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Abstract

A t-(v, k, \) directed design (or simply a t-(v, k, \)DD) is a pair (V, B),
where V is a v-set and B is a collection of (transitively) ordered k-tuples
of distinct elements of V, such that every ordered t-tuple of distinct
elements of V belongs to exactly A elements of B. (We say that a t-tuple
belongs to a k-tuple, if its components are contained in that k-tuple as
a set, and they appear with the same order). In this paper with a linear
algebraic approach, we study the t-tuple inclusion matrices D}, which
sheds light to the existence problem for directed designs. Among the
results, we find the rank of this matrix in the case of 0 <t < 4. Also in
the case of 0 < t < 3, we introduce a semi-triangular basis for the null
space of Dy,,,. We prove that when 0 < ¢ < 4 , the obvious necessary
conditions for the existence of t-(v, k, ) signed directed designs, are also
sufficient. Finally we find a semi-triangular basis for the null space of
Ditt,.
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1 Introduction

Let 0 <t < k < vand A > 0 be integers, and let V be a set of v elements.
Throughout the paper we will assume a total order on the elements of V. Let the
set of all k-subsets of V be ordered lexicographically from 1 to (Z), and the set of
its t-subsets from 1 to ('t’) A t-inclusion matriz W), = [wy] is a (’t’) X (Z matrix
defined by w;; = 1 if the i-th t-subset is included in the j-th k-subset, and w;; =0
otherwise. A (:) x 1 vector F' = [fi] represents a t-(v,k, A) design, if each f; is a
non-negative integer and

W::kF = /\83 (1)

where e, = (1,---,1)%

An integer vector which satisfies (1) but in which the components are not
necessarily positive, represents a t-(v, k, A) signed design. A signed design is called
a (v, k,t) trade if A = 0. The sum of the non-negative components in a trade, which
is equal to the absolute value of the sum of the negative components, is called the
volume of a trade, and usually is denoted by s. Also the foundation of a trade T' = [t;]
may be defined as

found(T) = {z € V | z € i—th block, for some ¢ with t; # 0}.

A trade with a minimum volume and with a minimum foundation size is called a
minimal trade.

For given v, k,t, the set of all ¢-(v, k, A) signed designs forms a Z-module. The set
of all (v, k,t) trades is a submodule of this module and is denoted by M. Clearly
this submodule is a subset of the null space of W. Graver and Jurkat (2] and
independently Wilson [14] proved the following theorem about the rank of the matrix
Wk

Theorem 1.1 ([2] and [14]).

(‘;), if t<k<wv-—t

ransz'fk={ (1), ifv-t<k<w.

Graver and Jurkat, in the same paper, introduced a basis of (v, k, t) trades for the
module M},. Other papers have appeared since, which introduce bases for this
module with easier algorithms; for example see [3], [6] and [7]. In [5] a very simple
algorithm for producing a basis is given, '

Theorem 1.2 [5]. There exists a semi-triangular basis for trades.

The basis given in [5] is semi-triangular and consists of minimal trades. This
basis is also a module basis for M.

The following is also a well known theorem.

Theorem 1.3 ([2] and [14]). Let ¢,k,v, A,...,A; = A be integers where v > 1 and
0 < t,k < v. There exists a t-(v, k, A) signed design if and only if Asy = ﬁ)\s, for
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0<s<t.
Wilson in [15] has studied the matrix W} in detail.

There is also a linear algebraic approach to the other combinatorial designs
such as orthogonal arrays; for example see (8]. In this paper we look at the directed
designs with this approach.

