x) to be 

ri(X) = { w E V : d(x, w) = i}. 
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A digraph r is distance-regular if it is strongly connected and for all vertices x 
and y, and for 0::; i,j::; d, Iri(x) nrj(y)1 depends only on i, j and d(x,y). 

An automorphism of a digraph is a permutation p of the vertices which preserves 
the edges; that is (x, y) E E if and only if (xP, yP) E E. A strongly connected 
digraph is distance-transitive if, for all vertices x, y, Z, w with d(x, y) = d(z, w), 
there is an automorphism of the digraph such that xP = Z and yP = w. Clearly a 
distance-transitive digraph is distance-regular. 

A directed circuit with n vertices is an example of a distance-transitive digraph 
with girth 9 d + 1 = n. For each prime power q == 3 (mod 4), the Paley 
tournament with q vertices is the digraph whose vertices are the elements of the 
finite field with q elements. There is an edge from x to y if and only if y - x is a 
nonzero square in the field. A Paley tournament is a distance-transitive digraph 
with girth 9 d + 1 = 3. 

Let r be a distance-regular digraph. A distance-regular digraph of girth 2 is 
essentially the same as the underlying undirected graph and so from now on we 
always assume r has girth at least 3. We define an involutory permutation on the 
set {O, 1, ... , g}, by setting 0* = 0, g* = 9 and i* = 9 - i for 0 < i < g. Damerell [4] 
showed that for all vertices x, y of r, the distance function satisfies d(y, x) = d(x, y)* 
and hence the girth and diameter differ by at most 1. A distance-regular digraph is 
said to be short if 9 = d + 1, otherwise it is said to be long. Damerell showed that 
every long graph can be constructed from an associated short graph thus reducing 
the classification of distance-regular directed graphs to those which are short. 

Leonard and Nomura [9] showed that a short distance-regular directed graph 
which is not simply a directed circuit has girth at most 8, and, furthermore, that 
there always exist edges within the first directed shell of any vertex. There are 
examples of short distance-regular directed graphs of girth 3 or 4, see for example 
[8], [5], or [10]. Bannai, Cameron and Kahn [1] showed that if the girth of a short 
distance-transitive directed graph is odd, then 9 = 3. It is known [7] that in this 
case the directed graph is a Paley tournament. 

In §2 we recall definitions and results concerning the adjacency and intersection 
algebras of a short distance-regular digraph and prove the first result of this paper. 
This result was known (Cameron [2]) in the case where the digraph has a distance 
transitive group of automorphisms. 

Theorem A. Let C be the intersection matrix of a short distance-regular directed 
graph with girth 9 and valency k. Then C has g distinct eigenvalues, and 

(i) if g is odd, then C has exactly one real eigenvalue k, and 
(ii) if 9 is even, then C has exactly two real eigenvalues, one of which is k, the 

other of which is a negative real number. 

In §3 we recall the definition of primitivity for a directed graph. Damerell [4] 
showed that a long distance-regular digraph is imprimitive. It follows immediately 
that its automorphism group acts imprimitively on the vertices. For short distance­
regular digraphs we prove the following theorem: 
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Theorem B. Let f be a short distance-regular directed graph with valency k and 
n vertices. 

(i) If k 1, then f is a directed circuit with n vertices and is primitive if and 
only if n is prime. 

(ii) If k > 1, then f is primitive. 

Corollary. Let f be a short distance-regular directed graph with valency k > 1. 
Then any distance-transitive group of automorphisms acts primitively on the ver­
tices. 

2. ADJACENCY AND INTERSECTION MATRICES. 

In this section we will always assume that f is a short distance-regular di­
graph with n vertices, diameter d, girth 9 = d + 1, and labelled vertex set V = 
{Xl, X2,"" x n }. For i, j, k = 0,1, ... , d, the intersection numbers Pi,j,k are 

Pi,j,k = Ifi(x) n f j * (y)l, for x, y any vertices of f with d(x, y) = k. 

For any matrix M of complex numbers, MT denotes the transposed matrix and 
M denotes the complex conjugate. 

For any digraph with vertex set {YI, Y2, .. . , Ym} the adjacency matrix A is the 
matrix of Os and Is whose (1', s)-th entry is (A)r,s, where 

(A)r,s = 1 if and only if (Yr, Ys) is an edge. 

