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Abstract 

A t-(v, k,;\) directed design (or simply a t-(v, k, ;\)DD) is a pair (V, B), 
where V is a v-set and B is a collection of (transitively) ordered k-tuples 
of distinct elements of V, such that every ordered t-tuple of distinct 
elements of V belongs to exactly). elements of B. (We say that at-tuple 
belongs to a k-tuple, if its components are contained in that k-tuple as 
a set, and they appear with the same order). In this paper with a linear 
algebraic approach, we study the t-tuple inclusion matrices Dr k' which 
sheds light to the existence problem for directed designs. A~ong the 
results, we find the rank of this matrix in the case of 0 ~ t ~ 4. Also in 
the case of 0 ~ t ~ 3 , we introduce a semi-triangular basis for the null 
space of Df,t+l' We prove that when 0 :::; t :::; 4 , the obvious necessary 
conditions for the existence of t-( v, k, ;\) signed directed designs, are also 
sufficient. Finally we find a semi-triangular basis for the null space of 
DHI 

t,t+l' 
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1 Introduction 

Let 0 < t :::; k ~ v and A ~ 0 be integers, and let V be a set of v elements. 
Throughout the paper we will assume a total order on the elements of V. Let the 
set of all k-subsets of V be ordered lexicographically from 1 to (~), and the set of 

its t-subsets from 1 to (~). A t-inclusion matrix Wt~k = [Wij] is a (~) x (~) matrix 
defined by Wij = 1 if the i-th t-subset is included in the j-th k-subset, and Wij = 0 
otherwise. A (n x 1 vector F = [Ji] represents a t-( v, k, A) design, if each Ii is a 
non-negative integer and 

(1) 

where et = (1", " l)t. 

An integer vector which satisfies (1) but in which the components are not 
necessarily positive, represents a t-(v, k, A) signed design. A signed design is called 
a (v, k, t) trade if A = O. The sum of the non-negative components in a trade, which 
is equal to the absolute value of the sum of the negative components, is called the 
volume of a trade, and usually is denoted by s. Also the foundation of a trade T = [til 
may be defined as 

found(T) = {x E V I x E i-th block, for some i with ti =f. a}. 

A trade with a minimum volume and with a minimum foundation size is called a 
minimal trade. 

For given v, k, t, the set of all t-(v, k, A) signed designs forms a Z-module. The set 
of all (v, k, t) trades is a submodule of this module and is denoted by M~k' Clearly 
this submodule is a subset of the null space of Wt~k' Graver and Jurkat [2) and 
independently Wilson [14] proved the following theorem about the rank of the matrix 
Wt~k' 
Theorem 1.1 ([2] and [14]). 

k W
v {(~), if t ~ k ~ v - t; 

ran t,k = (~) , if v - t ~ k ~ v. 

Graver and J ur kat, in the same paper, introduced a basis of (v, k, t) trades for the 
module Mtk' Other papers have appeared since, which introduce bases for this 
module with easier algorithms; for example see [3], [6] and [7]. In [5] a very simple 
algorithm for producing a basis is given, 

Theorem 1.2 [5). There exists a semi-triangular basis for trades. 

The basis given in [5] is semi-triangular and consists of minimal trades. This 
basis is also a module basis for Mt~k' 

The following is also a well known theorem. 

Theorem 1.3 ([2] and [14]). Let t, k, v, AI, ... ,At = A be integers where v ~ 1 and 
o ~ t, k :::; v. There exists a t- ( v, k, A) signed design if and only if As+ 1 = ~=~ >'s, for 
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o ::; s < t. 
Wilson in [15] has studied the matrix Wt~k in detail. 

There is also a linear algebraic approach to the other combinatorial designs 
such as orthogonal arrays; for example see [8]. In this paper we look at the directed 
designs with this approach. 

