




and the other in Vj. On the other hand, if u, v E Vi, then K,( u, v) + K,( v, u) :::; p ni. 
This is true for all �(�~�i�)� pairs of vertices in Vi. Hence, 

The upper bound stated in the theorem now follows since K(D) = K(D)/p{p - 1) 
and D is an arbitrary orientation of G. 0 

As a special case of Theorem 1, we have an upper bound on Kmax{G) when 
G = Kk(n)' 

Corollary 2 For n 2: 2, 

Proof. By Theorem 1, 

o 

We show that the upper bound in Corollary 2 can be improved slightly if k is 
even and n is odd: 

Lemma 3 For even k �~� 2 and odd n �~� 3, 

_ n(k - 1) kn - 2 
K,max(I<k(n») :::; 2 - 4(kn - 1)' 

Proof. Let D be an orientation of Kk(n) and let u be a vertex of D. Since k is even 
and n is odd, (k - l)n is odd. It follows that either odD u �~� ((k - l)n - 1)/2 or 
OdD U �~� ((k-1)n+1)/2 and idD u:::; ((k-1)n-1)/2. Suppose u and v are two distinct 
vertices of D such that odDu:::; ((k-1)n-1)/2 and odDv:::; ((k-1)n-1)/2. Then 
K,(u,v) :::; min{odDu,idDv} :::; odDu and K(V,U) :::; min{idDu,odDv} :::; odDv. 
Thus, K,(u, v) + K,(v, u) :::; odD U + odD V :::; (k - l)n - 1. Similarly, if idD u :::; 
((k -l)n - 1)/2 and idD v :::; ((k -l)n -1)/2, then K(U, v) + K(V, u) :::; (k -l)n-1. 
Suppose now that there are m vertices of D with out degree at most (( k - l)n - 1) /2. 
Then there are kn - m vertices of D with outdegree at least ((k - l)n + 1)/2 and 
in degree at most ((k - l)n - 1)/2. It follows that 
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The expression on the right hand side of the above inequality is a quadratic in m 
and is maximised when m = kn/2. Thus, 

K(D) 

I t follows that 

_ < (k - l)n - 1 k2n2 
_ (k - l)n - 1 kn 

K;(D) - 2 + 4(kn)(kn - 1) - 2 + 4(kn - 1) 

This completes the proof of the lemma. 0 

Next we determine the maximum average connectivity of multipartite tourna­
ments. We consider orientations T of the complete k-partite graph, Kk(n) , with 
k 2:: 2 and n 2:: 2 such that R(T) = Rmax(Kk(n»). First we determine Rmax(Kk(n») for 
k even and n odd. 

Lemma 4 For even k 2:: 2 and odd n ~ 3, 

_ n(k-1) kn 2 
K;max(Kk(n») = 2 - 4(kn - 1)' 

Proof. By Lemma 3, Rmax(Kk(n») ::; ((k - l)n - 1)/2 + kn/4(kn - 1). Hence it 
suffices to show that there is an orientation T of Kk(n) such that R(T) = ((k - l)n-
1)/2 + kn/4(kn - 1). 

Let VI, "\12, ... , Vk denote the partite sets of Kk(n)' For i = 1,2, ... ,k, let Vi = 
{Vi,l, Vi,2, ... , Vi,n}' Let ~I = {Vi,ll"" Vi,(n+I)/2} and ~2 = {Vi,(n+3)/2, ... , Vi,n} be 
a partition of Vi into two sets of cardinalities (n + 1)/2 and (n - 1)/2, respectively. 
Construct T from Kk(n) by orienting for every i, 1 ~ i ~ k, and every j, 1 ~ 
j ~ (k - 2)/2, the edges joining Vi and Vi+i from Vi to Vi+i' where subscripts are 
expressed modulo k. For 1 ~ i ::; k/2 and for each j E {I, 2}, we orient every edge 
uv with U E Vii and v E ~~k/2 as (u, v) and we orient every edge uv with u E ~i 
and v E ~~02 as (v, u). 

Let X denote the set of vertices of T with in degree (( k - 1) n - 1) /2, and let 
Y = V(T) - X. Then each vertex of Y has in degree ((k - l)n + 1)/2 and out degree 
(( k - l)n - 1) /2. It follows from the proof of Lemma 3 that K;( u, v) + K;( V, u) ::; 
(k - l)n - 1 if u and v both belong to X or both belong to Y. 