For i = 0,1, ... , d, the distance matrix Ai of f is the matrix of Os and Is with 

Thus Ao is the identity matrix. The matrix A = Al is the adjacency matrix 
of the digraph. It is clear that in general A i * = AT, and that Ai is a symmetric 
matrix if and only if i = ° or i = g/2. 

By counting paths it is easy to see that, for 0 ::; i, h ::; d, the distance matrices 
satisfy AiAh = L:,;=oPi,h,jAj . Hence the linear span of AI, A 2 , . •• , Ad, is closed 
under multiplication and is thus an algebra. This is the adjacency algebra A of the 
digraph. It is well known (see [8]) that the adjacency algebra is commutative with 
dimension g d + 1. Each of the sets {Ao, At, ... , Ad} and {I, At, A 2 , ••• , Ad} 
forms a basis of A, where the Ai are the distance matrices and the Ai are the 
powers of A. 

For each i = 0,1, ... , d-1, we have Pi,I,HI > 0 and AiA = L:~!'~Pi,l,jAj. Thus 
for i = 1,2, .. . d, this equation recursively defines real polynomials Vi(x) of degree 
i such that ViCA) = Ai, where Vo(x) = 1. 

For h = 0,1, ... , d, the h-th intersection matrix Ch is defined to be the (d+ 1) x 
(d + 1) matrix whose (i,j)-th entry is 
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The matrix Co is the identity matrix. The matrix C = C1 is called the inter­
section matrix. The algebra A acts on itself by multiplication on the right. Right 
multiplication by Ah, regarded as a linear mapping of the adjacency algebra to 
itself with respect to the basis {Ao, All"" Ad} can be faithfully represented by 
the transposed h-th intersection matrix Cl. 

The two matrices A and C have the same minimum polynomial and so have the 
same eigenvalues. 

The matrix A is a real nonsymmetric matrix which commutes with its transpose. 
Therefore A is a normal matrix and hence is diagonalizable; that is, there is a basis 
of en which consists of eigenvectors of A. Since the minimum polynomial of A has 
degree d + 1, A has d + 1 distinct eigenvalues, which we denote by AO = 1, All 
... , Ad. 

We call an eigenvector of a matrix standard if its first coordinate is 1. 

Lemma 2.1. Let A be an eigenvalue of C. Then 

(i) we can construct a unique standard left eigenvector W(A), and a unique 
standard right eigenvector V(A) corresponding to A, 

(ii) for i 0, 1, ... ,d, the eigenvectors W(A) and V(A) are standard left and 
right eigenvectors of C i with corresponding eigenvalue Vi(A), 

(iii) the eigenvalue A is real if and only if V(A) is a real vector if and only if 
W (A) is a real vector, and 

(iv) veX) = V(A) and w(X) = W(A). 

Proof. Let A be any eigenvalue of C. The corresponding left (or right) eigenspace 
has dimension 1 and so any standard eigenvector must be unique. Right and left 
eigenvectors in standard form can be constructed in the following manner: 

If v = [VOl Vb' .. , Vd]T then the equation Cv = AV becomes L:~!~Pi,l,jVj = AVi. 
Setting Vo = 1 we get the same system of equations as for the distance matrices. 
Therefore Vi = Vi(A). The vector V(A) = [1, ... , Vi(A), . .. , Vd(A)f is the unique 
standard right eigenvector corresponding to A. 

Similarly a left eigenvector W(A) corresponding to A can be constructed. If 

W = [wo, Wb"" Wd] then the system WA = wC becomes L:~=o WiP1,i,j = AWj. 
This time each Wj is Wd times a polynomial in A. Setting Wd = i #- 0, we get 
AWo = WdPd,l,O = WdPl,d,O = i k = A. Therefore Wo = 1, and W(A) = [1, ... , i]' 
the unique standard left eigenvector corresponding to A. 

For each i, Ci = Vi(C), and so an eigenvector of C corresponding to eigenvalue 
A is an eigenvector of Ci with corresponding eigenvalue Vi(A). 

