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Abstract 
The existence of (M, B)-optimal designs for block size three is completely 
settled. Such a design is a collection of b triples on v elements so that 
for every two elements the numbers of triples containing them differ by 
at most one, and for every two pairs of elements the numbers of triples 
containing them also differ by at most one. 

1 Introduction 

We consider the following problem. Let v and b be positive integers, v ~ 3, and let 
V be a set of v elements. Let r = L ~ J and ..\ = lV(~~l) J. When does there exist a 
collection B of b 3-element subsets of V (triples) with the properties that every x E V 
belongs to r or r + 1 triples of B, and every pair of elements {x, y} c V appears in 
). or ..\ + 1 triples of B? 

This question arises from optimality considerations for experimental designs. 
Shah (1960) introduced an optimality criterion for block designs. This was called 
S-optimality by Kiefer (1974) and was later generalized by Eccleston and Hedayat 
(1974). They introduced a new optimality criterion, (M, B)-optimality. Shah (1960) 
indicated why this criterion should lead to designs with high efficiency with respect 
to A, D, or E optimality. John and Mitchell (1977) conjectured that a class of S
optimal designs called regular graph designs (RG D) are useful for establishing this 
(M, S)-optimality. They showed that if a binary design with v treatments and b 
blocks has an incidence matrix Nvxb such that the diagonal elements of N N' are 
either r or r + 1 for some r, and the off-diagonal elements of N N' are A or A + 1 for 
some..\, then the design is (M, B)-optimal. Roy (1982) proved: 

Lemma 1.1 Ilv == 3 (mod 6) and b ~ 0, then there exists a (M, B)-optimal design 
on v points with b blocks having block size three. 

To simplify the notation, we denote by MS(v, b) an (M, B)-optimal design on v 
points having b blocks with block size three. In Theorem 2.3, we provide a necessary 
and sufficient condition on v and b for an MS(v, b) to exist. 
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2 Necessary Conditions 

A (v, 3, A) covering (packing) is a pair (V, B), where V is a v-set of elements called 
points and B is a collection of 3-subsets, called blocks, of V, such that every 2-subset 
of points occurs in at least A (at most A)) blocks in B. Repeated blocks in Bare 
permitted. A (v, 3, A)-design is a pair (V, B) which is both a packing and a covering; 
such designs exist if and only if v ~ 3, A(V - 1) == 0 (mod 2), and AV(V - 1) == 0 
(mod 3) (see Colbourn and Rosa (1999)). Let Amin(v) denote the minimum positive 
A for which a (v, 3, A)-design exists. 

The covering (packing) number C>.(v) (D>.(v)) is the minimum (maximum) num
ber of blocks in any (V,3,A) covering (packing). Let U>.(v) = L¥L>'(V;l)JJ and 
L>.(v) = fH>,(v;l)ll 

Theorem 2.1 (See Colbourn and Rosa (1999)) 

1. Ifv == 2 (mod 3), A == 2 (mod 3) and A(V -1) == 0 (mod 2), then C>.(v) = 
L>.(v) + 1. Otherwise, C>.(v) = L>.(v). 

2. If v == 2 (mod 3) and A == 1 (mod 3) and A(V - 1) == 0 (mod 2), then 
D>.(v) = U>.(v) - 1. Otherwise, D>.(v) = U>.(v). 

We can obtain a necessary condition for the existence of a MS(v, b). Let D>.(v) 
be D>.(v) - 1 if v == 2 (mod 3), A == 2 (mod 3), and A{V - 1) == 0 (mod 2); 
D>.(v) = D>.(v) otherwise. Let C>.(v) be C>.(v) + 1 if v == 2 (mod 3), A == 1 
(mod 3), and A(V - 1) == 0 (mod 2); C>.(v) = C>.(v) otherwise. 

Lemma 2.2 If D>.(v) < b < C>.(v) for some positive integer A, then there does not 
exist a MS(v, b). 

Proof: In an MS(v, b) with D>.(v) < b < C>.(v), some pair of points is covered at 
least A + 1 times since b> D>.(v). There also exists a pair of points covered at most 
A -1 times since b < C>. (v). Hence, the design is not (M, S)-optimal. To complete the 
proof, we must examine the four cases in which D>.(v) < D>.(v) or C>.(v) > C>.(v). 
For the packing cases, every maximum (v, 3, A)-packing with D>.(v) blocks covers 
every pair A times except for a single pair covered only A - 2 times (this is obtained 
by counting). Similarly, in the covering cases every minimum (v, 3, A)-covering with 
C>. (v) blocks covers every pair A times except for a single pair covered A + 2 times. 
o 

In this paper we establish that the necessary condition implied by Lemma 2.2 is 
sufficient. In particular, we prove the following: 

Theorem 2.3 Let v ~ 3 and b > O. A necessary and sufficient condition for the 
existence of an MS(v,b) is that D>.(v) < b < C>.(v) does not hold for any A ~ O. 

