





and the other in V;. On the other hand, if u,v € V;, then x(u,v) + (v, u) <p-n
This is true for all (';’) pairs of vertices in V;. Hence,

k(.
KD)< Y nmjlp—my)+ 2 | )(0—mn).
1<i<j<k =1\2

The upper bound stated in the theorem now follows since ®(D) = K(D)/p(p - 1)
and D is an arbitrary orientation of G. O

As a special case of Theorem 1, we have an upper bound on ma(G) when
G = Kk(n)-

Corollary 2 Forn > 2,

Fmax(Ki(n)) < 2(—’6-5—1—)

Proof. By Theorem 1,
Fmax(Kk(n)) < <<§) n?(nk — n) + k(g) (nk - n)) / nk(nk — 1) = n(k - 1)/2.
0O

We show that the upper bound in Corollary 2 can be improved slightly if & is
even and n is odd.

Lemma 3 For even k > 2 and odd n > 3,

il 1\ laan a9




The expression on the right hand side of the above inequality is a quadratic in m
and is maximised when m = kn/2. Thus,

K(D) < 1k*n®— Lk*n® — 3k%n? + Lkn® + 3kn
= (kzn)((k —1)n— 1) + ;k*n?.
It follows that
— (k—1)n-1 k*n? (k—1n-—1 kn
< _ ‘
R(D) < 2 OIS 2 T i —1)

This completes the proof of the lemma. O

Next we determine the maximum average connectivity of multipartite tourna-
ments. We consider orientations T of the complete k-partite graph, Kj(,), with
k > 2 and n > 2 such that R(T) = Rmax(Kk(n)). First we determine Emax(HKk(n)) for
k even and n odd.

Lemma 4 For evenk > 2 and odd n > 3,

n(k—1) kn —2
2 4(kn-1)

7"/_m':l.x(I{Ic(7z)) =

Proof. By Lemma 3, Bmax(Kin)) < ((k — 1)n —1)/2 + kn/4(kn ~ 1). Hence it
suffices to show that there is an orientation T' of Kyn) such that &(T) = ((k —1)n —
1)/2 + kn/4(kn — 1).

Let V1, Va,..., Vi denote the partite sets of Kymy. Fori = 1,2,...,k, let V; =
{'Uz"[., Vi,2y «+ ’U,‘,n}. Let ‘/il = {vi,ly ey vi,(n+l)/2} and ‘/12 = {U,"(n+3)/2, aeey Ui,n} be
a partition of V; into two sets of cardinalities (n +1)/2 and (n — 1)/2, respectively.
Construct T from Ky, by orienting for every ¢, 1 < ¢ < k, and every j, 1 <
j < (k—2)/2, the edges joining V; and Viy; from V; to V;,;, where subscripts are
expressed modulo k. For 1 < i < k/2 and for each j € {1,2}, we orient every edge
w with u € V; and v € V},, as (u,v) and we orient every edge uv with u € V/
and v € V;ifkjﬂ as (v, u).

Let X denote the set of vertices of T' with indegree ((k — 1)n — 1)/2, and let
Y = V(T) — X. Then each vertex of Y has indegree ((k — 1)n 4 1)/2 and outdegree
((k = 1)n — 1)/2. 1t follows from the proof of Lemma 3 that «(u,v) + k(v,u) <
(k — 1)n — 1 if u and v both belong to X or both belong to Y.

Claim 1 Ifu,v € X, then kp(u,v) + sr(v,u) =n(k - 1) — 1.

Proof. For notational convenience, we may assume that v € V; and v = vy;.
Suppose first that v € V,,, where 2 < m < k/2. For the case where 2+ k/2 < m <
k — 1, the argument is similar. Since v € X, v € V,1. For notational convenience,