Finally, since C is a real matrix, v(X) = V(A) and w(X) = W(A). Furthermore 
the eigenvalues corresponding to real eigenvectors must be real. Conversely, if A 
is a real eigenvalue then for each i, the ith entry of V(A) is Vi(A) which is real. 
Similarly the entries of W(A) are the values of real polynomials evaluated at A, and 
hence are real. Therefore the eigenvalue A is real if and only if V(A) is a real vector 
if and only if W(A) is a real vector. 0 

The next lemma is a standard result. 
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Lemma 2.2. If Ai #- Aj then W(Ai)V(Aj) = O. 0 

With respect to the eigenvalues AO, A1, ... , Ad of 0, we define the eigenmatdx 
A of the digraph r to be (d + 1) x (d + 1) matrix whose jth column is the standard 
eigenvector V(Aj). We denote the (i,j)th entry of A by Aij. By the previous 
construction, Aij = Vi (Aj ), and the ith row of A consists of the eigenvalues of Ci. 
Row 0 of A consists of all Is, and column 0 is v(k) = [ko, k1, •• • , kd]T. We prove 
first that A has at most two real columns. 

Denote by K the diagonal matrix K = diag(ko, kl, ... , kd). For each i, the 
distance matrices Ai and Ai* are related by Ai* = AT. The next lemma links Ci* , 
c1 and K. 

Lemma 2.3. For i = 0,1, ... , d, c;' = K-1CiK. 

Proof. Let h,j E {O, 1, ... , d} and x be a vertex of r. We count in two ways the 
elements of the set P = { (u, v) : u E ri(x), v E rj(x) and d(u, v) = h}. For each 
u E ri(X) there are Pj,h*,i = Ph*,j,i corresponding vertices v, and for each v E rj(x) 
there are Pi,h,j = Ph,i,j corresponding vertices u. 

Therefore IPI = kiPh*,j,i = kjPh,i,j, and thus we have 

(Cl,,)i,j =Ph*,j,i = kjPh,i,jk;1 = kj (Ch)i,jk;1. 

Hence C;. = K-lCiK. 0 

For each i = 0, 1, ... , d, the matrices C i and Ci * have the same set of eigenvalues 
and the same set of standard eigenvectors. The eigenvalues of C are distinct and 
we define (j to be'the permutation of {O, 1, ... , d} such that Adj = Alj" (= Aju). 
This gives rise to a permutation of the eigenvalues of 0 which is in fact complex 
conjugation. 

Lemma 2.4. For j = 0,1, ... ,d, 

(i) for i = 0,1, ... , d we have AijU = Xij = Ai"j, and 
(ii) the standard right eigenvector is V(Aj) = KW(Aj)T. 

Proof. For j 0,1, ... , d we have 

OKW(Aj)T = (KCJ)W(Aj)T 

= K(W(Aj)Od)T 

= K(AdjW(Aj))T 

= A1ju(Kw(Aj)T). 

Therefore KW(Aj)T = V(Aju) because the first entry in KW(Aj)T is 1. 
Since K is a diagonal matrix with positive diagonal entries, 

- -- T 
W(Aj)V(Aju) = w(Aj)Kw(Aj) > O. 

Hence Xj = Aj(T, and thus V(Aj) = V(Aj(T) = KW(Aj)T, Furthermore Aij(T 

Vi(Aju) = Vi(Xj ) = Vi(Aj) = Xij. 
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Finally, for i, j E {O, 1, ... , d} we have 

Ai*jW(Aj) = w(Aj)Ci * 

Therefore Ai" j = "Xij . 0 

- T -1 = V(Aj) K Ci * 

= v(Xj )TC;K- 1 

= (Ci v(Aj ))TK- 1 

- T -1 = AijuV(Aj) K 

= Aijw(Aj). 

As a corollary to this lemma we have 

Corollary 2.5. The eigenmatrix A has at most two real rows. Furthermore, 

(i) if the girth 9 is odd, A has 1 real row: the Oth row; 
(ii) if the girth 9 is even, A has 2 real rows: the Oth row and row 9 /2. 

Proof. The eigenmatrix is nonsingular since its columns are the d + 1 standard 
eigenvectors corresponding to the d + 1 distinct eigenvalues of C. Therefore the 
rows are certainly distinct. However, the previous proposition shows that row i* 
and row i are conjugate. Therefore the ith row of A is real if and only if i* = i. 
If 9 is odd, then i* = i if and only if i = O. If 9 is even, then i* = i if and only if 
i = 0 or g/2. 0 

We can now prove Theorem A. 