By an n-tuple of V, we mean a transitively ordered n-subset of V. Each k-tuple 
of distinct elements of V is called a block. Note that a t-tuple is said to appear in 
a block if its components are contained in that block as a set, and if they appear 
with the same order. For example the 4-tuple abed contains the 3-tuples abc, abd, aed 
and bed. Let all k-tuples of V be ordered lexicographically from 1 to k!(~), and its 

t-tuples from 1 to t!(~). A t-inclusion matrix Df,k = [dijl is a t!(~) x k!(~) matrix 
defined by dij = 1 if the i-th t-tuple is included in the j-th k-tuple, and dij = 0 
otherwise. A k! (~) x 1 integral vector F = [Ji] is said to represent a t-(v, k, A) signed 
directed design (or simply t-(v, k, A)SDD), if 

(2) 

where et = (1"", l)t is a t!(~) x 1 vector. 
Here fi is called the frequency of the i-th block (or k-tuple) in the signed directed 
design. A t-(v, k, A) directed design (or simply t-(v, k, A)DD) is a t-(v, k, 'x)SDD in 
which fi ~ 0 for all i. A t-( v, k, A)SDD with A = 0 is said to represent a null directed 
design, or a (v, k, t) directed trade (or simply a (v, k, t)DT). 

Directed designs were first introduced by Hung and Mendelsohn in [4]. Some 
further work has been done on the construction of these designs, for references see 
[1], [9], [10], [11], [12], and [13]. 

It should be noted that here we consider directed designs and directed trades 
as vectors, but they can be defined in a traditional way. For example 

Definition. A (v, k, t) directed trade (or simply a (v, k, t)DT) of volume s consists of 
two disjoint collections Tl and T2 , each of s blocks, such that the number of blocks 
containing any t-tuple of V is the same in Tl and T2 • 

A (v, k, t)DT of volume s will be represented by 
s s 

T = Tl - T2 = LBli - LB2il 
i=l i=l 

where Bli'S and B2i'S are the blocks contained in Tl and T2 , respectively. 

It is clear that if in a directed trade we consider the blocks without order, then 
we obtain a trade. 

In this paper we use arrays to represent directed trades. For example 

Tl T2 
xyzw xywz 
yxwz yxzw 
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is a (4,4, 3)DT of volume 2, where xyzw and yxwz are blocks both with frequency 
+ 1 and xywz and yxzw are blocks both with frequency -1. 

The set C~k of all signed directed designs is a Z-module, and the set N~k of all 
directed trades is a submodule of this module. In other words N~k is the following 
set: 

Nt~k = {F I F is an integral vector of size k!(~) x 1, D~kF = a}. 

Clearly this submodule is a subset of the null space of Df,k which we denote by 
Ker Df,k' Here we consider Ker Df,k as a vector space over the rational field. 

From the vector representation it can be easily seen that: 

(i) if FI and F2 are two t-(v, k, A) DDs, then Fl - F2 is a (v, k, t)DT; 

(ii) let F be a t-(v, k, A)DD and T be a (v, k, t)DT, then F + T is a t-(v, k, A)DD if 
and only if F + T is a positive integral vector; 

(iii) if T' and Til are two (v, k, t)DTs, then each of T' - T" and T' + T" is also a 
(v, k, t)DT. 

Here, first we determine the dimension of Ker Dr,k for 0 ::; t :::; 4. Then for 0 ::; t ::; 3 
we introduce a semi-triangular basis of directed trades for Ker Df,t+l' such that it is 
also a module basis for the Z-module N~t+l' Next for any given t, we introduce a 
semi-triangular basis of directed trades for Ker D~~il' such that it is also a module 
basis for the Z-module Nf,Ul' Finally we show that for 0 ~ t :::; 4 the necessary 
conditions for the existence of a t-(v, k, A)SDD are also sufficient. 

2 Some results about Nt k , 

In this section we state some lemmas about N~k' First we need the following 
definition. 

Definition. A directed trade is called strictly directed if when we consider its blocks 
without order then we obtain a trade of volume O. 
The following lemma is immediate from the definition. 

