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Abstract 

We define a formalism, forbidden pairs problems, in which many combina­
torial constructions can be expressed. The formalism highlights the basic 
nature of a large number of combinatorial constraints. We also define an 
algebraic-arithmetic problem to which all forbidden pairs problems can 
be PTIME reduced. 

1 Introduction 

We introduce a combinatorial problem which can be specialised to particular prob­
lems in many different ways. We will call this the forbidden pairs problem. In par­
ticular, we represent packing problems and Hamiltonian circuit as forbidden pairs 
problems. We then show that every forbidden pairs problem can in turn be formu­
lated in terms of a simple, NP-hard algebraic-arithmetic type of problem that we 
designate as Y. 

Let w be either a monomial over commuting indeterminates Xl, ... , Xn or a string 
over al,"" an. The Parikh vector ill of w is defined to be the tuple (kb ... , kn) of 
nonnegative integers, such that ki is the number of occurrences of Xi (ai) in w. Note 
that kl + ... + kn is the total degree in case w is a monomial, and the length in case 
w is a string. We will refer to this sum as the total degree of the monomial-string pair. 

A forbidden pairs problem is specified by choosing a set of commuting indeter­
minates X = {Xl, ... Xn} 1 a set of noncom muting indeterminates A = {al," . , an}, 
a set B of monomials over X having total degree 2, and a set C C AA. The sets B 
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and C are called forbidden pair sets. A monomial y over X is said to be forbidden 
if it can be written as y = u . z, where u E B, otherwise it is said to be admissible. 
Likewise, a string w E A* is forbidden if it can be written w = uvz where v E C, 
otherwise it is admissible. A monomial-string pair y, w is admissible iff both of the 
following two conditions are satisfied . 

• y and ware both admissible. 

• iJ= w. 
The forbidden pairs problem, designated by (X, B, A, C) is to determine the max­

imum total degree over all admissible monomial-string pairs. 

Many classical combinatorial configurations fall under the special subtype of for­
bidden pairs in which the noncommutative constraint C is empty. We give two 
familiar examples here. The first, packings, assumes a quite simple form in terms of 
forbidden pairs. 

Combinatorial designs are a classical part of combinatorics. An account of funda­
mental ideas can be found in [3]. A packing design (called simply a packing) involves 
three positive integers p, q, r. A p, q, r-packing is a collection X of q-element subsets 
of a p-element set Y, such that if x and yare any two distinct elements of X, x n y 
contains fewer than r elements. Define #(p, q, r) to be the maximum cardinality of 
any p, q, r-packing. It is easy to show that 

(~) 
#(p,q,r) S (;) . 

First, no r-element subset of Y can be contained in two distinct elements of a p, q, r­
packing. This implies 

#(p,q,r) ~ ( ~) . 

Second, there is a multiplicity of ( ; ) residing in the quantity 

and the desired upper bound on #(p, q, r) follows by dividing out this multiplicity. 
Rodl has shown that 

. ( ; ) 
hm #(p,q,r)' -( ) = 1 p-too p 

r 
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for every fixed rand q such that r < q. See [6]. 

We proceed to express #(p, q, r) in terms of a forbidden pairs problem. Let 

n = ( ~ ) and let X = {Xl, .. " X n }. Let Xi correspond to the i-th element of some 

listing of all the q-element subsets of the p-element set Y. The set B consists of 
all Xi • Xj such that the corresponding q-element subsets of Y have an intersection 
whose cardinality is at least r. We let C = 0. It should be clear that an admissible 
monomial represents a p, q, r-packing so that the maximum total degree of any ad­
missible monomial is #(p, q, r). We regard p as the size of the problem of computing 
#(p, q, r) so that for q regarded as fixed we clearly have a PTIME reduction to an 

instance of F. If q is regarded as a parameter, then ( ~ ) cannot be bounded above 

by pOCl), 

There is a direct connection between the forbidden pairs formulation of the pack­
ing problem and the maximum clique problem in a graph. A clique is a subgraph 
that is isomorphic to a complete graph. Determining the largest order of any clique 
in a given graph is the maximum clique problem, which is known to be NP-complete. 
See [2]. Let (X, B, A, 0) be the forbidden pairs problem to which a p, q, r-packing 
problem has been reduced. The undirected graph G has X as its set of vertices and 
edge set X x X - {(Xi, Xj) I Xi • Xj E B}. It is evident that the maximum order 
of any clique is exactly #(p, q, r). If q is fixed, the order of G is polynomial in p. 
Now, for certain values of p, e.g., powers of primes belonging to various number 
theoretic families, PTIME constructions of packings of size # (p, q, r) are known. See 
[3]. It follows that for the corresponding graphs G, maximum clique can be solved 
in PTIME. 