Theorem A. Let C be the intersection matrix of a short distance-regular directed 
graph with girth 9 and valency k. Then C has 9 distinct eigenvalues, and 

(i) if 9 is odd, then C has exactly one real eigenvalue k, and 
(ii) if 9 is even, then C has exactly two real eigenvalues, one of which is k, the 

other of which is a negative real number. 

Proof. The eigenmatrix A is nonsingular. The permutation of the entries which 
takes Aij f---t Ai. j is an involution and comes from an involutory permutation of 
the rows of A. Let L be the permutation matrix such that A f---t LA effects this 
permutation of the rows. Then (LA)ij = Ai"j = Aij. 

The action on the columns of A, given by v (Aj) f---t v (Aj), is also an involution. 
Let R be the permutation matrix such that A f---t AR effects this permutation. 
Then the matrix entry (AR)ij = (v(Aj))i = v(Aj )i Aij = (LA)ij. 

Therefore LA = AR, and so L = A -1 RA. The number of fixed points of a 
permutation is equal to the trace of the corresponding permutation matrix, and 
the traces of similar matrices are equal. Therefore Land R have the same number 
of fixed points in their actions. 

By the previous corollary, there are at most two fixed rows, and so C has at 
most two real standard right eigenvectors and thus at most two real eigenvalues. 
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The eigenvalue Ao = k is real and the nonreal eigenvalues occur in conjugate 
pairs. The number of eigenvalues is g. Therefore, if g is odd, then C has exactly one 
real eigenvalue. If g is even, then C has exactly two real eigenvalues, one of which 
is AO = k, and the rest are pairs of complex conjugate eigenvalues. The product 
of the eigenvalues is the determinant of C which can be conveniently calculated 
by expanding down the first column. Thus det(C) = -k n~:~ Cj,j+l, which is 
-k x a product of positive integers, and so the second real eigenvalue must be 
negative. D 

Note that the argument used in the proof that Land R have the same number 
of fixed points in their actions is a special case of a combinatorial lemma due to 
Brauer. (See Feit [6; 12.1, page 66].) 

3. PRIMITIVITY 

Throughout this section r = (V, E) is a distance-regular digraph, not necessarily 
short. If the valency k is 1 the digraph is said to be trivial, and in this case it is 
clear that it is simply a directed circuit. 

Let V = {I, Ell"" Ed} be the partition of V2 defined by (x, y) E Ei if and only 
if y E ri(X). For each i, we define r i to be the digraph with vertex set V and edge 
set Ei and so r i is the directed graph with adjacency matrix Ai' If i = g /2 then 
r i has girth 2. The digraphs ri are not necessarily connected. 

The digraph r is said to be primitive if the two trivial relations, I and V 2 , are 
the only equivalence relations which are unions of members of V, otherwise r is 
called imprimitive. 

Lemma 3.1. The digraph r is primitive if and only if each r i is connected. 

Proof. Clear. 0 

Lemma 3.2. (Damerell [4]) A long distance-regular digraph is imprimitive. 

Proof. If r is a long distance-regular digraph, then E = I U r 9 is a nontrivial 
equivalence relation and so r is imprimitive. D 

Before we complete the proof of Theorem B, we need several results concerning 
edges and circuits within directed shells when r is nontrivial. 

Lemma 3.3. (Leonard and Nomura [9]). Ifr is short and nontrivial then Pl,l,l > 
O. That is, there are edges in the first directed shell. D 

Corollary 3.4. If r is short and nontrivial, and x is any vertex, then there is a 
closed path entirely contained in rl(X), 

Proof. Let Uo be any vertex in rl(X), Choose UI to be any out-neighbour of Uo in 
rl(X), Choose U2 to be any out-neighbour of UI in rl(X), Continue in this way 
constructing a path Uo, UI, ... Uj in r I (x). Since r I (x) is finite, for some smallest 
m we have Urn Uh for some h < m. Then Uh ---+ Uh+l --t ... --t Urn = Uh is a 
closed path with all Uj in rl(X), 0 
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As a further corollary we have that in the first directed shell of any vertex there 
are vertices y and z with d(y, z) = j for every j ::; d; that is, the entries in column 
1 of C are all nonzero. 