Lemma 2.1. If TI , T2 E Nrk are two strictly directed trades, then Tl + T2 is also a 
strictly directed trade. ' 

Corollary 2.2. An integral linear combination of strictly directed trades is also a 
strictly directed trade. 

Lemma 2.3. When t :::; k < v - t, there does not exist a basis for Nr k which consists 
only of strictly directed trades. ' 
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Proof. We know that in this case there exists a non-void (v, k, t) trade (Theorem 
1.1), and from this trade we may construct a directed trade, for example by writing 
elements of each block in increasing order. By Corollary 2.2 this directed trade can 
not be obtained from a linear combination of strictly directed trades. _ 

Notation. A basis of Nt~k' will be denoted by f3t,k, which may be partitioned as 
f3t,k = f3:,k u f3::k, where f3::k consists of all strictly directed trades in this basis. 

We know that N~k may be identified with the integral vectors in the null space 
of Df,k' So the following lemma is as an easy exercise in linear algebra. 

Lemma 2.4. The module dimension of Nt~k is equal to dim Ker D~k' 

Definition. The smallest block (in the lexicographical ordering) of a directed trade 
is called a starting block. 

It is clear that a set of directed trades with distinct starting blocks are linearly 
independent. If a set of directed trades with distinct starting blocks forms a basis for 
Nrk' then this basis is called a semi-triangular basis. It means that if we consider each 
el~ment of this basis as a column vector, by a suitable permutation a semi-triangular 
matrix may be produced. 

A semi-triangular basis construction. For constructing a semi-triangular basis 
f3t,k it is sufficient that: 

(i) the sets f3;,k and f3::k are semi-triangular; 

(ii) the starting blocks of directed trades in f3;,k are distinct from the starting blocks 
of directed trades in f3::k' 

A semi-triangular set f3: k may be constructed as follows: 
Khosrovshahi and Ajo~dani in [5] constructed a semi-triangular basis of minimal 
trades for the Z-module Mrk' Let T be an element of this basis with starting block 
{Xl,"" Xk}, Xl < ... < Xk',. By arranging elements of each block of this trade in 
decreasing order, we obtain a (v, k, t)DT with the starting block, Xk· .. Xl. Let /3: k be 
the set of all directed trades obtained in that manner. Now for any semi-triangular 
basis f3;'k' of strictly directed trades, always the condition (ii) holds. For a block 
{Yl ... Y~}, where Yl > ... > Yb can not be a starting block in any strictly directed 
trades. 

3 Results about Dr k , 

The structure of Df,k is obvious for some values of t and k: 

Df,k = 0 if k < t 
Df,t = I 
Do'k = J. 
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where J = (1, ... ,1). And we have the following matrix equation: 

( k - s) D~ k = D~ tD~ k where s::; t ::; k. 
t - s ' " 

(3) 

To prove (3), let S be an s-tuple and K be a k-tuple, such that S is contained in 
K. Then the number of t-tuples T such that T is contained in K and contains S is 
(k-s) . 

t-s 

Theorem 3.1. The map D~+1,k : Ker D~,k -t Ker Dr,t+l is a linear transformation 
and we have: 

(i) dim Ker D~+l,k = dim Ker Dr,k- dim 1m Dr+1,k; 

(ii) if T is a strictly directed trade, then T' = Dr+l,kT is also a strictly directed 
trade. 

Proof. (i) It is obvious by Equation (3) that one may interpret D~+l,k as operating 
on Ker Dr,k and mapping each element of Ker D~,k to Ker Dr,t+1' Assume that 

U = {tJ E Ker Dr,k I Df+1,ktJ = O}. 