By an n-tuple of V, we mean a transitively ordered n-subset of V. Each k-tuple
of distinct elements of V is called a block. Note that a t-tuple is said to appear in
a block if its components are contained in that block as a set, and if they appear
with the same order. For example the 4-tuple abed contains the 3-tuples abe, abd, acd
and bed. Let all k-tuples of V be ordered lexicographically from 1 to k! (Z), and its
t-tuples from 1 to t! @ A t-inclusion matriz D}, = [d;;] is a ¢! ('t’) X k!(;) matrix
defined by d;; = 1 if the i-th t-tuple is included in the j-th k-tuple, and d;; = 0
otherwise. A k!(z) x 1 integral vector F' = [f;] is said to represent a t-(v, k, A) signed
directed design (or simply t-(v, k, A)SDD), if

Dsz = )\Bt (2)
where e; = (1,---,1)" is a t!(‘t’) x 1 vector.
Here f; is called the frequency of the i-th block (or k-tuple) in the signed directed
design. A t-(v,k, ) directed design (or simply t-(v, k, \)DD) is a t-(v, k, A)SDD in
which f; > 0 for alls. A i-(v, k, \)SDD with X = 0 is said to represent a null directed
design, or a (v, k,t) directed trade (or simply a (v, k,t)DT).

Directed designs were first introduced by Hung and Mendelsohn in [4]. Some
further work has been done on the construction of these designs, for references see
(1], [9}, [10], [11], [12], and {13].

It should be noted that here we consider directed designs and directed trades
as vectors, but they can be defined in a traditional way. For example

Definition. A (v,k,t) directed trade (or simply a (v, k,t)DT) of volume s consists of
two disjoint collections Ty and T3 , each of s blocks, such that the number of blocks
containing any ¢-tuple of V' is the same in T and T5.

A (v, k,t)DT of volume s will be represented by
T=T-T,=3 Bi— By,
i=1 i=1

where By;'s and By;’s are the blocks contained in T} and T3, respectively.

It is clear that if in a directed trade we consider the blocks without order, then
we obtain a trade.

In this paper we use arrays to represent directed trades. For example
B U | W

TYzW  TYWZ
Yrwz  Yrzw
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is a (4,4,3)DT of volume 2, where zyzw and yzwz are blocks both with frequency
+1 and zywz and yzzw are blocks both with frequency —1.

The set C}), of all signed directed designs is a Z-module, and the set Ny, of all
directed trades is a submodule of this module. In other words Ny, is the following
set:

U= {F | F is an integral vector of size k!(',:) x 1, Dsz = 0}.

Clearly this submodule is a subset of the null space of D}, which we denote by
Ker D},. Here we consider Ker Dg, as a vector space over the rational field.

From the vector representation it can be easily seen that:

(i) if Fy and F; are two t-(v, k, A)DDs, then F1 — Fy is a (v, k, t)DT

(ii) let F be a t-(v,k,A\)DD and T be a (v, k,t)DT, then F+ T is a t-(v, k, A)DD if
and only if F'+ T is a positive integral vector;

(#4i) if T' and T" are two (v, k, t)DTs, then each of 7'~ T" and 7" + T" is also a
(v, k,t)DT.

Here, first we determine the dimension of Ker D} for 0 <t < 4. Then for0<t<3
we introduce a semi-triangular basis of directed trades for Ker D}, ,, such that it is
also a module basis for the Z-module Ny,,;. Next for any given ¢, we introduce a
semi-triangular basis of directed trades for Ker fo{il, such that it is also a module
basis for the Z-module Nfj! T+1. Finally we show that for 0 < ¢ < 4 the necessary
conditions for the existence of a t-(v, k, A\)SDD are also sufficient.

2 Some results about Ngj,c

In this section we state some lemmas about Nyj. First we need the following
definition.

Definition. A directed trade is called strictly directed if when we consider its blocks
without order then we obtain a trade of volume 0.
The following lemma is immediate from the definition.

Lemma 2.1. If T}, T, € Ny are two strictly directed trades, then T7 + T5 is also a
strictly directed trade.

Corollary 2.2. An integral linear combination of strictly directed trades is also a
strictly directed trade.

Lemma 2.3. When ¢t < k < v—t, there does not exist a basis for Ny, which consists
only of strictly directed trades.
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Proof. We know that in this case there exists a non-void (v, k,1) trade (Theorem
1.1), and from this trade we may construct a directed trade, for example by writing
elements of each block in increasing order. By Corollary 2.2 this directed trade can
not be obtained from a linear combination of strictly directed trades. ]

Notation. A basis of N, will be denoted by [, which may be partitioned as
Bix = Bix U By, where BYx, consists of all strictly directed trades in this basis.