we may assume that v = vp1. For every £, 2 < € < m, let Piyn denote the
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collection of n paths of the type vy, ve;, Um, Where 1 < j < n. Let P,,, be the
collection of n paths consisting of the path v1,1, Um,1, the (n — 1)/2 paths of the type
V1.1, Um.js Vm-tk /2,55 V1,j» Um,1 Where 2 < j < (n41)/2and the (n—1)/2 paths of the type
V11, Umjs Um+k/2,5> Um,1 Where (n+3)/2<j <n. Form+1<r < k/2, let Py, denote
the collection of n paths of the type v11, Urj, Urik/2,, Um,1 Where 1 < j < n. Let
P, 1+x/2 be the collection of (n —1)/2 paths of the type v1,1, V14k/2,) V1,j+(n-1)/2) Ym,1
where 2 < j < (n+1)/2. Then, {Pig |2 <€ <m}U{Pin} U{Piym |m<r <
k/2} U {Pi14k2} is a collection of (n(k — 1) — 1)/2 internally disjoint u-v paths in
T. Thus, x(u,v) > (n(k — 1) — 1)/2. On the other hand, for m + 1 < £ < k/2, let
P,..; be the collection of n paths of the type vpm1, Ve j, Vesr/2,5, V1,1 where 1 < j < n.
Let Pm,14k/2 be the collection of (n — 1)/2 paths of the type vy, 1, Vi4k/2,5, 1,1 Where
(n+3)/2<j<n For2+k/2<r<m-—1+k/2, let Py denote the collection
of n paths of the type vy, 1, Urj, v1,0 where 1 < j < n. Let Pp k2 be the collection
of n paths consisting of the (n + 1)/2 paths of the type vm 1, Vmik/2,,v1,1 where
1 < j £ (n+1)/2 and the (n—1)/2 paths of the type vm1, Vi4+k/2,5; Vm+k/2,5+(n—1)/2; V1,1
where 2 < j < (n+1)/2. Then, {Pnn | m+1 < € < k/2} U {Pnitis2} U{Puri |
24 k/2 <r <m—1+k/2}U{Pnmirs2} is a collection of (n(k — 1) —1)/2
internally disjoint v—u paths in T. Thus, k(v,u) > (n(k — 1) — 1)/2. Consequently,
k(u,v) + k(v,u) > n(k—-1) - L.

Suppose secondly that v € V,, where m = 1+ k/2. Since v € X, v € V2.
For notational convenience, we may assume that v = v,. For 2 < ¢ < k/2, let
Py, denote the collection of n paths of the type vi,1, vej, Vmn Where 1 < j < n.
Let Pj,, be the collection of (n — 1)/2 paths of the type v11, Um,j, V1,54 (n—1)/2) Ymn
where 2 < j < (n+1)/2. Then, {Pigm | 2 < € < k/2} U {Pin} is a collection of
(n(k — 1) — 1)/2 internally disjoint u~v paths in T. On the other hand, let P, be
the collection of (n — 1)/2 paths consisting of the path vy ,,v1,1 and all paths of
the tyPe Umn, V15, Um.js V1,j+(n—1)/2) Umj-+(n—1)/2, V1,1 Where 2 < j < (n —1)/2. For
24+ k/2 < € <k, let Py denote the collection of n paths of the type vmgn,vej, V1,1
where 1 < j < n. Then, {Pu} U {Pna | 2 +k/2 < £ < k} is a collection of
(n(k —1)—1)/2 internally disjoint v—u paths in T. Consequently, (u,v) +k(v,u) >
n(k—1)-1.

Suppose finally that v € V4. For notational convenience, we may assume that
v = vy For 2 < £ < k/2, let Py denote the collection of n paths of the type
V1,1, Ve,js Vetkj2, V1,2 Where 1 < j < n. Let Pip be the collection of (n—1)/2 paths of
the type V1,1, Vi4k/2,5> UL,j+(n—1)/2 Vi+k/2,j+(n-1)/2, V1,2 Where 2 < j < (n+1)/2. Then,
{Pi2 | 2 < £ < Kk/2}U{P12} is a collection of (n(k —1) —1)/2 internally disjoint u-v
paths in T. Thus, (u,v) > (n(k — 1) — 1)/2. Similarly, s(v,u) > (n(k — 1) — 1)/2.
Consequently, x(u,v) + k(v,u) > n(k—-1) - 1.

Hence, x(u,v) + (v,u) > n(k — 1) — 1 for all pairs of vertices u and v both of
which belong to X. However, for all such pairs v and v, k(u, v)+#(v,u) < (k—1)n—1
as observed earlier. Hence, x(u,v)+&(v,u) = (k—1)n—1. This completes the proof
of Claim 1. O
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The proof of the following claim is similar to that of Claim 1, and is therefore
omitted.

Claim 2 Ifu,v €Y, then kr(u,v) + kr(v,u) =n(k - 1) — 1.
Claim 3 Ifu€ X andv € Y, then sr(u,v) + kr(v,u) = n(k - 1).