Claim 1 If u, v E X, then K;T(U, v) + K;T(V, u) = n(k - 1) - 1. 

Proof. For notational convenience, we may assume that u E VI and U = VI,I' 

Suppose first that v E Vm where 2 ::; m ~ k/2. For the case where 2 + k/2 ::; m ::; 
k - 1, the argument is similar. Since v E X, v E V~. For notational convenience, 
we may assume that v = Vm,I' For every f, 2 ~ f < m, let PlR_m denote the 
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collection of n paths of the type VI,!' Vi,j, Vm ,l where 1 ::; j ::; n. Let Pim he the 
collection of n paths consisting of the path VI,!' Vm,l, the (n - 1)/2 paths of the type 
VI,!' Vm,j, Vm+k/2,j, VI,j, Vm,1 where 2::; j ::; (n+1)/2 and the (n-1)/2 paths of the type 
VI,l, Vm,j, Vm+k/2,j, Vm,l where (n+3}/2 ::; j ::; n. For m+ 1 ::; r ::; k/2, let P 1rk denote 
the collection of n paths of the type VI,!, Vr,j, Vr+k/2,j, Vm,1 where 1 ::; j ::; n. Let 
P 1,1+k/2 be the collection of (n - 1)/2 paths of the type VI,I, V1+k/2,j, VI,j+(n-I)/2, Vm,1 

where 2 ::; j ::; (n + 1)/2. Then, {PUk I 2 ::; e < m} U {PIm } U {Plrm I m < r ::; 
k/2} U {PI,1+k/2} is a collection of (n(k - 1) - 1)/2 internally disjoint u-v paths in 
T. Thus, ,..;(u, v) 2:: (n(k - 1) - 1)/2. On the other hand, for m + 1 ::; e ::; k/2, let 
Pmll be the collection of n paths of the type Vm,l, Vf,j, vHk/2,j, VI,I where 1 ::; j ::; n. 
Let Pm ,l+k/2 be the collection of (n - 1)/2 paths of the type Vm,l, V1+k/2,j, VI,I where 
(n + 3)/2 ::; j ::; n. For 2 + k/2 ::; r ::; m - 1 + k/2, let Pmrl denote the collection 
of n paths of the type Vm,l, Vr,j, VI,I where 1 ::; j ::; n. Let P m,m+k/2 be the collection 
of n paths consisting of the (n + 1)/2 paths of the type Vm,l, Vm+k/2,j, VI,I where 
1 ::; j ::; (n+1)/2 and the {n-1)/2 paths of the type Vm,b V1+k/2,j, Vm+k/2,j+(n-l)/2, VI,I 

where 2 ::; j ::; (n + 1)/2. Then, {Pmfl 1m + 1 ::; e ::; k/2} U {Pm,1+k/2} U {Pmri I 
2 + k/2 ::; r ::; m - 1 + k/2} U {Pm,m+k/2} is a collection of (n(k - 1) - 1)/2 
internally disjoint v-u paths in T. Thus, ,..;(v, u) 2:: (n(k - 1) - 1)/2. Consequently, 
,..;(u, v) + ",;(v, u) 2:: n(k - 1) - 1. 

Suppose secondly that v E Vm where m = 1 + k/2. Since v EX, V E V~. 
For notational convenience, we may assume that v = vm,n. For 2 ::; e ::; k/2, let 
PUm denote the collection of n paths of the type VI,!, Vf,j, vm,n where 1 ::; j ::; n. 
Let P im he the collection of {n - 1)/2 paths of the type VI,I, Vm,j, v!,j+(n-l)/2, vm,n 

where 2 ::; j ::; (n + 1)/2. Then, {PHm I 2 ::; e ::; k/2} U {PIm } is a collection of 
(n(k - 1) - 1)/2 internally disjoint u-v paths in T. On the other hand, let Pm! he 
the collection of (n - 1)/2 paths consisting of the path vm,n, VI,I and all paths of 
the type vm,n, VI,j, Vm,j, VI,j+(n-I)/2, Vm,H(n-I)/2, VI,I where 2 ::; j ::; {n - 1)/2. For 
2 + k/2 ::; e ::; k, let Pmfl denote the collection of n paths of the type vm,n, Vf,j, VI,I 

where 1 ::; j ::; n. Then, {P md U {P mll I 2 + k /2 ::; e ::; k} is a collection of 
(n(k -1) -1)/2 internally disjoint v-u paths in T. Consequently, ,..;(u, v) + ,..;(v, u) 2:: 
n(k - 1) - 1. 