By a familiar theorem from linear algebra we have: 

dim U=dim Ker D~,k- dim 1m Dr+l,k' 

It is sufficient to show that U=Ker Dr+1,k' It is obvious that U ~ Ker Dr+l,k' 
Suppose tJ' E Ker Dr+1,k' thus Dr+l,ktJ' = 0 and Dr,t+l Df+1,ktJ' = O. Therefore by 
(3) we have Dr ktJ' = O. This means that tJ' E Ker Dr k' so tJ' E U and finally 
Ker Dr+1,k ~ U: This completes the proof of (i). ' 

(ii) Let T E Ker Dr,k be a strictly directed trade. Then T = Tl - T2 = 2::=1 Bi -
2:1=1 BiO!i, where ai's are permutations. Each (t + I)-tuple, which is contained in a 
given block Bi , is a block in T{. And each (t + I)-tuple contained in a BiO'.i is a block 
in T~. Thus for each block in T{ a permutation of it is in T~ and viceversa. This 
completes the proof. _ 

Theorem 3.2. Suppose that there exists a basis tJt,t+1 for Ker Dr,t+l such that 
tJt,t+l = tJ:,t+l U tJ::t+1' where for each T E tJ:,t+ll Ifound(T)I = 2t + 2 and for each 
T E tJ::t+1' Ifound(T)I ::; 2t. Then for the linear mapping Df+l,k : Ker Df,k -t 
Ker Dr,t+ 1 we have: 

if k < v - t, i.e. the mapping is onto; 
if v - t ~ k ~ v t + 1, 

where (B~:t+l) is a subspace generated by the elements of tJ::t+1' 
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Proof. (i) Let T E (3t,t+1 and k < v - t. By assumption Ifound(T) I :::; 2t + 2. Then 
v 2:: k+t+ 1, and we may choose k -t-l elements Xl,'" ,Xk-t-l of V- found(T). 
Then the directed trade T' = T{ - T~, with blocks given as follows, is the required 
trade and we have Dr+l,kT' = T. 

T' I 
Xl ... Xk-t-l 

Xl·· .Xk-t-l 

T.' 2 

Xl· .. Xk-t-l 

(ii) If v - t :::; k :::; v - t + 1, then v :::; k + t. Thus if (3 is a basis with integral vectors 
(directed trades) for Ker Dr,k' then it consists only of strictly directed trades. Thus 
by Theorem 3.1 (ii), 1m Df+1,k ~ (B::t+1) ~ Ker Di,t+l' In this case for each 
T E f3::t+1 we have Ifound(T) I :::; 2t, by assumption and we may choose k - t - 1 
elements Xl,' .. , Xk-t-l of V - found(T). As in (i) the directed trade T' is the required 
trade and Dr+1,kT' = T. The proof is complete. _ 

Now by applying the above two theorems we see that to determine the dimen­
sion of Ker Dr,k (or the rank of Di,k) for given positive integers t, k, v (t :::; k :::; 
v - t + 1), it is sufficient that: 

(i) we know the dimension of Ker Dr,k and, 

(ii) in the special case of k = t + 1 we be able to construct a basis for Ker Dr,t+l 
such that it satisfies the assumptions of Theorem 3.2. 

In that way the rank of Dr,k may be obtained inductively. 

4 Dimension of Ker Dr k or dimension of Nt k , , 

In this section we determine the dimension of Ker Dr,k where 0 :::; t :::; 4. We also 
introduce a semi-triangular basis of directed trades for Ker Di,t+l where 0 :::; t :::; 3, 
which is a module basis for Z-module N~t+1' 

Theorem 4.0. For t = 0 

(i) dim Ker DO,k = k! (~) - 1 for each 0:::; k :::; v; 

(ii) there exists a semi-triangular basis 13'0,1 of directed trades which satisfies the 
assumption of Theorem 3.2. 

125 



Proof. (i) By definition Do k = [1·· ·1], thus (i) is obvious. 
(ii) Take (v, 1, 0) directed tr'ades T with blocks as follows 

Tl T2 
x x+1 

for each x such that 1 S; x ::; v - 1. Note that Ifound(T) 1= 2. 
These v-I directed trades form the desired f30,1' 

Theorem 4.1. For t = 1, 

(i) dim Ker Dl,k = k! (~) - v if 1 S; k ::; v-I; 
dim Ker Di',v = v! - 1; 

-

(ii) there exists a semi-triangular basis f3i',2 of directed trades for Ker D1,2, which 
satisfies the assumptions of Theorem 3.2 .. 