Proof. For notational convenience, we may assume that v € V; and u = vy ;.
Suppose first that v € Vj, where 2 < m < k/2. For the case where 2 + k/2 <
m < k — 1, the argument is similar. Then, v € V;2. For notational convenience,
we may assume that v = vy, ,. For 2 < £ < m, let Py, denote the collection of n
u—v paths of the type vy 1, Vg, Umn Where 1 < j < n. Let Py, be the collection of
n u-v paths consisting of the path vy,1,Ummn, the (n +1)/2 u-v paths of the type
V11, Umojs Vmetk/2,5» Umn Where 1 < j < (n+1)/2 and the (n—3)/2 u~v paths of the type
V1,1, Um,j» Umtk/2,5> V1,j—(n—-1)/2> Ymn Where (n+3)/2<j<n-1.Form+1<r <k/2
let Py, denote the collection of n u—v paths of the type vi,1,Vrj, Vr4k/2,5) Um,n Where
1 < j < n. Let Pyy4k/2 be the collection of (n + 1)/2 u—v paths consisting of the
path 11, Vi4k/2,1 Umk/2,n; V1,(n+1)/2; Umn and the (n — 1)/2 u~v paths of the type
V11, Vk/2,4s V1,4 (n—1)/2> Um,n Where 2 < j < (n +1)/2. Then, {Pig | 2 < £ <
m} U {Pim} U {Pim | m <1 < k/2} U {Pri4k/2} is a collection of (n(k — 1) +1)/2
internally disjoint u~v paths in 7. Thus, x(u,v) > (n(k — 1) +1)/2. On the other
hand, for m +1 < £ < k/2, let Pny be the collection of n paths of the type
Uy Vtjs Verk/2,5> V1,1 Where 1 < j < n. Let Pp14k/2 be the collection of n paths
consisting of the (n—1)/2 paths of the type vp n, V14k/2,4,v1,1 Where (n+3)/2 < j <n
and the (n+1)/2 paths of the type Umn, Vi4k/2,j; Um+k/2,4, V1,1 Where 1 < j < (n+1)/2.
For 2+ k/2 <r <m—1+k/2, let Py, denote the collection of n paths of the type
Upnny Urjy V1,1 Where 1 < j < n. Let Ppmyk/2 be the collection of (n —1)/2 paths of
the type Umn, Um+k/2,j: V1,1 Where (n + 3)/2 < j < n. Then, {Ppar |m+1< €<
k/2} U{ Pk} U{Pmri | 2+k/2<Tr <m—1 +k/2}U{ P m+k/2} is a collection of
(n(k —1) — 1)/2 internally disjoint v—u paths in T. Thus, (v, u) > (n(k—1) —1)/2.
Consequently, &(u,v) + £(v,u) > n(k — 1).

Suppose secondly that v € V;, where m = 1+ k/2. By construction, v € V.
For notational convenience, we may assume that v = v,,;. For 2 < £ < k/2, let
Py denote the collection of n u~v paths of the type v1,1, vgj, Um,1 where 1 < j < n.
Let Py, be the collection of (n + 1)/2 u—v paths consisting of the path vy1,vm1
and the (n — 1)/2 u-v paths of the type vi,1, Umj, V1 j+(n-1)/2; Um,j+(n—1)/2) V1,5, Um,1
where 2 < j < (n+1)/2. Then, {Pim | 2 < £ < k/2} U {Pin} is a collection of
(n(k — 1) + 1)/2 internally disjoint u~v paths in T. Now, let Py, be the collection
of (n — 1)/2 v-u paths of the type vm1,v1,Um,j, v, Where (n+3)/2 < j < n.
For 2 + k/2 < £ < k, let Ppy denote the collection of n v—u paths of the type
Umi1, Ve, V1,1 where 1 < j < n. Then, {Pm}U{Pna | 2+k/2 < €< k}isa
collection of (n(k — 1) — 1)/2 internally disjoint v—u paths in T. Consequently,
w(u, v) + k(v,u) > n(k —1).