Suppose finally that V E Vi. For notational convenience, we may assume that 
V = Vl,2' For 2 ::; e ::; k/2, let PU2 denote the collection of n paths of the type 
VI,I, Vl,j, vHk/2,j, Vl,2 where 1 ::; j ::; n. Let P I2 be the collection of (n -1)/2 paths of 
the type VI,I,V1+k/2,j, Vl,j+(n-I}/2, V1+k/2,j+(n-l)/2,Vl,2 where 2::; j ::; (n+1)/2. Then, 
{P1l2 12 ::; e ::; k/2} U {PI2 } is a collection of (n(k -1) -1)/2 internally disjoint u-v 

paths in T. Thus, ,..;(u, v) 2:: (n(k - 1) - 1)/2. Similarly, ",;(v, u) 2:: (n(k - 1) 1)/2. 
Consequently, K{U, v) + K(V, u) 2:: n(k - 1) - 1. 

Hence, ,..;(u, v) + ",;(v, u) 2:: n(k - 1) - 1 for all pairs of vertices u and v hoth of 
which belong to X. However, for all such pairs u and v, ,..;(u, v)+",;{v, u) ::; (k-1)n-1 
as observed earlier. Hence, ,..;(u, v) + ,..;(v, u) = (k -l)n -1. This completes the proof 
of Claim 1. 0 
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The proof of the following claim is similar to that of Claim 1, and is therefore 
omitted. 

Claim 2 If u, v E Y, then KT(U, v) + KT(V, u) = n(k 1) 1. 

Claim 3 If u E X and v E Y, then KT(U, v) + KT(V, u) = n(k - 1). 

Proof. For notational convenience, we may assume that u E VI and u = VI,I' 

Suppose first that v E Vm where 2 ~ m ~ k/2. For the case where 2 + k/2 ~ 
m :s; k - 1, the argument is similar. Then, v E V';'. For notational convenience, 
we may assume that v = Vm,n. For 2 :s; f < m, let PIlm denote the collection of n 
u-v paths of the type VI,I, Ve,j, vm,n where 1 :::; j :::; n. Let Plm be the collection of 
n u-v paths consisting of the path VI,I, vm,n, the (n + 1)/2 u-v paths of the type 
VI,I, Vm,j, Vm+k/2,j, Vm,n where 1 :::; j :::; (n+1)/2 and the (n-3)/2 u-v paths of the type 
VI,llVm ,j,Vm+k/2,j,VI,j-(n-I)/2,Vm ,n where (n+3)/2:::; j:::; n-1. Form+1:::; r ~ k/2, 
let Pirk denote the collection of n u-v paths of the type VI,I, Vr,j, Vr+k/2,j, vm,n where 
1 :s; j :::; n. Let Pt,1+k/2 be the collection of (n + 1) /2 u-v paths consisting of the 
path VI,I, V1+k/2,1, Vm+k/2,n, VI,(n+I)/2, vm,n and the (n - 1)/2 u-v paths of the type 
VI,I,V1+k/2,j,VI,j+(n-l)/2,Vm ,n where 2 :::; j :::; (n + 1)/2. Then, {Pllk I 2 ~ f < 
m} U {PIm } U {Plrm I rn < r :::; k/2} U {P1,1+k/2} is a collection of (n(k - 1) + 1)/2 
internally disjoint u-v paths in T. Thus, K( u, v) 2:: (n(k 1) + 1) /2. On the other 
hand, for m + 1 :::; f :s; k/2, let Pmel be the collection of n paths of the type 
Vm,n, Ve,j, vHk/2,j, VI,1 where 1 :::; j :::; n. Let P m ,1+k/2 be the collection of n paths 
consisting of the (n-1)/2 paths of the type v m ,n,V1+k/2,j,VI,1 where (n+3)/2 ~ j ~ n 
and the (n+1)/2 paths of the type vm,n, V1+k/2,j, Vm+k/2,j, VI,1 where 1 :s; j :s; (n+1)/2. 
For 2 + k/2 :::; r :s; rn - 1 + k/2, let Pmri denote the collection of n paths of the type 
vm,n, Vr,j, VI,1 where 1 :::; j :::; n. Let P m,m+k/2 be the collection of (n - 1) /2 paths of 
the type vm,n, Vm+k/2,j, VI,I where (n + 3)/2 :::; j ~ n. Then, {Pmf.1 I m + 1 :::; f ~ 
k/2} U {Pm ,1+k/d U {Pmri I 2 + k/2 :::; r :::; m -1 + k/2} U {Pm ,m+k/2} is a collection of 
(n(k -1) 1)/2 internally disjoint v-u paths in T. Thus, K(V, u) 2:: (n(k -1) - 1)/2. 
Consequently, K(U, v) + K(V, u) 2:: n(k - 1). 