Necessity is proved already. In order to establish the sufficiency, we shall primarily 
employ recursive constructions. As a result, designs are needed for numerous small 
orders. Prior to constructing these, we treat one of the simpler cases. 
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3 Sufficiency: v = 0 (mod 6) 

We first establish a simple general result: 

Lemma 3.1 If an MS(v, b) exists, then an MS(v, b+ Amin{v)v(v -1)/6) also exists. 
Therefore if the condition of Theorem 2.3 is sufficient for 0 ::; b < Amin( v )v( v-I) /6, 
it is sufficient for all b > O. 

Proof: A (v,3,Amin(v))-design is an MS(v, Amin(v)v(v -1)/6) design in which all 
replication numbers are the same, and in which all pairs occur the same number of 
times. Hence the union of this MS with an MS(v, b) is again an MS. 0 

We assume henceforth that b < Amin{v)v(v - 1)/6 without further comment. 
We consider v == 0 (mod 6). A collection B of triples is resolvable if B can be 

partitioned into parallel classes; in each parallel class, the triples are disjoint and 
contain each element of the underlying design exactly once. A resolvable maximum 
(6t, 3, 1)-packing is a nearly Kirkman triple system (NKTS). Rees and Stinson (1987) 
completed the proof that an NKTS(6t) exists if and only if t :2: 3. 

Lemma 3.2 An MS( v, b) with v = 6t exists for all b > 0 except when D>. (v) < b < 
C>.(v) for some A. 

Proof: The exceptions follow from Lemma 2.2. The cases when t = 1 and 2 follow 
from Lemma 4.2, so suppose that t ~ 3. First we handle the case when b ::; D1(V). 
Form an NKTS(v), and order its triples so that all triples within each parallel class 
are listed consecutively. The first b triples under this ordering form a (v, 3, 1)-packing, 
and the numbers of triples containing each element differ by at most one since every 
parallel class contains every element exactly once. So the first b triples form an 
MS(v, b). In addition, each such MS(v, b) has the property that there is a set of 
v /2 disjoint pairs not covered by any triples. To handle the cases with C1 (v) ::; b < 
v(v -1)/3, we start with a minimum (v, 3, I)-covering, noting that it has v/2 disjoint 
pairs covered twice and all other pairs covered once. Then form an MS ( v, b - C 1 ( V ) ) 

and add the triples of the minimum covering, aligning the two sets of v /2 disjoint 
pairs. 0 

4 Sufficiency: Small orders 

We employ Lemma 3.2 to establish existence of some MS(v,b)s for v =1= 0 (mod 6): 

Lemma 4.1 Let v, W, A be nonnegative integers satisfying v == W (mod 6), W f. 2, 
v :2: 2w, and v W ~ 18 when A(V - 1) == 1 (mod 2). Let rl = rA(V - 1)/21 and 
rh = l (A + 1)( v-I) /2 J. If an MS( w, c) exists for all (.\ (w) ::; c ::; D >'+1 (w), then an 
MS(v, b) exists wheneverC\(v)::; b::; C\(v)+(rh-rl)(v w)/3+D>.+1(w)-C\(w). 
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Proof: Let V be a v-set and W c V be a w-set. Form a collection B of triples which 
cover every pair of elements not both from W exactly A times, but which cover no pair 
inside W (see Colbourn and Rosa (1999)). The number of triples in the collection 
B is C\ (v) - C.x ( w). We require some notation. For each r satisfying r f. :::; r :::; r h, 

let mw,r be the smallest c for which an MS( w, c) with minimum replication number 
r exists, and let Mw,r be the largest such c. 