Suppose finally that v € V;. Then, v € V2. For notational convenience, we may
assume that v = vy,. For 2 < £ < k/2, let Py, denote the collection of n u-v
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paths of the type vi,1, Ve, Vesk/2, V1,0 Where 1 < j < n. Let Py, be the collection of
(n + 1)/2 u~v paths of the type vii, Vi+k/2,4) Vin where 1 < j < (n +1)/2. Then,
{Pin | 2 < £ < k/2}U{Pi,} is a collection of (n(k—1) + 1)/2 internally disjoint u-v
paths in T. Thus, x(u,v) > (n(k—1)+1)/2. On the other hand, for 2 < £ < k/2, let
P,o denote the collection of n v—u paths of the type vy, Ve j, Vesk/2, V1,10 Where 1 <
j < n. Let Py be the collection of (n — 1)/2 v-u paths of the type vin, V14k/2,5, V1,1
where (n + 3)/2 < j < n. Then, {Pun | 2 < £ < k/2} U{Pu} is a collection of
(n(k—1)—1)/2 internally disjoint v—u paths in T. Thus, x(u, v)+k(v,u) > n(k-1)/2.

Hence, r(u,v) + s(v,u) > n(k — 1) for all pairs of vertices u and v of T' with
v € X and v € Y. However, for all pairs u and v, k(u,v) + k(v,u) < n(k — 1) as
observed earlier. Hence, k(u,v) + k(v,u) = n(k — 1). This completes the proof of
Claim 3. O

We now continue with the proof of Lemma 4. Since |X| = |Y| = kn/2, it follows
from Claims 1, 2, and 3 that

I

KT = ($)(k-n=-1)+ ) (k- Dn-1)+IX|[Y|(k - 1)n
(%) ((k = )n = 1)+ (*5?)(k = Dn = 1) + {202 (k = 1)n
= Lk3n® — 1k?n® — $kPn? + Lkn? + Jkn

= (k;)((k — 1)n— 1) + 2k’n?.

It follows that

(k—1)n—1 k’n? (k—1n-1 kn

RO = T =D 2 A(kn-1)

This completes the proof of the theorem. O
Next we determine Rmax(Kk(n)) when both k and n even.

Lemma 5 For even k > 2 and evenn > 2,

- n(k -1
K/max(Kk(n)) = ( 2 )

Proof. By Corollary 2, Rmax(Kkm)) < n(k — 1)/2. Hence it suffices to show that
there is an orientation T of Ky such that x(u,v) + k(v,u) = n(k — 1) for all pairs
of vertices of T, and so ®(T) = n(k — 1)/2.

Let Vi, Va,..., Vi denote the partite sets of Ki(). For i = 1,2,...,k, let V; =
{Um, Vi,2y « Ui,n}- Further, let Vil = {'l),',l, ey ’U,‘_n/z} and Vi2 = {’Uiy(n_;.g)/g, ey Ui,n}
be a partition of V; into two sets each of cardinality n/2. Construct T from Ky by
orienting for every i, 1 <i < k, and every j, 1 < j < (k— 2)/2, the edges joining V;
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and V;y; from V; to Viy;, where subscripts are expressed modulo k. For 1 <4 < k/2
and for each j € {1,2}, we orient every e@ge uv with u€ V; and v € V), as (u, v)
and we orient every edge uv with u € V7 and v € V™ as (v, u).

Let u and v be any two distinct vertices of Kyn). We show that s(u, v)+x(v,u) >
n(k — 1). For notational convenience, we may assume that u € V; and u = vy;.

Suppose first that v € V,} where 2 < m < k/2. For the case where 2 + k/2 <
m < k—1, the argument is similar. For notational convenience, we may assume that
¥ = U1 For 2 < £ < m, let Pyn denote the collection of n u—v paths of the type
V1,1, Vg,j» Um, Where 1 < j < n. Let Py be the collection of n u—v paths consisting
of the path v; 1, V1, the (n —2)/2 u~v paths of the type v1,1, Um,j; Um+k/2,5> V15, Um,1
where 2 < j < n/2 and the n/2 u—v paths of the type v1,1, m,j, Um+k/2,> Vm,1 where
(n+2)/2 <j<n Form+1<r < k/2 let Py denote the collection of n
u-v paths of the type vi,1, Vpj, Vrtk/2,5, Um, Where 1 < j < n. Let Piijep be the
collection of n/2 u—v paths of the type vy,1, Vi4k/2,j; V1,j4n/2; Um, Where 1 < j < n/2.
Then, {Pix | 2 < £ <m}U{Pin}U{Pim | m <7 < k/2} U{Py 1412} is a collection
of n(k — 1)/2 internally disjoint u—v paths in T. Thus, &(u,v) > n(k —1)/2. On
the other hand, for m +1 < £ < k/2, let Ppne be the collection of n v-u paths
of the type Um1,Ve,j, Vetk/2,4, V1,1 Where 1 < j < n. Let Ppiik/2 be the collection
of n v-u paths consisting of the n/2 v—u paths of the type vm1, visr/2,5, V1,1 Where
(n+2)/2 < j < n and the n/2 v—u paths of the type vim,1, V1+k/2,j; Um+k/2,5+n/2, V1,1
where 1 < j < n/2. For 2+k/2 <1 < m—1+k/2, let Py, denote the collection of n
v-u paths of the type v 1,¥rj, v1,1 where 1 < § < n. Let Py jurse be the collection
of n/2 v—u paths of the type v 1, Umtk/2,j, V1,1 where 1 < j < n/2. Then, {Pna |
m+1< €< k/2}U{Pn1skj2} U{Pmri | 2+Kk/2< 7 <m~ 1+k/2}U{Pmm+k/2} is a
collection of n(k—1)/2 internally disjoint v—u paths in T'. Thus, £(v,u) > n(k—1)/2.
Consequently, &(u,v) + &(v,u) > n(k —1).