Suppose secondly that v E Vm where m = 1 + k/2. By construction, v E V~. 
For notational convenience, we may assume that v = Vm,l' For 2 :::; f :::; k/2, let 
P Ilm denote the collection of n u-v paths of the type VI,I, Ve,j, Vm,I where 1 ~ j :::; n. 
Let P im be the collection of (n + 1)/2 u-v paths consisting of the path VI,I, Vm,l 

and the (n - 1)/2 u-v paths of the type VI,b vm,j, VI,j+(n-I)/2, v m,J+(n-I)/2, VI,j, Vm,l 

where 2 :::; j :::; (n + 1)/2. Then, {PIlm I 2 :::; f :::; k/2} U {P1m } is a collection of 
(n(k - 1) + 1)/2 internally disjoint u-v paths in T. Now, let Pml be the collection 
of (n 1)/2 v-u paths of the type Vm,l, VI,], Vm,j, VI,1 where (n + 3)/2 :::; j ~ n. 
For 2 + k/2 :::; f :::; k, let Pmll denote the collection of n v-u paths of the type 
Vm,I,Ve,j,Vl,I where 1 :::; j :::; n. Then, {Pmd U {Pmll I 2 + k/2 :::; f :::; k} is a 
collection of (n(k - 1) - 1)/2 internally disjoint v-u paths in T. Consequently, 
K(U, v) + K(V, u) 2:: n(k - 1). 

Suppose finally that v E Vi. Then, v E V? For notational convenience, we may 
assume that v = VI,n' For 2 :::; f ~ k/2, let P Iln denote the collection of n u-v 
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paths of the type VI,l, Vl,j, VHk/2, Vl,n where 1 :::; j :::; n. Let PIn be the collection of 
(n + 1)/2 u-v paths of the type VI,l,V1+k/2,j,Vl,n where 1 :::; j :::; (n + 1)/2. Then, 
{Pl£n I 2 :::; e :::; k/2} U {Pln} is a collection of (n(k -1) + 1)/2 internally disjoint u-v 
paths in T. Thus, J);(u, v) ~ (n(k -1) + 1)/2. On the other hand, for 2 :::; £ :::; k/2, let 
Pnll denote the collection of n v-u paths of the type Vl,n, Vl,j, vHk/2, VI,l where 1 :::; 
j :::; n. Let Pnl be the collection of (n - 1)/2 v-u paths of the type VI,n, V1+k/2,j, VI,l 

where (n + 3)/2 :::; j :::; n. Then, {Pnll I 2 :::; £ :::; k/2} U {Pnd is a collection of 
(n(k-1) -1) /2 internally disjoint v-u paths in T. Thus, 11,( u, v )+J);( v, u) ~ n(k-1)/2. 

Hence, J);(u, v) + J);(v, u) ~ n(k - 1) for all pairs of vertices u and v of T with 
u E X and v E Y. However, for all pairs u and v, K,(u, v) + J);(v, u) :::; n(k - 1) as 
observed earlier. Hence, J);(u, v) + J);(v, u) = n(k - 1). This completes the proof of 
Claim 3.0 

We now continue with the proof of Lemma 4. Since IXI IYI = kn/2, it follows 
from Claims 1, 2, and 3 that 

K(T) = (I;I)((k - l)n - 1) + (1;1)((k - l)n -1) + IXIIYI(k - l)n 

= enf2)((k - l)n - 1) + enf2)((k -l)n - 1) + ~k2n2(k - l)n 

= (k2n)((k - l)n - 1) + ~k2n2. 

It follows that 

-(T) (k - l)n - 1 k2n2 (k - l)n - 1 kn 
K, = + = +---2 4(kn)(kn - 1) 2 4(kn - 1)' 

This completes the proof of the theorem. 0 

Next we determine Rmax(Kk(n)) when both k and n even. 