We know that Ny, may be identified with the integral vectors in the null space
of D{. So the following lemma is as an easy exercise in linear algebra.

Lemma 2.4. The module dimension of N7} is equal to dim Ker Dy

Definition. The smallest block (in the lexicographical ordering) of a directed trade
is called a starting block.

1t is clear that a set of directed trades with distinct starting blocks are linearly
independent. If a set of directed trades with distinct starting blocks forms a basis for
N}, then this basis is called a semi-triangular basis. It means that if we consider each
element of this basis as a column vector, by a suitable permutation a semi-triangular
matrix may be produced.

A semi-triangular basis construction. For constructing a semi-triangular basis
Bk it is sufficient that:

() the sets f; and B are semi-triangular;

(ii) the starting blocks of directed trades in 3, are distinct from the starting blocks
of directed trades in Gy

A semi-triangular set 8}, may be constructed as follows:

Khosrovshahi and Ajoodam in [5] constructed a semi-triangular basis of minimal
trades for the Z-module My,. Let T' be an element of this basis with starting block
{z1,... 2k}, T1 < ... < Tp,. By arranging elements of each block of this trade in
decreasmg order, we obtam a (v, k, t)DT with the starting block, ¢ ... 7). Let f; be
the set of all directed trades obtained in that manner. Now for any semi-triangular
basis By, of strictly directed trades, always the condition (i¢) holds. For a block
{v1.. yk} where y; > ... > Yk, can not be a starting block in any strictly directed
trades.

3 Results about Dy,

The structure of D}, is obvious for some values of ¢ and &:
Dy, =0 if k<t
D;),t =1
Dg,k - J.
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where J = (1,...,1). And we have the following matrix equation:

(’: B j) "o =DY,D} where s<t<k. (3)

To prove (3), let S be an s-tuple and K be a k-tuple, such that .S is contained in
K. Then the number of t-tuples T such that T is contained in K and contains S is

k—s

(=)
Theorem 3.1. The map D}, : Ker D}, — Ker D}, is a linear transformation
and we have:

(i) dim Ker D}, ; = dim Ker D}, — dim Im Dj,,,;

(i) if T is a strictly directed trade, then T = Dy, ,T is also a strictly directed
trade.

Proof. (i) It is obvious by Equation (3) that one may interpret D}, ; as operating
on Ker D}, and mapping each element of Ker D}y to Ker D},.,. Assume that

U={B€Ker D}, | D{,,;8=0}
By a familiar theorem from linear algebra we have:
dim U=dim Ker D}, ~ dim Im D{,, ;.

It is sufficient to show that U=Ker D}, . It is obvious that U C Ker Df,,.
Suppose 3' € Ker D}, , thus D}, 6" = 0 and Dy, Dy, 6" = 0. Therefore by
(3) we have D, = 0. This means that 8’ € Ker Dy, so B € U and finally
Ker DY, C U. This completes the proof of (i).

(ii) Let T € Ker Dy be a strictly directed trade. Then T =T, — Ty = >3;_, Bi —
¢_, Bi;, where a;’s are permutations. Each (t + 1)-tuple, which is contained in a
given block B;, is a block in T}. And each (t +1)-tuple contained in a B;a; is a block
in Tj. Thus for each block in T} a permutation of it is in T; and viceversa. This
completes the proof. ]

Theorem 3.2. Suppose that there exists a basis ;441 for Ker D},,, such that
Bip+1 = Biyy1 U Biyr, where for each T € 4, |found(T")| = 2t 4+ 2 and for each
T € B4y, |found(T)| < 2t. Then for the linear mapping Dy, Ker Dy, —
Ker D},,, we have:

Ker DY,y if k<wv—1t, ie. the mapping is onto;

ImDY, =
M Lep1k {(Bé',m) if v—t<k<v—t+1,

where (B},,,) is a subspace generated by the elements of §;/;,,.
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Proof. (i) Let T € Bi441 and k < v — t. By assumption [found(T")| < 2t + 2. Then
v > k-+t+1, and we may choose k —t — 1 elements z1,. .., Zx_¢—1 of V— found(T).
Then the directed trade T' = Tj — Ty, with blocks given as follows, is the required
trade and we have Dy, 7" =T.