Proof. (i) The first equation follows from Theorem 3.2 and Theorem 4.0. Also one 
may see it by applying a suitable permutation on the columns of D1,k, which may 
be represented as follows: 

c ] . 
Since for k ::; v-I, W~ k is full rank, therefore Dr k is full rank. For the second 
equation, we note that Dr v = J is of size v x v!. Th~s dim Ker Dr v = v! - 1. 
(ii) We let f312 = f3~ 2 U f3~ 2, where f3r 2 contains (v, 2,1) strictly directed trades as 
follows ' " , 

Tl T2 
xy yx 

for 1 ::; x < y S; v. So we have Ifound(T) \= 2, and 1 f3~',2 1= (~). 
If v 2: 4, f3b contains the directed trades which were introduced at the end of 

Section 2. And 1 f3~,2 \= (~) - (~). Thus 1 f31,2 1= 2! (~) - v, and proof is complete. -

Example 1. A basis for Ker Dt,2' 

f3~,2 consists of the following strictly directed trades: 

I~~ 13 31 I ~IL 14 41 I ~IL 23 32 I ~:& 24 42 I~~ 34 43 

and f3~,2 consists of the following directed trades, 

A representation of the elements of f31,2 as vectors is given below. 
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12 1 
13 1 
14 1 
21 -1 1 
23 1 
24 1 
31 -1 -1 1 
32 -1 -1 
34 1 
41 -1 -1 
42 -1 -1 1 
43 1 -1 

Theorem 4.2. For t = 2 ! kim - 21(;) if 2 :::; k ::::; v - 2, 

(i) dim Ker D~,k = v! _ (V~l) if k = v-I, 

v! - (~) - 1 if k =v; 

(ii) there exists a semi-triangular basis f3'23 of directed trades which satisfies the 
assumptions of Theorem 3.2. ' 

Proof. (i) The equations in (i) may be obtained from Theorem 3.2 and Theorem 
4.1. Also we may obtain the first equation by a suitable permutation on the columns 
of D'2,k, which may result as follows: 

Dv - [W2k C 1 2,k - 0 w,v . 
2,k 

Since for k ::::; v - 2, W2,k is full rank, thus D2,k is full rank. 

(ii) We let f3'23 = f3~ 3 U f3~ 3' where f3~ 3 contains strictly directed trades as 
follows. ", , 

For each x, y, z E V (such that x < y < z), we have the following (v, 3, 2)DTs 
of volume 2 and with foundation size 3 or 4, in each of which the first block is a 
starting block. And these are the maximum possible numbers of such trades. 

T2 Tl T2 T2 
---- yxz yzx 

xyz yxz xzy yxz 
wzx wxz 

zyx zxy yzx zxy 
(y < w ::::; v, w # z) 

T2 T2 
yzx zyx zxy zyx 
zyw yzw wyx wxy 

(x < w ::::; v, . w # y,z) (z < w ::::; v) 
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And we have 1 (3~,3 1= 5(V;1) + 4(V;2) + 3(v - 3) + 2. 

If v ~ 6. (3b contains the directed trades which were introduced at the end of 

Section 2. Each directed trade in (3~,3 has foundation 6, and 1 (3b 1= (~) - (~). 
By a simple computation, the total number of directed trades obtained is equal to 
dim Ker DZ,3' • 

Theorem 4.3. For t = 3, 

( ') d' K DV _ { k! (%) - 3! (~) if 3 ~ k ::; v - 3, 
1, 1m er 3 k - 1 11 I ' dim Ker D2,k- (32,3 if v - 2 ::; k ~ v-I; 

(ii) there exists a semi-triangular basis j3~,4 of directed trades which satisfies the 
assumption of Theorem 3.2. 