Lemma 5 For even k ~ 2 and even n ~ 2, 

Proof. By Corollary 2, Rmax(Kk(n)) :::; n(k - 1)/2. Hence it suffices to show that 
there is an orientation T of Kk(n) such that K,( u, v) + K,( V, u) = n( k - 1) for all pairs 
of vertices of T, and so R(T) = n(k - 1)/2. 

Let VI, V2, . .. , Vk denote the partite sets of Kk(n)' For i = 1,2, ... , k, let Vi = 
{Vi,l, Vi,2, ... , Vi,n}' Further, let ViI = {Vi,l," ., Vi,n/2} and Vi2 = {Vi,(n+2)/2," ., Vi,n} 
be a partition of Vi into two sets each of cardinality n/2. Construct T from Kk(n) by 
orienting for every i, 1 :::; i :::; k, and every j, 1 :::; j :::; (k - 2)/2, the edges joining Vi 
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and Vi+j from Vi to Vi+j, where subscripts are expressed m~dulo k. For,l ~ i ::; k/2 
and for each j E {I, 2}, we orient every edge uv with u E Vi] and v E V:~k/2 as (u, v) 

and we orient every edge uv with u E vi and v E Vi3-
j as (v, u). 

Let u and v be any two distinct vertices of Kk(n)' We show that K,(u, v)+K,(v, u) ;::: 
n(k - 1). For notational convenience, we may assume that u E Vi and u = Vl,I' 

Suppose first that v E V~ where 2 ~ m ~ k/2. For the case where 2 + k/2 ~ 
m ::; k -1, the argument is similar. For notational convenience, we may assume that 
v = Vm,I' For 2 ~ f < m, let PUm denote the collection of n u-v paths of the type 
VI,I, Ve,j, Vm,1 where 1 ~ j ~ n. Let Pim be the collection of n u-v paths consisting 
of the path VI,I, Vm,I, the (n - 2)/2 u-v paths of the type Vl,b Vm,j, Vm+k/2,j, VI,j, Vm,1 
where 2 ~ j ::; n/2 and the n/2 u-v paths of the type VI,l, Vm,j, Vm+k/2,j, Vm,l where 
(n + 2)/2 ~ j ~ n. For m + 1 S r S k/2, let P1rk denote the collection of n 
u-v paths of the type VI,I, Vr,j, Vr+k/2,j, Vm,1 where 1 ~ j S n. Let PI ,1+k/2 be the 
collection of n/2 u-v paths of the type VI,I, V1+k/2,j, VI,j+n/2, Vm,1 where 1 ~ j ::; n/2. 
Then, {PUk I 2 ~ f < m} U {PIm } U {Plrm 1m < r ~ k/2} U {PI,1+k/2} is a collection 
of n(k - 1)/2 internally disjoint u-v paths in T. Thus, K,(u, v) ~ n(k - 1)/2. On 
the other hand, for m + 1 ~ f S k/2, let PmC! be the collection of n v-u paths 
of the type Vm,l, Ve,j, vHk/2,j, VI,I where 1 S j S n. Let Pm,l+k/2 be the collection 
of n v-u paths consisting of the n/2 v-u paths of the type Vm,l, VI+k/2,j, VI,I where 
(n + 2) /2 ~ j ~ n and the n/2 v-u paths of the type Vm,I, V1+k/2,j, Vm+k/2,j+n/2, VI,I 

where 1 ~ j ~ n/2. For 2+k/2 S r ~ m-1+k/2, let Pmri denote the collection of n 
v-u paths of the type Vm,l, Vr,j, Vl,1 where 1 ~ j S n. Let P m,m+k/2 be the collection 
ofn/2 v-u paths of the type Vm,I,Vm+k/2,j,VI,l where 1 ~ j ~ n/2. Then, {Pmil I 
m+ 1 ~ f ~ k/2}U{Prn,1+k/2}U{Pmri 12+k/2 ~ r ~ m-l+k/2}U{Pm,m+k/2} is a 
collection of n(k-1)/2 internally disjoint v-u paths in T. Thus, K,(v, u) ~ n(k-1)/2. 
Consequently, K,(u, v) + K,(v, u) ;::: n(k - 1). 