To form an MS(v, b) with b in the required range, let b' = b - C\(w). Now choose 
bi and b2 so that for some r, we find that r(v - w)/3 ::; bi ::; (r + l)(v - w)/3, and 
mw,r ::; b2 ::; Mw,r' (It is easy to verify that this can always be done.) Now add to 
B the triples of an MS(w, b2 ) on W. Next form an MS(v - w, bt} on V \ W using 
Lemma 3.2. When A(V - 1) == 0 (mod 2), this MS is placed arbitrarily. However, 
when A(V - 1) is odd, the collection B covers a I-factor of pairs on V \ W A + 1 
times rather than A. In this case, we employ the fact that Lemma 3.2 constructs an 
MS( v - w, bI ) in which the uncovered pairs include a I-factor. Aligning these two 
I-factors ensures that the result is the MS(v, b) required. 0 

To obtain the remaining designs, we adapted a hill-climbing algorithm for triple 
systems (Gibbons (1996), Stinson (1985)). In particular, we enforce the limit on 
replication numbers as triples are added. We check, when the number of triples is as 
desired, that pair occurrences differ by at most one. This somewhat naive method 
suffices to complete the proof of the following: 

Lemma 4.2 When v and b meet the condition of Theorem 2.3 and v E {4, 5, 6, 
7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 20, 22, 23, 28, 29, 34, 35, 40, 41, 46, 47}, an 
MS(v, b) exists. 

The proof of Lemma 4.2 is by construction of many small designs (those not 
obtained from Lemma 4.1). Since the particular structure of the individual designs 
is of little interest, we do not exhibit them here; rather they are available from the 
authors. 

5 Sufficiency: v = 1,2,3 (mod 6) 

We need a further definition from combinatorial design theory. A 3-frame of type 
gnhi is a triple (V, Q, B) such that 

1. V is a set of size gn + h, 

2. Q is a partition of V into n sets of size 9 and one set of size h, called groups, 

3. B is a collection of subsets of Veach of size 3 called triples, 

4. For every two points, x, y E V, either there exists a unique G E 9 for which 
{x, y} ~ G, or there exists a unique BE B such that {x, y} c B, but not both, 

5. B can be partitioned into frame parallel classes each of which consists of disjoint 
triples and contains exactly the points of V \ G for some G E Q. 
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It is permitted to choose h = 0, in which case the type is written as gn. A 3-frame 
of type 6n exists whenever n ~ 4 (see Abel and Furino (1996)). We use such frames 
to treat three further congruence classes. 

Lemma 5.1 Let v == 1,2,3 (mod 6). Then an MS(v, b) exists for all b > 0 except 
when v == 2 (mod 6) and either 

1. A == 2 (mod 6) and D),(v) ::; b < C),(v), or 

2. A == 4 (mod 6) and D),(v) < b ::; C),(v). 

Proof: If v < 25, Lemma 4.2 gives the solutions. Suppose then that v 2: 25. We 
first treat the cases with b ::; Dl (v). Let n = Lv /6 J. Form a 3-frame (V, g, B) of 
type 6n , having groups G b ... , Gn whose frame parallel classes are Rj for 0 ::; i < n 
and 0 ::; j < 3. The frame parallel classes RiO, Ril and Ri2 are precisely those which 
cover all elements except those of group Gi • 

We employ certain MS(v, b)s as well for small values of v. For v = 7, if b ::; 5, we 
select the first b blocks of aOl, 234, 025, 135, a45 to form an MS(7, b). If b = 6 or 
7, we select the first b blocks of aOl, a23, a45, 024, 035, 125, 134. When v = 8, if 
b ::; 6, select the first b blocks of 012, a45, b03, b15, 234, a14 to form an MS(8, b). If 
b = 7 or 8, select the first b blocks of 012, 345, a24, b15, a05, b23, a13, b04. When 
v = 9 and b ::; 12, select the first b blocks of a03, b14, c25, a04, b15, c23, a05, b13, 
c24, 012, 345, abc to form an MS(9, b). 

Start with the 3-frame and append elements {a}, {a, b}, or {a, b, c} so that v mod 
6 new elements are added. Start with the MS( v, 0) having no blocks. We add one 
block at a time. For each group Gi in turn, we add the blocks of RiO one at a 
time. Once all are added, we place the blocks of the MS(7,j), MS(8,j), or MS(9,j) 
constructed for 0 ::; j ::; 3, identifying the elements 0, 1, 2, 3, 4, 5 with the elements 
of Gi . Then we add in turn all blocks in Rl' To continue, we instead place the blocks 
of the MS(7,j), MS(8,j), or MS(9,j) constructed for 4 ::; j ::; 6. Then we add one at a 
time the triples of R2' To complete the handling of this group, we instead place the 
blocks of the MS(7,j), MS(8,j), or MS(9,j) constructed for 7 ~ j ::; f, where f = 7, 
8, or 9 depending upon the number of points. After a group is processed in this 
way, all elements have the same replication number. So we can continue to process 
the next group in exactly the same way until all groups are handled. This process 
reaches Dl(V) triples when v == 1,2 (mod 6). When v == 3 (mod 6), we complete 
the process by adding in turn all of the missing triples on each of the groups, and 
finally adding the missing triple {a, b, c}. 