Suppose secondly that v € V,,, where m = 1 + k/2. For notational convenience,
we may assume that v = vp;. For 2 < £ < k/2, let Py, denote the collection
of n paths of the type v11,ve;, Um,1 where 1 < j < n. Let Py, be the collection
of n/2 paths consisting of the path vy, Um,1 and the (n — 2)/2 paths of the type
V11, Umyj» U,j4n/2> Um,j+n/2, Ulj, Um, Where 2 < j < n/2. Then, {Pim | 2 < € <
k/2} U {Pi} is a collection of n(k — 1)/2 internally disjoint u-v paths in T. On
the other hand, let P, be the collection of n/2 paths of the type vy 1, V15, Vmj, V1,1
where (n +2)/2 < j < n. For 2+ k/2 < £ < k, let Py denote the collection of n
paths of the type vm1, vej,v1,1 where 1 <5 < n. Then, {Pm}U{Pna |2+k/2 <
¢ < k} is a collection of n(k — 1)/2 internally disjoint v-u paths in T'. Consequently,
k(u,v) + &(v,u) > n(k — 1).

Suppose finally that v € V;. For notational convenience, we may assume that
v = vy For 2 < £ < k/2, let Py denote the collection of n paths of the type
V1,1, Ve,js Vetk/2,5> V1,2 Where 1 < j < n. Let Pip be the collection of n/2 paths of
the type Vi1, Vitk/2g> Vlj4n/2s Vi4k/2j+n/2: V1,2 Where 1 < j < n/2. Then, {Pigp |
2 < € < k/2} U {Pp2} is a collection of n(k — 1)/2 internally disjoint u-v paths
in T. Thus, &(u,v) > n(k — 1)/2. Similarly, £(v,u) > n(k — 1)/2. Consequently,
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k(u,v) + k(v,u) > n(k —1).

Hence for all pairs u and v of vertices of T, k(u, v) +£(v, u) > n(k —1). However,
as shown in the proof of Theorem 1, s(u,v) + £(v,u) < n(k — 1). Consequently,
#&(u,v) + K(v,u) = n(k —1). Since this is true for all (",_,k) pairs of vertices of T, it
follows that ®(T) = n(k — 1)/2. O

Next we determine Emax(Kk(n)) for k odd.

Lemma 6 For odd k > 3,

n(k -1
Emax(Kk(n)) = ( 5 )

Proof. By Corollary 2, RBmax(Kkm)) < n(k —1)/2. Hence it suffices to show that
there is an orientation T of Kj(,) such that x(u,v) + &(v,u) = n(k — 1) for all pairs
of vertices of T, and so &(T) = n(k — 1)/2.

Let Vi, Vs, ..., V, denote the partite sets of Kym). Fori = 1,2,...,k, let V; =
{vi1,vi2, ..., Vin}. Construct T from Kyn) by orienting for every 4, 1 <i < k, and
every j, 1 < j < (k — 1)/2, the edges joining V; and Viy; from V; to Viy;, where
subscripts are expressed modulo k.

Let u and v be any two distinct vertices of Kx(n). We show that x(u,v)+xk(v,u) =
n(k — 1). For notational convenience, we may assume that u € V} and u = vy .