Suppose secondly that v E Vm where m = 1 + k/2. For notational convenience, 
we may assume that v = Vm,l' For 2 ~ f ~ k/2, let Pllm denote the collection 
of n paths of the type VI,I, Ve,j, Vm,1 where 1 ~ j ~ n. Let Pim be the collection 
of n/2 paths consisting of the path VI,I, Vm,l and the (n - 2)/2 paths of the type 
VI,I, Vm,j, VI,j+n/2, Vm,j+n/2, VI,j, Vm,l where 2 ~ j ~ n/2. Then, {PIlm I 2 ~ .e ~ 
k/2} U {PIm } is a collection of n(k - 1)/2 internally disjoint u-v paths in T. On 
the other hand, let Pml be the collection of n/2 paths of the type Vm,I, VI,j, Vm,j, VI,I 

where (n + 2)/2 ~ j ~ n. For 2 + k/2 ~ f ~ k, let Pmel denote the collection of n 
paths of the type Vm,l, Ve,j, VI,I where 1 ~ j S n. Then, {Pmd U {Pmel I 2 + k/2 ~ 
e::; k} is a collection of n(k -1)/2 internally disjoint v-u paths in T. Consequently, 
K,(u, v) + K,(v, u) ;::: n(k - 1). 

Suppose finally that v E VI. For notational convenience, we may assume that 
v = VI,2' For 2 ~ e ~ k/2, let PU2 denote the collection of n paths of the type 
VI,I, Ve,j, vHk/2,j, VI,2 where 1 ~ j ~ n. Let P12 be the collection of n/2 paths of 
the type Vl,l, V1+k/2,j, VI,j+n/2, V1+k/2,j+n/2, VI,2 where 1 ~ j ~ n/2. Then, {PU2 I 
2 ::; f ~ k/2} U {PI2 } is a collection of n(k - 1)/2 internally disjoint u-v paths 
in T. Thus, K,(u, v) ~ n(k - 1)/2. Similarly, K,(v, u) ;::: n(k - 1)/2. Consequently, 
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r;;(u, v) + r;;(v, u) ~ n(k - 1). 
Hence for all pairs u and v of vertices of T, r;;(u, v) + r;;(v, u) ~ n(k -1). However, 

as shown in the proof of Theorem 1, r;;(u, v) + r;;(v, u) ~ n(k - 1). Consequently, 
r;;(u, v) + r;;(v, u) = n{k - 1). Since this is true for all (n2k) pairs of vertices of T, it 
follows that R(T) = n(k - 1)/2. 0 

Next we determine Rmax(Kk(n») for k odd. 

Lemma 6 For odd k ~ 3, 

_ n(k - 1) 
r;;max(Kk(n») = 2 . 

Proof. By Corollary 2, Rmax(Kk(n») ::; n(k - 1)/2. Hence it suffices to show that 
there is an orientation T of Kk(n) such that r;;(u, v) + K,(v, u) = n(k - 1) for all pairs 
of vertices of T, and so R(T) = n(k - 1)/2. 

Let Vi, V2, ... , Vk denote the partite sets of Kk(n)' For i = 1,2, ... , k, let Vi = 
{Vi,I, Vi,2, ... , Vi,n}' Construct T from Kk(n) by orienting for every i, 1 ::; i ::; k, and 
every j, 1 ::; j ~ (k - 1)/2, the edges joining Vi and Vi+j from Vi to Vi+j, where 
subscripts are expressed modulo k. 

Let u and v be any two distinct vertices of Kk(n)' We show that K,(u, v)+r;;(v, u) = 
n(k - 1). For notational convenience, we may assume that u E VI and u = VI,I' 

Suppose first that v E Vm where 2 ::; m ::; (k + 1)/2. For the case where 
(k + 3)/2 ::; m ::; k - 1, the argument is similar. For notational convenience, we may 
assume that v = Vm,l' For 2 ::; e < m, let PUm denote the collection of n paths of the 
type VI,I, Vl,j, Vm,1 where 1 ::; j ::; n. Let Pim be the collection of n paths consisting 
of the path VI,b Vm,1 and the n - 1 paths of the type VI,I, Vm,j, Vm+(k-I)/2,j, VI,j, Vm,l 