Since (v, 3, I)-designs exist whenever v == 1,3 (mod 6), this completes the con
struction of MS(v, b)s for all b > 0 in these cases. However, the situation when 
v == 2 (mod 6) requires further examination. We consider the situation when 
C1 (v) ::; b < D2 ( v) in some detail. We form on V U {a, b} a minimum (v, 3,1)
covering which contains a minimum (8,3,1)-covering on G1 U {a, b}, and in which 
all other pairs occurring in two triples lie within groups G2 , ••• ,Gn (such a covering 
exists; see Colbourn and Rosa (1999)). This covering is an MS(v, C1 {v)). We begin 
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by processing the group C l . First we add, one at a time, the triples of RlO • Then 
we replace the (8,3,1)-covering, which is an MS(8,1l), in turn by the blocks of an 
MS(8, j) for j = 12,13,14, obtained by taking the first j blocks of the sequence 013, 
124, a23, 345, ab4, a05, b15, b02, 014, a12, 235, b34, abO, 245. Then add in turn 
each of the blocks of Rn. Next replace the blocks of the MS(8,14) by those of an 
MS(8,j) for j = 15,16 obtained by taking the first j blocks of the sequence 013, 124, 
a23, 345, ab4, a05, b15, b02, 014, a12, 235, b34, a04, b25, a15, b03. For the moment, 
we do not complete the processing of group Cl . Rather, since the MS(v, b) thus far 
produced has all elements in exactly the same number of triples, we detour to handle 
the remaining groups. Each remaining group is processed in turn, using the original 
method but subject to the condition that a spanning set of four uncovered pairs 
in the MS(8, j) employed is aligned on {a, b} together with the three pairs covered 
twice in the group by the (v, 3, I)-covering. Once all remaining groups are treated 
in this way, the MS(v, b) produced is a (v, 3, 2)-packing in which the pairs covered 
only once form (v - 8)/3 triangles and two 4-gons. Add each triangle as a triple in 
turn to handle all cases with b ~ D2(V) - 2. An MS(v,D2 (v) -1) is then obtained 
by replacing the MS(8,16) by an MS(8,17) which is easily produced (Colbourn and 
Rosa (1987)). 

The cases when C,\(v) ~ b ~ D,\+1(v) for A = 2,3,4,5 are quite similar, and we 
omit the details. (The essential requirement is to produce the solutions for v = 8. 
The MS(8, j)s for 20 ::; j ::; 26 can be obtained as follows. Form an MS(8,20) with 
blocks 013, 124, 235, 034, 145, 025, aOl, a12, a23, a34, a45, a05, b02, b13, b24, b35, 
b04, b15, abO and abl. Then add 1, 2, 3, 4, or 5 triples from 345, 123, 024, ab5, and 
015 to treat the cases with 21 ~ j ~ 25. An MS(8,26) is obtained by developing 
the base blocks 001011, 0010311 002021, 011100 , 011130, and 012110 modulo (4, -), and 
then adding the triples 001020 and 011121. To produce MS(8,j)s with 30::; b ::; 56, 
we employ the fact that the solutions with 0 ~ j ::; 26 contain no repeated blocks. 
Hence, taking all triples not in one of the MS(8, j)s with 0 ::; j ::; 26 yields an 
MS(8,56 - j).) When b 2: v(v - 1), an MS(v, b) is obtained as the union of an 
MS(v, b v(v - 1)) and a (v, 3, 6)-design, which completes the proof. 0 

6 Sufficiency: v - 4,5 (mod 6) 

When v == 4,5 (mod 6), the idea of Lemma 5.1 does not apply directly since the 
MS(IO, j)s and MS(ll, j)s required cannot have the needed subset of 4 or 5 elements 
no two of which appear in a triple. Nevertheless, a variant of the method using more 
complicated frames does treat these situations. Ling and Colbourn (1997) collect 
together frames which contain at most one group of size six, which we use here: 

Lemma 6.1 (See Ling and Colbourn (1997)) There exist 3-frames of the following 
types: 