Proof. (i) The equations in (i) may be obtained by Theorem 3.2 and Theorem 4.2. 

For (ii), let (33,4 = (3~,4 U (3;,4' where (3;,4 contains strictly directed trades as 
follows. 

For each x, y, Z, w E V (such that x < y < Z < w), we have the following 
(v, 4, 3)DTs of volume 2 or 4, and with foundation size 4, 5 or 6, in each of which 
the first block is a starting block. And these are the maximum possible numbers of 
such trades. 

Tl T2 
xzwy zxwy 
wzxy wxzy 
yzxw yxzw 
ywxz ywzx 

Tl T2 
xwyz xwzy 
wxzy wxyz 

Tl 
yxwz 
awxz 
zywx 
zaxw 

(z < a < w 

Tl T2 
xzyw xzwy 
zxwy zxyw 

Tl T2 
ywxz ywzx 
wyzx wyxz 

T2 
ywxz 
axwz 
zyxw 
zawx 

or y<a<z 
or w < a ::; v) 
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Tl T2 Tl T2 
xywz yxwz xyzw xywz 
wyxz wxyz yxwz yxzw 
zyxw zxyw 
zwxy zwyx 

Tl T2 Tl T2 
xwyz xwzy zwxy zwyx 
wxzy wxyz wzyx wzxy 

Tl T2 
yxzw yzxw 
azxw axzw 
wyzx wyxz 
waxz wazx 

(z < a < w or y < a < z 
or w < a::; v) 



xwzy 
zwxy 
yzxw 
ywxz 

yzwx 
ywza 
wzxy 
zway 

(z < a < w or 
y < a < z or 

zyxw 
zawx 
a'ywx 
a'axw 

(z < a < w 

w <a':S;v 

zwyx 
wzax 
wzya' 
zwaa' 

(z < a < w or 

y < a' < z or 
w < a':S; v or 

zxyw 
zwyx 
ayxw 

zxwy 
wxzy 
yxwz 
yzwx 

ywzx 
yzwa 
zwxy 
wzay 

x<a<y 
z < a:S; v) 

zywx 
zaxw 
a'yxw 
a'awx 

or y < a < z 
or w < a:S; v 
or z < a' < w) 

T2 
wzyx 
zwax 
zwya' 
wzaa' 

y<a<z 
w<a:S;v 
x<a'<y 

z < a' < w) 

T2 

ywzx 
zwyx 
wyza 
zywa 

wyzx 
zywx 
ywza 
zwya 

(y < a < z or 
w < a:S; v or 

x<a<y 
z < a < w) 

zywx 
zwya 
a'wyx 
a'ywa 

(z < a < w or 
y < a < z or 
w < a' ::; v or 

wyxz 
wazx 
a'yzx 
a'axz 

(z < a < w 

zxwy 
zywx 
ayxw 
awxy 

(w < a :s; v or 

zwyx 
zywa 
a'ywx 
a'wya 

x<a<y 
w < a:S;v 

z < a' < w) 

T2 
wyzx 
waxz 
a'yxz 
a'azx 

or y < a < z 
or w < a:S; v 
w < a' :s; v) 

zyxw 
zwxy 
axwy 
aywx 

z < a < w) 

awxy 

zyxw 
zwxy 
axyw 
awyx 

wxzy 
wyzx 
ayxz 
azxy 

wyxz 
wzxy 
axzy 
ayzx 

(w < a:S; v or z < a < v) (w<a:S;v) 
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wxyz wyxz 
wzyx wzxy 
ayxz axyz 
azxy azyx 

(w<a~v) 

wyzx 
wzya 
a'zyx 
a'yxa 

(y < a < z or 
w < a:::; v or 
w < a':::; v) 

wzxy 
wayx 
a'zyx 
a'axy 

(w < a:::; v or 
w < a' :::; v) 

T2 
wzyx 
wyza 
a'yzx 
a'zya 

x<a<y 
z<a<w 

wzyx 
waxy 
a'zxy 
a'ayx 

z<a<w 

We have 1 f3~,4 1= 23 (V~2) + 41 (V;3) + 54 (V;4) + 11 (v - 4) + 51 (v - 5) + 54, for v > 4 

and 1f3~,41 = 9, for v = 4. 