! i
T! T
T1eo e Tp—t—1 T1.. Tk—t-1

T . T

Ty - T—t-1 1. Thot—1

(i) fv—t <k <v-—t+1, then v < k+¢t Thus if § is a basis with integral vectors
{directed trades) for Ker Dt &, then it consists only of strictly directed trades. Thus
by Theorem 3.1 (ii), Im Dt+lk C (Bf441) € Ker Df;,;. In this case for each
T € (41 we have |found(T)| < 2¢, by assumption and we may choose k —¢ — 1
elements 2, . .., Tx_s—; of V— found(T'). Asin (i) the directed trade 7" is the required
trade and Dt 1, kT T. The proof is complete. n

Now by applying the above two theorems we see that to determine the dimen-
sion of Ker D}, (or the rank of Dy) for given positive integers ¢, k,v t<k<
v —t + 1), it is sufficient that:

(¢) we know the dimension of Ker D}, and,

(41) in the special case of k = ¢ + 1 we be able to construct a basis for Ker D}, ,,
such that it satisfies the assumptions of Theorem 3.2.

In that way the rank of D}, may be obtained inductively.

4 Dimension of Ker D}, or dimension of N

In this section we determine the dimension of Ker Df) where 0 < ¢ < 4. We also
introduce a semi-triangular basis of directed trades for Ker DY, where 0 <1 <3,
which is a module basis for Z-module Ny, ;.

Theorem 4.0. Fort =0

() dim Ker D, = k!(z) —1 foreach 0<k <

(i1) there exists a semi-triangular basis 8, of directed trades which satisfies the
assumption of Theorem 3.2.
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Proof. (i) By definition D} = [1---1], thus (i) is obvious.
(i) Take (v,1,0) directed trades T with blocks as follows

" Ty
z z+1
for each 7 such that 1 < = < v — 1. Note that |found(T) |= 2.
These v — 1 directed trades form the desired fj;. n

Theorem 4.1. Fort =1,

(i) dim Ker DY, = k!(}) —v if 1<k<v-1
dim Ker D}, =v! = 1;

(ii) there exists a semi-triangular basis (3}, of directed trades for Ker DY ,, which
satisfies the assumptions of Theorem 3.2. .

Proof. (i) The first equation follows from Theorem 3.2 and Theorem 4.0. Also one
may see it by applying a suitable permutation on the columns of DY, which may
be represented as follows:

';,,c=[wlv,,c | ¢ ]

Since for k < v — 1, W}, is full rank, therefore D7 is full rank. For the second
equation, we note that D}, = J is of size v X v!. Thus dim Ker D}, = vl —1.
(i) We let 5}, = B4 U Bi,, Where By, contains (v,2,1) strictly directed trades as

follows
L L
Ty Yz
for 1 < z <y < v. So we have |found(T) |= 2, and | B, |= (g)

If v > 4, B, contains the directed trades which were introduced at the end of
Section 2. And | 8}, |= ('2’) - (‘1’) Thus | fi2 |= 2!(2) — v, and proof is complete. m
Example 1. A basis for Ker Dj,.

!, consists of the following strictly directed trades:

T[ T2 I Tl T2 ‘ T] T2 I T1 T2 I T1 T2 | T1 T2
12 21 13 31 14 41 23 32 24 42 34 43

and f] , consists of the following directed trades,

T1 T2 T1 T,
21 31 31 32
43 42 42 41

A representation of the elements of f1, as vectors is given below.
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12 1

13 1

14 1

21 -1 1

23 1

24 1

31 -1 -1 1

32 -1 -1

34 1
41 -1 -1

42 -1 -1 01

43 1 -1

Theorem 4.2. For ¢t =2
kz(;;)-m(;) if 2<k<v-2,
(4) dim Ker D§ = ¢ vl — (”’;1) if k=v-1,
- () -1 if k=y

(i) there exists a semi-triangular basis 335 of directed trades which satisfies the
assumptions of Theorem 3.2.