Corollary 3.5. If r is short and nontrivial then Pl,i,l > 0 for i = 0,1, ... , d. 0 

Corollary 3.6. If r is short and nontrivial then Pd,l,i > 0 for i = 0,1, ... ,d. 

Proof. Let x, y, z be vertices with d(x, y) = 1, dey, z) = i* and d(x, z) = 1. These 
exist since Pl,i.,l > O. Then d(z, x) = 1* = d, d(x, y) = 1 and d(z, y) = (i*)* = i. 
Therefore Pd,l,i > O. 0 

Lemma 3.7. If r is a short nontrivial distance-regular digraph, and 0 < i ::; g /2, 
x E V and y E ri(x), then there is a vertex z E ri(X) such that 0 < dey, z) < i. 

Proof. Suppose that 0 < i ::; g /2. We use the commutativity of the intersection 
matrices and, in particular, the equality (C1Cd )li = (CdCdli. 

On the one hand we have 

d 

(ClCdhi = I:Pl,l,jPd,j,i = Pl,l,lPd,l,i + Pl,I,2Pd,2,i' 
j=O 

and on the other 

d 

(CdC1hi = I:Pd,l,jPl,j,i = Pd,l,i-lPl,i-l,i + Pd,l,iPl,i+l,i'" + Pd,l,dPl,d,i' 

j=O 

Now PI 11 = Pd 1 d and Pd 1 i = PI d i· Therefore PI! 2Pd 2 i > Pd 1 i-lPI i-I i > 0 
and so ~~,2,i > O. 'Therefor~ 'there ~r~ edges from f i (;) t~ r2(X). ' , " 

Now suppose y E fi(x). Since P2,d,i = Pd,2,i > 0, there exists w E r 2(x) nfl(y), 
Since d(x, w) = 2 we have dew, x) = 2* = d - 1 and there is a (minimal) closed 
path of length g of the form 

Xo = x ---+ Xl ---+ X2 = W ---+ X3 ---+ ... --t Xi --t Xi+l ---+ ... ---+ Xg = X. 

Setting z = Xi we have z E fi(x), with dew, z) = i - 2. Since dew, y) = d -=I- i - 2, 
the vertices z and yare distinct elements of r i (x). 

Therefore 0 < dey, z) ~ dey, w) + dew, z) = i - 1 < i. 0 

Setting i = 2 in this lemma we have that there are edges in the second directed 
shell. 

Corollary 3.8. If r is short and nontrivial, then Pl,2,2 > O. 0 

Corollary 3.9. If f is short and nontrivial, and x is any vertex, then there is a 
closed path entirely contained in f2(X). 0 

We can now prove Theorem B. 
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Theorem B. Let r be a short distance-regular directed graph with valency k and 
n vertices. 

(i) If k = 1 then r is a directed circuit with n vertices and is primitive if and 
only if n is prime. 

(ii) If k > 1 then r is primitive. 

Proof. (i) If k = 1 then r is a directed circuit with n vertices. Clearly in this case 
r is primitive if and only if n is prime. 

(ii) Suppose k > 1 and that E is an equivalence relation on V which is a union 
of members of V. Then for some f, a divisor of g, E = I U El U Eu U ... U Eg-l. 

Any two vertices y and z are in the same equivalence class if and only if f divides 
dey, z). 

Suppose 1 < f :::; g/2, and x E V. The equivalence class containing x also 
contains rl(X). By the previous lemma there exist y, z E rl(X) such that 0 < 
dey, z) < f. However, since y and z are in the same equivalence class f divides 
dey, z). This is a contradiction, and so f = 1 and the equivalence relation is trivial. 

Therefore any short nontrivial distance-regular digraph is primitive. 0 

A group G which acts transitively on a set acts primitively if the only parti­
tions of the set which it preserves are the trivial ones, and so the corollary follows 
immediately. 

Corollary. Let r be a short distance-regular directed graph with valency k > 1. 
Then any distance-transitive group of automorphisms acts primitively on the ver­
tices. 
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