If v 2 8, f3~,4 contains the directed trades which were introduced at the end of 

Section 2. Each directed trade in f3~,4 has foundation of size 8, and 1 f3~,4 1= (~) - (~). 
By a simple computation the total number of directed trades obt~ined in (ii) equals 
dim Ker D3,4' • 

Theorem 4.4. For t = 4, 

d· K DV _ { k! (~) - 4! (~) if 4:::; k :::; v - 4, 
1m er 4 k -

, dim Ker D3,k- 1 j3~,4 I if v - 3 :::; k :::; v - 2. 

Proof. These results follow immediately from Theorem 3.2 and Theorem 4.3. • 

5 A semi-triangular basis for Nl,t2I 

In this section we introduce a semi-triangular basis of directed trades for Ker Dit~l' 
This will be done by the following lemmas. 

Lemma 5.1 Let k = v = t + 1. Each (t + I)-tuple such as Xl ... XmYlY2Y3'" Yt-m+l, 

where 0 :::; m :::; t and Y2 < Yl < Xi (i = 1, ... , m), can not be a starting block in any 
strictly directed trade. 

Proof. Since v = k = t + 1, every directed trade is strict and thus, basis .8i,t~1 of 
integral vectors (directed trades) also consists only of strictly directed trades. Now 
if a block such as b = Xl .•• X m YIY2'" Yt-m+1 where 0 :::; m :::; t and Y2 < YI < Xi (i = 
1, ... , m) is a starting block in a strictly directed trade T, T = Tl - T2 , then the t­
tuple Xl ... X mY2 ... Yt-m+1 must appear in a block of T2, and this block is necessarily 
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a permutation of the block b. But we see that every permutation of block b which 
contains the t-tuple Xl ... Xm Y2 ... Yt-m+l is smaller than b (in the lexicographical 
ordering), and this is a contradiction. _ 

We denote by Qt+! the set of all (t + I)-tuples which satisfy the conditions of 
Lemma 5.1. 

Lemma 5.2. We have, 

IQt+ll = (t + I)! + ~ + ~ m! (t _ m _ 2)! [( t + 1 ) (t - m - 1) - ( t )]. 
2 2 m=2 2 m + 2 m + 2 

Proof. Let Qt+! = Au BuG where A, B, and G are defined as follows: 
A consists of all of (t + I)-tuples, Xl .. . XtY, such that Y = 1 and Xl < X2; 

B consists of all of (t + I)-tuples, Yl ... Yt+l, such that Y2 < Yl; 
C consists of all of (t + I)-tuples, Xl ... XmYI ... Yt-m+l, such that 2 ::; m ::; t - 2, 
Xl < X2 and Y2 < Yl < Xi (i = 1, .. . ,m). 
By an easy counting argument we have, 

IAI = ~, IBI = (t~l)!, t-2 ( ) IGI = m~2 ~! ~~12 (t - m - I)!, 

t-2 '( t ) IA n CI = E ~. m+2 (t - m - 2)!, 
m=2 

and IA n BI = IB n CI = o. 

Now by the principle of inclusion and exclusion the assertion follows. -In the following we show that every element in Q~+!, the complement of the 
set Qt+!, is a starting block in a strictly directed trade. Therefore a semi-triangular 
set of strictly directed trades will be produced which is maximal. Thus this set will 
be a basis for Ker Dtt~l' First we state two lemmas from [10). 

Lemma 5.3 [10]. If there exists a (v, k, t)DT of volume 8, then there exists a 
(v + 1, k + 1, t + 1)DT of volume 28. 

Lemma 5.4 [10]. If there exists a (v, k, t)DT of volume 8, then there exists a 
(v + 2, k + 2, t + 2)DT of volume 28. 