Suppose first that v € Vj,, where 2 < m < (k + 1)/2. For the case where
(k+3)/2 < m < k—1, the argument is similar. For notational convenience, we may
assume that v = vp,1. For 2 < £ < m, let Pyy, denote the collection of n paths of the
type v1,1, Ve, Um,1 Where 1 < j < n. Let Py, be the collection of n paths consisting
of the path v11,Vm, and the n — 1 paths of the type v1,1, Um,j; Um+(k-1)/2,5> V1,5, Um,1
where 2 < j < n. Form+1 < r < (k+1)/2, let P, denote the collection of
n paths of the type vy 1,Vrj, Ur4(k—1)/2,j> Vm, Where 1 < j < n. Then, {Pur | 2 <
¢ < m}U{Pin}U{Pirm | m+1 <7 < (k+1)/2} is a collection of n(k — 1)/2
internally disjoint u—v paths in 7. Thus, k(u,v) > n(k — 1)/2. On the other
hand, for m + 1 < £ < (k + 1)/2, let Ppe be the collection of n paths of the type
Um,1, Ve, Vet (k—1)/2,» V1,1 Where 1 < j < n. For (k+3)/2<r<m+(k—-1)/2 let
P4 denote the collection of n paths of the type vm,1,vr;,v11 where 1 < j < n.
Then, {Ppe | m+1< < (k+1)/2YU{Pri | (k+3)/2<r <m+ (k—1)/2}isa
collection of n(k—1)/2 internally disjoint v—u paths in T. Thus, (v, u) > n(k—1)/2.
Consequently, x(u,v) + &(v,u) > n(k — 1).

Suppose secondly that v € V. For notational convenience, we may assume that
v =1w;4. For 2 < €< (k+1)/2, let Py denote the collection of n paths of the type
V11, Ve, Ves(k—1)/2,5> V1,2 Where 1 < j < n. Then, {Pp|2<e¢< (k+1)/2}isa
collection of n(k—1)/2 internally disjoint u-v paths in T'. Thus, x(u,v) > n(k—1)/2.
Similarly, x(v, u) > n(k — 1)/2. Consequently, £(u,v) + £(v,u) > n(k — 1).

Hence for all pairs u and v of vertices of T, k(u, v) + £(v, u) > n(k —1). However,
as shown in the proof of Theorem 1, k(u,v) + k(v,u) < n(k — 1). Consequently,
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K(u,v) + K(v,u) = n(k — 1). Since this is true for all ("2'“) pairs of vertices of T, it
follows that ®(T) = n(k —1)/2. O

Lemmas 4, 5, and 6 imply the following result.

Theorem 7 For integers k > 2 andn > 2,

n—(—lkz_l if k is odd or if k and n are even
T{max(Kk(n)) =
el ﬁ,f_% if k is even and n is odd

As a special case of Theorem 7, we have the following result.

Corollary 8

(S5

if n is even

Emax(Kn,n) = {

—2(—;‘7—::137 if n is odd

N3

3 Minimum Values

We now turn our attention to the problem of finding the minimum average connec-
tivity among all orientations of the complete multipartite graph. We begin with the
following result in [5].

Theorem 9 (Henning and Oellermann [5]) If G is a graph of order p and size g,
then Emin(G) > q/p(p — 1). Moreover, equality holds if and only if G is bipartite.

As a special case of Theorem 9, we have the following result.

Corollary 10
mn

Fmin(Kmn) = (m+n)(m+n-1)

For a digraph D and an (ordered) pair u,v of vertices of D, let £»3(u,v) be the
maximum number of internally disjoint u-v paths of D having length at least 2. Let

Ky(D) = ) ka(u,v).
uveV
Then the total connectivity is given by K(D) = ¢(D) + K>2(D), where ¢(D) is
the number of arcs in D. So, K(D) > ¢(D) for any digraph D.
We now determine Rpin(Kn ny,..n,)- For this purpose, let Vi, Va,..., Vi be the
partite sets of Ky, n,,..n, Where [Vi| = n;. An orientation of K, 5, . ., is a transitive

orientation, denoted K}, . . if for every i and j, 1 < i < j < k, the arcs between
V; and V; are directed from V; to V.
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Lemma 11 Ifp=n; +ng + -+ ny , then

R(K s o) = ( > omnt Y ninjnt) /.'D(P— 1).