1. 12n for n 2: 4; 

2. 30n (6x)1 for n ~ 4 and 0 ~ x ::; n - 1; 
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t Blocks 
2 {0,4,5} 
3 {0,7,8}, {0,2,6} 
4 {0,2,7}, {0,3,9}, {0,10,1l} 
5 {0,13,14}, {0,2,6}, {0,3,11}, {0,7,12} 
6 {0,4,14}, {0,2,15}, {0,3,9}, {0,5,12}, {0,16,17} 
7 {0,19,20}, {O,3,14}, {0,4,16}, {O,5,18}, {0,6,15}, {O,7,17} 

Table 1: Small Packings 

3. 12461,124181,12661,185,125241301, and 185361 • 

In particular, for every number v of elements satisfying v == 0 (mod 6) and v 2:: 48, 
there is a 3-frame having all group sizes a multiple of 6 and having at most one group 
of size 6. 

We shall also need some small packings. Table 1 gives, for each 2 ~ t ~ 7, a 
packing by triples on 6t points as follows. First, for each ° ::; i < 6t, we add i to 
each element of each triple, reducing modulo 6t, to produce 6t blocks from each. 
The pairs which appear in none of the resulting 6t( t - 1) triples can be partitioned 
into five classes so that each element appears in exactly one pair in each class (i.e. 
the classes are i-factors), as a consequence of the lemma of Stern and Lenz (1980). 
We can therefore extend the set of 6t( t - 1) triples to a packing on 6t + 5 elements, 
by adding five new 'infinite' elements, and adjoining each to the pairs of one of the 
I-factors to form triples. The result is a (6t + 5, 3,1) packing, but it is not an (M,S)
optimal design because the five infinite elements appear two fewer times than do the 
remaining elements. To remedy this, consider the first block shown for each packing 
in Table 1. Each has the property that the three elements of the block are distinct 
modulo 3. Hence adding 3i, 3i + 1, or 3i + 2 for ° ::; i < 2t yields a parallel class on 
the elements 0, ... , 6t - 1. Removing two of these parallel classes therefore produces 
an MS(6t+5, t(6t+5)). Instead deleting one infinite point and removing one parallel 
class yields an MS(6t + 4, t(6t + 4)). 

Theorem 6.2 An MS(v, b) exists whenever v - 4,5 (mod 6) and v, b meet the 
condition in Theorem 2.3. 

Proof: When v :::; 47, see Lemma 4.2. For v 2:: 52, write v = 6t + s. Form a 
frame on 6t elements with groups Gb ... , Gn , so that each group except possibly the 
last has size at least 12, and all groups have sizes which are a multiple of six (use 
Lemma 6.1). We process the groups (and their associated frame parallel classes) in 
turn for i = 1, ... , n. To process group Gi , we proceed as follows. Let mj (Mj ) be 
the minimum (maximum, respectively) number c of blocks in an MS(IGil + s, c) with 
replication numbers all at least j (at most j, respectively). To handle the jth frame 
parallel class (j = 1, ... , IGil/2), first remove the blocks of the MS(IGil + s, Mj - 1), 
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and add instead the blocks of the MS(IGil + s, c)s in turn for mj-l ~ c ~ Mj . Then 
add each of the blocks of the jth frame parallel class one at a time. Once all frame 
parallel classes for Gi are so handled, when i < n replace the MS(IGil + s, MIG;I/2) 
by the MS(IGil + s, (IGil)(IGil + s)/6) formed earlier, with no pairs covered on the s 
additional elements. 

When v == 4 (mod 6), we can now add the omitted frame parallel classes in each 
of the MS(IGd + s, MIG;\/2)S used. Then the MS(\Gn \ + 4, MIGn l/2) can be replaced 
in turn by MS(IGn \ + 4, c)s for MIGn l/2 < C ~ l(\Gn \ + 4)(\Gn \ + 2)/6J. This handles 
all cases when pairs appear in zero or one triples. To continue to larger numbers 
of blocks, we simply place an appropriate (v, 3, 1 )-covering first, and then add the 
blocks of a packing. 

When v == 5 (mod 6), the completion is similar except that two omitted frame 
parallel classes are to be added for each group; we leave the tedious details to the 
reader. 0 

We have established that the conditions of Lemma 2.2 are sufficient for the ex
istence of an MS(v, b) for all v 2:: 3 and b > 0, completing the proof of Theorem 
2.3. 
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