Lemma 5.5. Each (t + I)-tuple in Q~+l is a starting block in a strictly directed 
trade. 

Proof. We proceed by induction on t. For t = 1 we have Q2 = {21}, then Q~ = {12}. 
The directed trade T = TI - T2 where 

TI T2 

12 21 
is a strictly directed trade which contains 12 as its starting block. 
For t = 2 we have Q3 = {213, 231, 312, 321} and Q~ = {123, 132}, where 123 and 
132 are starting blocks in the following directed trades. 

TI T2 TI T2 ---- ----
123 213 132 213 
321 312 231 312 
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Now suppose the theorem holds for all values less than t; we show that it holds for 
t also. Suppose Xl" 'Xt+l E Q~+1.There are two cases; Xl < Xt+l or Xt+1 < Xl' 

Case 1: Xl < Xt+! 

If Xl ... Xt E Q~, then by the induction hypothesis there exists a strictly directed 
trade (t, t, t l)DT which contains Xl ... Xt as a starting block. Then and by Lemma 
5.3 there exists a (t + 1, t + 1, t)DT which contains Xl .•. XtXt+1 as a starting block. 

If Xl ... Xt ~ Q~, since Xl • .. Xt+l E Q~+!, the only possible situation in which 
Xl ... Xt ~ Q~, is that where Xt = 1. Then necessarily Xl ... Xt-l E Q~-l' and by 
the induction hypothesis there exists a (t - 1, t - 1, t - 2)DT in which Xl'" Xt-l 

is a starting block. By Lemma 5.4 there exists a (t + 1, t + 1, t)DT which contains 
Xl' .. Xt-lXtXt+l as a starting block. 

Case 2: Xt+! < Xl 

If X2 ... Xt+l E Q~, then we proceed as in the previous case. 

If X2 ... Xt+l ~ Q~, the only case which may cause trouble is that where X2 > X3. 

But then X3 ... Xt+! E Q~-l' and we proceed as in the previous case. _ 

6 Existence of t-(v, k, "\)SDDs 

In this section we show that the obvious necessary conditions for the existence of 
t-(v, k, A) signed directed designs are also sufficient provided that t ::; 4. 

Theorem 6.1. Let t ::; 4 and t, k, At = A be integers and 0 ::; t < k < v - t. There 
exists a t-( v, k, A)SDD if and only if 

are positive integers for 0 ::; i < t. 
Proof. First we prove of the necessity of the conditions. Let f be a t-(v, k, A)SDD. 
Then by definition 

Then 

From Equation (3) we have 
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and therefore, 

(
k - i) DV f \ (t) pt-i . i k = At. v-iet· t - '1,' 't 

Thus 

for 0 ~ i :::; t. 

Next we prove the sufficiency of these conditions by induction on t. If t = 
0, then AO blocks (k-tuples) form a 0 - (v, k, Ao)SDD. Assume that theorem holds 
for some t 2: 0, and assume that AO ... At+1 satisfy these conditions. Then by the 
induction hypothesis there exists a t-( v, k, At)SDD, namely Ft that D~,kFt = Atet. 

From Equation (3) we have 

From this we easily obtain 

Now take T = D~+1,kFt - At+let+l. Then T is a (v, t + 1, t)DT, because 

= (k - t)Atet - At+1(t + l)(v - t)et 

(k - t)At 
= (k - t)Atet - (t + l)(v _ t) (t + l)(v - t)et = O. 

Then T E N~t+ 1 or T E Ker D~,H 1 . 

Since t ~ sand k < v - t, then by Theorem 3.2, there exists T' E Ker D~ k' 

with integer components (Le. T' E Nt~k) such that D~+l,kT' = T. ' 

If Ft+l = Ft-T', then Ft+l is a (t+1)-(v, k, At+l)SDD. For, we have D~+l,kFt+l = 
Dt+1,kFt - D~+l,kT' = T + AHleHl - T = At+1et+1' The proof is complete. _ 
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