Proof. (i) The equations in (i) may be obtained from Theorem 3.2 and Theorem
4.1. Also we may obtain the first equation by a suitable permutation on the columns
of D3 ;, which may result as follows:

Wy ‘ C
DY, = 2,k ] .
2,k [ szk
Since for k < v — 2, Wy, is full rank, thus Dj is full rank.

(ii) We let By = B33 U fy3, where (35 contains strictly directed trades as
follows.

For each z,y,z € V (such that z < y < z), we have the following (v,3,2)DTs
of volume 2 and with foundation size 3 or 4, in each of which the first block is a
starting block. And these are the maximum possible numbers of such trades.

LT L L L
Yz  YTZ T2y YTz yra yze
w2z wrz
2y 2Ty yzT 2Ty W<w<v, w#z2)
— 3

T1 T2 Tl T2

Yz 2yx 21y 2y

2Yyw yaw wyz wzy

x<w<y, w#y2) (z <w <)
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And we have | B |=5("3") +4(3%) +3(v = 3) + 2.
If v > 6. 3} 4 contains the directed trades which were introduced at the end of
Section 2. Each directed trade in 3} ; has foundation 6, and | B33 |= (g) - (”)

2
By a simple computation, the total number of directed trades obtained is equal to

dim Ker D3 . ]

Theorem 4.3. For t =3,

k(}) - 31(3) if 3<k<v-3,

) dim Ker D}, =
(i) dim Ker D, {dimKeng)k—lﬁg,al ifv-2<k<v-1

(1) there exists a semi-triangular basis B3, of directed trades which satisfies the
assumption of Theorem 3.2.

Proof. (i) The equations in (i) may be obtained by Theorem 3.2 and Theorem 4.2.

For (ii), let B34 = B3, U B4, where B3, contains strictly directed trades as
follows.

For each z,y,z,w € V (such that z < y < z < w), we have the following
(v,4,3)DTs of volume 2 or 4, and with foundation size 4, 5 or 6, in each of which
the first block is a starting block. And these are the maximum possible numbers of
such trades.

T T T T, T T n I
TZWY ~2TWY TZYyw  TIWY TYWz YIW2 TYIW  TYWZ2
wzTy WY 2TWY  2TYW wWYrz WIYz2 YTwz  YTIZw
YZIW  YTIZW 2YTW  ZTYW
Yywrz  Ywar WTY  2ZWYT

T T T Ty Ty T T T
TWYyz TW2Y Yywrz Ywzr TWYz TWZY 20TY  ZWYT
wITzZYy —WIYZ wYzT ~WYTz wIzY —WIYz WYL ~ WITY

Ty T T T
YTWZ ywrz YT2W yzIWw
awzz azwz ozTW azzw
2ywz 2YTW wyzT wyzz
2azWw zZows warz wazT
(z<a<w o y<a<z (z<a<w ory<a<z
or w<a<gv) orw<a<v)
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T1 T2 T1 T2
TwzY 2ZTWY ywzr WYz
2wrYy  wITzY 2wWyT YWz
YITW  YTwz wyza ywza
YWTZ YW 2ywa 2wy
y<a<zor z<a<y
w<a<v o z<a<uw)
Tl T2 Tl T2
YW 2WYT
yawz YW2T
zwyo 2ywa
ywze yzwo , ;
owyz o'ywz
wzzTy 2wTyY , ,
dywa o'wya
zway wzay

z<a<wor z<oa<y
y<a<z or z<asv)

{(z<a<wor z<a<y
y<a<z or w<a<sy
w<a <vor z<d<w)

T1 T2 T1 T2
2YTW YW wYTz wyzT
00T zazw wazz wazz
o'ywzx o'yzw o'yzx o'yzz
o azw o'owz d'azz oazx

(z<a<w or y<a<z (z<a<w or y<a<z
or w<a<sy or w<aglv
w<ao <v orz<d <w) w <o <o)
T; T
1 2 Tl T2
2WYT wzYT
zZzwy 2YTWw
wzar waz
f f 2YWT zwzy
wrye 2wy
, , ayzw aTwy
wan wzao P .
(z<a<wo y<a<z ¥ v
(w<a<v o z<a<w)
w<a<lv
y<a <z o z<d<y
w<a <vor z<d<w)