1<i<j<k 1<i<j<t<k

Proof. Since

oT)= Y, mny
1<i<j<k
and
Kzz(T) = n3ngoNnz + ’ﬂ1(n2 -+ ng)m + -0+ nl(nz +ng+--+ nk‘l)nk
+ ngngng + ng(nz + ng)ns + - -+ ng(ng +ng + -+ gy
4+ e 9N 1Tk
Lci<j<t<k MMM
we have
K(T) = Z n;n; + Z NNt O
1<i<j<k 1<i<j<t<k

Lemma 12 Ruin(Kny na,.ni) 2 K(K;:,nz,...,nk)'

Proof. We proceed by induction on k > 2. The result is obvious when k£ = 2.
Assume that the result holds for k-partite tournaments. Consider now any complete
(k + 1)-partite graph G = Kn, ny,...neer- Let V1, Va, ..., Viyy be the partite sets of G
where |Vi| = n;. Let D be an orientation of G such that (D) = Fmin(G). Let Ti be
the orientation of G obtained from D by reorienting all arcs of D that are directed
from vertices in Vi1 to vertices in V; (1 < j < k) (if any) so that they are directed
from vertices in V; to those in Vi4y. Then all vertices of Vi, have outdegree 0 in T3.

We now show that K(7}) < K(D), from which it clearly follows that ®(T}) <
%(D). Let u € Vi1, and let I, be the vertices adjacent to v in D and O, the vertices
adjacent from u in D.

For each z € I, and each y € O,, 7, u,y is a path of length 2 which gets counted
once in kp(z,y) and hence gets counted once in K»3(D). Let P, be the collection
of these paths that get counted in K»3(D). So for each u € Vi, there are at least
|I| - |Oy| paths of length 2 which each get counted once in K»(D). As these paths
no longer exist in Tj, they do not get counted in K>5(T3). Hence there are at least
Tueviyy ITul - |Ou| paths of length 2 which each get counted once in K >2(D) but do
not get counted in K>o(71).

For every z € I, and every y € O,, there is at most one z—u containing the edge
yu in T; that is counted in K>o(T7). Let Q, be the collection of these paths that
get counted in K»2(T1). So for each u € Viy1, there are at most |I,| - |Oy| paths of
length 2 from vertices in D — Vi, to vertices of Viy1, that get counted in K»o(T1)
but do not get counted in K»3(D). Hence there are at most 3 yev,,, [Lu| - |Oul paths
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of length 2 from vertices in D — Vi4, to vertices of Vi1, that get counted in K>,(T})
but do not get counted in K>o(D).

All paths of length at least 2 in D, which are not in Uyey;,, Py, but that were
counted in K>2(D) either still exist in T} (if they did not contain internal vertices of
Vit1) or they no longer exist in T} if they do contain internal vertices from Vi11. As
no paths of length at least 2 other than those in Uyev,,, Qu, get counted in K >o(Th) if
they are not also counted in K»2(D) it now follows that K>5(T1) < K>2(D). Hence,
®(T1) < ®(D). By our choice of D, &(T}) = &(D).

Let D' = D — Viy1. Then, D’ is an orientation of Ky, p,,.n,. Moreover,
K»o(Ty) = K»a(D') + q(D')ngq1. (Note that there are exactly g(D')nii1 paths
of length at least 2 with one end in D' and the other in Vi, that get counted in
K5(T1). All other paths of length at least 2 that get counted in K>5(71) have both
ends in D'.) -

By the inductive hypothesis, ®(D’) > ®(T") where T” is a transitive orientation
of Ky n,..mi- S0, K(D') > K(T"). Since K1(D') = Ki(T") = q(D'), it follows that
Ks2(D') > K»o(T"). Hence, K»3(T1) > K»o(T") + q(D')ng4a-

Let T be the transitive orientation of G obtained from 7"’ U V., by orienting all

the edges of G between vertices of 7" and Vi, from vertices of T" to vertices of Vi 1.
Then,

K>o(T) = Ko (T") + q(T" )2 = K52(T") + (D)1 < Ko(Th).

So, K(T) < K(T1) = K(D). By our choice of D, K(T) = K(D). This completes
the proof of Lemma 12. O

The results of lemmas 11 and 12 can be summarized as follows.

Theorem 13

Rmin(Knyng,nie) = ( S omni+ Y ninjnt) /P(P“ 1) =&(T),

1<i<j<k 1<i<j<t<k

where T is a transitive orientation of Ky, ny,..n, 0nd p =Ny + Ng + -+ + Ng.

We have yet to establish whether the transitive orientation of Ky, n,,. s, 18 the
only orientation that achieves Rumin(Kn;ng,...n )
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