where 2 ::; j ::; n. For m + 1 ::; r ~ (k + 1)/2, let P1rk denote the collection of 
n paths of the type VI,I,Vr,j,Vr+(k-l)/2,j,Vm,1 where 1 ~ j::; n. Then, {Pl£k 12 ~ 
e < m} U {PIm } U {Plrm I m + 1 ::; r ~ (k + 1)/2} is a collection of n(k - 1)/2 
internally disjoint u-v paths in T. Thus, K,(u, v) ~ n(k - 1)/2. On the other 
hand, for m + 1 ~ e ~ (k + 1)/2, let Pml1 be the collection of n paths of the type 
Vm,I,Vl,j,Vl+(k-I)/2,j,VI,1 where 1 ::; j ::; n. For (k + 3)/2::; r ::; m + (k - 1)/2, let 
Pmri denote the collection of n paths of the type Vm,l, Vr,j, VI,I where 1 ::; j ~ n. 
Then, {Pmll 1m + 1 ~ e::; (k + 1)/2} U {Pmri I (k + 3)/2 ~ r ::; m + (k - 1)/2} is a 
collection of n(k-1)/2 internally disjoint v-u paths in T. Thus, K,(v, u) ~ n(k-1)/2. 
Consequently, K,(u, v) + r;;(v, u) ~ n(k -1). 

Suppose secondly that v E VI. For notational convenience, we may assume that 
v = VI,2' For 2 ::; e::; (k + 1)/2, let P1l2 denote the collection of n paths of the type 
Vl,1,Vl,j,Vl+(k-l)/2,j,Vl,2 where 1::; j::; n. Then, {P1£212 ~ e::; (k+1)/2} is a 
collection of n(k -1)/2 internally disjoint u-v paths in T. Thus, K,( u, v) ~ n(k 1)/2. 
Similarly, K,(v, u) ~ n(k - 1)/2. Consequently, r;;(u, v) + r;;(v, u) ~ n(k - 1). 

Hence for all pairs u and v of vertices of T, r;;( u, v) + r;;( v, u) ~ n( k - 1). However, 
as shown in the proof of Theorem 1, K,(u, v) + r;;(v, u) ~ n(k - 1). Conse4uently, 
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~(u, v) + ~(v, u) = n(k - 1). Since this is true for all (n2k) pairs of vertices of T, it 
follows that R(T) = n(k - 1)/2. 0 

Lemmas 4, 5, and 6 imply the following result. 

Theorem 7 For integers k 2 2 and n 2 2, 

if k is odd or if k and n are even 

if k is even and n is odd 

As a special case of Theorem 7, we have the following result. 

Corollary 8 

Rmax(Kn,n) = { 
i if n is even 

i - 2(~;~I) if n is odd 

3 Minimum Values 

We now turn our attention to the problem of finding the minimum average connec­
tivity among all orientations of the complete multipartite graph. We begin with the 
following result in [5]. 

Theorem 9 (Henning and Oellermann [5]) If G is a graph of order p and size q, 
then Rmin (G) ~ q / p(p - 1) . Moreover, equality holds if and only if G is bipartite. 

As a special case of Theorem 9, we have the following result. 

Corollary 10 

- (K ) mn 
~min m,n = (m + n)( m + n 1) . 

For a digraph D and an (ordered) pair u, v of vertices of D, let ~~2(U, v) be the 
maximum number of internally disjoint u-v paths of D having length at least 2. Let 

K~2(D) = L ~~2(U, v). 
u,vEV 

Then the total connectivity is given by K(D) = q(D) + K>2(D), where q(D) is 
the number of arcs in D. So, K(D) ~ q(D) for any digraph D~ 

We now determine Rmin(Kn1 ,n2, ... ,nk)' For this purpose, let VI, V2, • .• , Vk be the 
partite sets of K n1 ,n2, ... ,nk where lViI = ni' An orientation of K n1 ,n2, ... ,nk is a transitive 
orientation, denoted K~,n2, ... ,nk' if for every i and j, 1 S; i < j S; k, the arcs between 
Vi and Vi are directed from Vi to Vi, 
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Lemma 11 If p = nl + n2 + ... + nk , then 

Proof. Since 

and 

we have 

q(T) = 'L ninj 
l:5i<j:5k 

nln2n3 + nl(n2 + n3)n4 + ... + nl(n2 + n3 + ... + nk-dnk 
+ n2n3n4 + n2(n3 + n4)n5 + ... + n2(n3 + n4 + ... + nk-dnk 
+ ... + nk-2nk-lnk 