T Ty T T,
2zYyw 2yTW wI2y wyTz
2WYT 2wTY wWYZT wzzTy
ayTw azTyw YTz oxrzy
awTy owyz azzy oy

w<a<wvor z<a<v) (w<a<v)
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T T T Ty
wWITYz wWYTZ wzTY WYL
wzYT wzzTy woays wozTy
ayzz Qryz o zyx o zzy
azzy azyT dazy dayz

(w<a<v) (w<a<vor z<a<w
w<a <v)
T T
wWY2T wayT
wzyo wyzo
o' zyz oyzx
o'yro o' zya

(y<a<zor w<a<y
w<a<v or z<oa<w
w < o < v)

We have | 85, |= 23("72) +41(%5%) +54("3") + 11(v = 4) + 51(v ~ 5) + 54, for v > 4
and |05 4| =9, forv=4.

If v > 8, B 4 contains the directed trades which were introduced at the end of
Section 2. Each directed trade in 3} 4 has foundation of size 8, and | B3 4 |= (X) - (’;)

By a simple computation the total number of directed trades obtained in (ii) equals
dim Ker Dj ;. |

Theorem 4.4. Fort =4,

e} —al(® if 4<k<v-—
dim Ker DY, = k(k) a(3) | ifagkgu-d,
' dim Ker Dj,— | B34 | if v-3<k<v-2
Proof. These results follow immediately from Theorem 3.2 and Theorem 4.3. ]

5 A semi-triangular basis for N/{},

In this section we introduce a semi-triangular basis of directed trades for Ker D{t .
This will be done by the following lemmas.

Lemma 5.1 Let k = v = t+ 1. Each (¢ +1)-tuple such as =1 ... Tm¥1¥2¥3 - - - Yt-m+1,
where 0 < m < tand y, < y1 < z; (i =1,...,m), can not be a starting block in any
strictly directed trade.

Proof. Since v = k = t + 1, every directed trade is strict and thus, basis ﬁf,ﬁl of
integral vectors (directed trades) also consists only of strictly directed trades. Now
if a block such as b = 1+ Tm1Y2* ** Yt—ms1 Where 0 <m < tand yo < y1 < x; (i =
1,---,m) is a starting block in a strictly directed trade T', T = T, — T, then the ¢-
tuple 2}« Tyy¥a * * * Ys—m+1 Must appear in a block of Ty, and this block is necessarily
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a permutation of the block b. But we see that every permutation of block b which
contains the t-tuple -+ Tmya -+ Ys_my1 is smaller than b (in the lexicographical
ordering), and this is a contradiction. »

We denote by Q41 the set of all (¢ + 1)-tuples which satisfy the conditions of
Lemma 5.1.

Lemma 5.2. We have,

t+1)! ¢ 22l t+1 t

@l = 8 S g (21 e m-n- ()]
Proof. Let Qu; = AU BUC where A, B, and C are defined as follows:
A consists of all of (¢ + 1)-tuples, z1 ...y, such that y = 1 and 11 < z;
B consists of all of (¢ + 1)-tuples, y; ... y41, such that yo < y1;
C consists of all of (¢ + 1)-tuples, Zy...ZmY1 ... Yt—m+1, sSuch that 2 < m <t -2,
zp<zeand <y <3 (P=1,...,m).
By an easy counting argument we have,

1 =2 m!
=% 1Bl=5E Cl= £, 3 (na)t-m-1,

-2
|AnC|=m§2%(m;2)(t~m-2)!, and |ANB|=|BNC|=0.

Now by the principle of inclusion and exclusion the assertion follows. ]

In the following we show that every element in Q. ,, the complement of the
set Qu41, is a starting block in a strictly directed trade. Therefore a semi-triangular
set of strictly directed trades will be produced which is maximal. Thus this set will
be a basis for Ker D}}1,. First we state two lemmas from [10].

Lemma 5.3 [10]. If there exists a (v,k,t)DT of volume s, then there exists a
(v+1,k+1,¢+ 1)DT of volume 2s.