El:5i<j<t:5k ninjnt, 

K (T) = L ninj + 'L ninjnt· o 
l:5i<j:5k l:5i<j<t:5k 

Proof. We proceed by induction on k ~ 2. The result is obvious when k = 2. 
Assume that the result holds for k-partite tournaments. Consider now any complete 
(k + I)-partite graph G = K n1 ,n2, ... ,nk+l' Let Vi, V2, . .. , Vk+l be the partite sets of G 
where IViI = ni· Let D be an orientation of G such that R(D) = Rmin(G). Let Tl be 
the orientation of G obtained from D by reorienting all arcs of D that are directed 
from vertices in Vk +1 to vertices in Vj (1 ~ j ~ k) (if any) so that they are directed 
from vertices in Yj to those in Vk+1• Then all vertices of Vk+l have outdegree 0 in Tl . 

We now show that K(T1) ~ K(D), from which it clearly follows that R(Td ~ 
R(D). Let U E Vk+1 , and let Iu be the vertices adjacent to u in D and Ou the vertices 
adjacent from u in D. 

For each x E Iu and each y E Ou, x, U, y is a path of length 2 which gets counted 
once in K,D(X, y) and hence gets counted once in K>2(D). Let Pu be the collection 
of these paths that get counted in K>2(D). So for each U E Vk+1 , there are at least 
IIul'IOul paths of length 2 which each get counted once in K>2(D). As these paths 
no longer exist in T}, they do not get counted in K>2(Td. H~nce there are at least 
LUEVk+l IIul . IOul paths of length 2 which each get counted once in K?2(D) but do 
not get counted in K?2 (T1). 

For every x E lu and every y E Ou, there is at most one x-u containing the edge 
yu in Tl that is counted in K >2 (Td. Let Qu be the collection of these paths that 
get counted in K>2(Td. So fo~ each u E Vk+b there are at most Ilul . IOul paths of 
length 2 from vertices in D - Vk+1 to vertices of Vk+b that get counted in K>2(Td 
but do not get counted in K?2(D). Hence there are at most LUEVk+l Ilul' IOul-paths 
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of length 2 from vertices in D - Vk+1 to vertices of Vk+1, that get counted in K>2(T1) 

but do not get counted in K?2(D). 
All paths of length at least 2 in D, which are not in UUEVk+l 'Pu , but that were 

counted in K?2(D) either still exist in Tl (if they did not contain internal vertices of 
Vk+d or they no longer exist in Tl if they do contain internal vertices from Vk+l' As 
no paths of length at least 2 other than those in UUEVk+1 Qu, get counted in K?2(T1) if 
they are not also counted in K>2(D) it now follows that K>2(Td :::; K>2(D). Hence, 
R(Tr) :::; R(D). By our choice of D, R(Tl) = R(D). - -

Let D' D - Vk+1• Then, D' is an orientation of K n1 ,n2, ... ,nk' Moreover, 
K>2(T1) K>2(D') + q(D')nk+l' (Note that there are exactly q(D')nk+l paths 
of length at least 2 with one end in D' and the other in Vk +1 that get counted in 
K>2(Td. All other paths of length at least 2 that get counted in K>2(Td have both 
ends in D'.) -

By the inductive hypothesis, R(D') ~ R(T') where T' is a transitive orientation 
of Kn1 ,n2, ... ,nk' So, K(D') ~ K(T'). Since K1(D') = KdT') = q(D'), it follows that 
K?2(D') ~ K?2{T'). Hence, K?2(Td ~ K?2(T') + q(D')nk+1' 

Let T be the transitive orientation of G obtained from T' U Vk+1 by orienting all 
the edges of G between vertices of T' and Vk+l from vertices of T' to vertices of Vk+1• 

Then, 

K?2(T) = K?2(T') + q(T')nk+l = K?2(T') + q(D')nk+l :::; K?2(T1). 

So, K(T) :::; K(T1) = K(D). By our choice of D, K(T) = K(D). This completes 
the proof of Lemma 12. 0 

The results of lemmas 11 and 12 can be summarized as follows. 

Theorem 13 

where T is a transitive orientation of K n1 ,n2, ... ,nk and p = nl + n2 + ... + nk. 

We have yet to establish whether the transitive orientation of K n1 ,n2, ... ,nk is the 
only orientation that achieves Rmin(Kn1 ,n2, ... ,nk)' 
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