Lemma 5.4 [10]. If there exists a (v, k,t)DT of volume s, then there exists a
(v+2,k+2,t+2)DT of volume 2s.

Lemma 5.5. Each (¢ + 1)-tuple in Q},, is a starting block in a strictly directed
trade.

Proof. We proceed by induction on t. Fort = 1 we have Q, = {21}, then Q) = {12}.
The directed trade T' = T} — T where

Ty Ty

12 21
is a strictly directed trade which contains 12 as its starting block.

For t = 2 we have Q3 = {213,231,312,321} and Q} = {123,132}, where 123 and
132 are starting blocks in the following directed trades.

T T Ty T
123 213 132 213
321 312 231 312
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Now suppose the theorem holds for all values less than t; we show that it holds for
t also. Suppose z - - T141 € Q4. There are two cases: &1 < Tyt OF Ty1 < T1-

Case 1: 11 < Tyq
If z,...2z, € Q), then by the induction hypothesis there exists a strictly directed
trade (t,t,t—1)DT which contains «; ...z, as a starting block. Then and by Lemma
5.3 there exists a (t + 1, + 1,¢)DT which contains ; - - - 22,4, as a starting block.

If z;...7 € Q) since z1...%411 € Q}y,, the only possible situation in which
z1...x, € Q) is that where z; = 1. Then necessarily z,...1;, € @, and by
the induction hypothesis there exists a (¢t — 1,t — 1,¢ — 2)DT in which z;...74
is a starting block. By Lemma 5.4 there exists a (¢t + 1,¢ + 1,t)DT which contains
Ti...Ti_1Z4Z4 aS a starting block.

Case 2: 7441 < T3
If z5... 3441 € Q), then we proceed as in the previous case.

Ifzy... 2441 € Q), the only case which may cause trouble is that where x4 > 3.
But then z3...z41 € Q)_;, and we proceed as in the previous case. ]

6 Existence of t-(v, k, \)SDDs

In this section we show that the obvious necessary conditions for the existence of
t-(v, k, A) signed directed designs are also sufficient provided that ¢ < 4.

Theorem 6.1. Let t < 4 and ¢, k, A\; = X be integers and 0 <t < k < v —¢. There
exists a t-(v, k, A)SDD if and only if

N 0L

ROEE.

are positive integers for 0 < ¢ < t.

Proof. First we prove of the necessity of the conditions. Let f be a t-(v, k, A\)SDD.
Then by definition

D;,,kf = /\tet.
Then
thDzkf = thAtCt.

From Equation (3) we have

k—1\ ., v
(t _ Z-)Di,lcf = DiMey,
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and therefore,

Thus

for0<:i<t.

Next we prove the sufficiency of these conditions by induction on ¢. Ift =
0, then Ao blocks (k-tuples) form a 0 — (v, k, A)SDD. Assume that theorem holds
for some ¢t > 0, and assume that )g... A1 satisfy these conditions. Then by the
induction hypothesis there exists a t-(v, k, A;)SDD, namely F; that Dy Fy = Aey.

From Equation (3) we have
(k - t)D:’,k = Dat+1D:)+1,k'
From this we easily obtain
(t+1)(v—the; = D141
Now take T = D}, o Fi — My1€41. Then T is a (v,t + 1,£)DT, because
Df,mT = DZ:HD;’H,kFt - A¢+1th+let+l

= (k — t) D} Fy — Mt + 1) (v — t)e:
= (k—t)her — Mgt + 1) (v —t)e
(k—t)Ae
t+ D -1

Then T € N{;q or T € Ker Dyyy;.

Since t < s and k < v — t, then by Theorem 3.2, there exists 7" € Ker Dy,
with integer components (i.e. 7" € N} such that D}, 7" =T.

If Fyp1 = Fy—T', then Fy is a (¢+1)-(v, k, A1)SDD. For, we have Dy, , Fipy =
Df+1,kFt — Df+1,kT' =T + Mg1ea1 — T = Agy1€e41. The proof is complete. [

= (k) - t))\tet - (t + 1)(1) - t)et = 0.
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