Ramsey problems also belong to the C = 0 type of forbidden pairs problem. 
We illustrate this with the simplest of Ramsey problems, the determination of the 
Ramsey number p( q, r). Recall that p is the least integer such for any partition into 
two pieces of the set S of all q-element subsets of a p-element set T, there exists an 
r-element subset of T all of whose q-element subsets are in one of the pieces. 

We proceed to formulate this Ramsey problem in terms of forbidden pairs. Let R 
be the set of all r-element subsets ofT. Define X to be the set of all Xi,j,k = (Yi,j, Zk), 

where Yl, ... , Y f is a list of all of the elements of S, 1 ::; j ::; g, where 9 is the number 
of bipartite partitions of S, and Zl,"" Zh is a list of all of the elements of R, such 
that Yi <;;; Zk. We regard the elements of X as mutually commuting. Define B to 
be the set of degree-two monomials consisting of all Xi,j,k . Xi' ,j,k' such that k t= k', 
all Xi,j,k . Xi,j,k, and all Xi,j,k . Xi' ,j,k such that Yi and Yi' are in different pieces of the 
j-th partition. An admissible monomial of highest total degree will have for each 
partition index j a single element Zk of R and a list of elements of S constituting a 
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partition of all of the q-element subsets of Zk. This total degree will be exactly 

In this way, for given data p, q, r, we can use the forbidden pairs problem (X, B, A, 0) 
to check whether p ~ p(q, r). Note that A plays no part here. 

We point out the role played by the string component of a monomial-string pair. 
The string encodes a regular language constraint. In fact, the edge set of any digraph 
can be faithfully represented as the set C of ordered pairs of vertices which are not 
edges. Any path in the graph is a string over the vertices which is admissible w.r.t. 
C. In fact, one can use this elementary observation to establish an homomorphic 
characterisation of regular languages. See [7]. As we will see with Hamiltonian cir­
cuit, the constraint imposed by the string component of a monomial-string pair can 
be automatically enforced without explicit use of monomial-string pairs. 

An instance of the algebraic-arithmetic problem F is given in terms of arithmetic 
expressions. An arithmetic expression E is either a symbol in {O, 1, Xl, ... , x n }, or 
can be written as (F + G) or F . G, where F and G are arithmetic expressions. All 
of the symbols commute and the rules of ordinary arithmetic apply to sums (F + G) 
and products F· G. The full sum-of-products expansion of E is designated by E. Let 
Df designate formal k-fold differentiation w.r.t. Xi, followed by setting Xi to zero. 
Given an expression E and nonnegative integers kl , ... , kn' the question is whether 
D~l ... D~n E i:- O. This is tantamount to asking whether the monomial X~l ••• x~n 
occurs with a nonzero coefficient in. E. 

2 Hamiltonian circuit in terms of forbidden pairs 

We will work with the digraph version of Hamiltonian circuit for convenience. A sim­
ple spanning cycle in a graph is called a Hamiltonian circuit. Determining whether a 
graph has a Hamiltonian circuit is known to be NP-complete. See [2J. In this section, 
G will be a graph with vertex set V = {VI,"" vn } and edge set E. First, we exhibit 
a 20 (nLtime algorithm for Hamiltonian circuit. A more sophisticated analysis of the 
search space leads to a subexponential time algorithm (essentially 2n7/10_time), which 
is presented in [5]. 

The naive algorithm for Hamiltonian circuit involves enumeration of all n! per­
mutations on V and checking whether each permutation is a cycle in G. This is a 
wasteful procedure because the search space can be reduced in size to 2n. 

We define a right linear grammar g as follows. Its terminal set is V, its nonter­
minal set is {VI, ... ,Yn}, and YI is the initial symbol. If (Vi,Vj) E E, Yi -t VjYj is a 
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production, and for each (Vi, vd there is a production Yi -+ VI. These are the only 
productions. It is not difficult to see that 9 generates exactly the set of cycles in G 
which contain VI just once. Using the standard product construction of automaton 
theory it is straightforward to modify 9 to a grammar Qn which generates all cycles 
having length n and containing VI just once. This set is designated by L(Qn). The 
construction of Qn takes (n '191)°(lttime, where IQI is the size of Q. 

An algorithm for Hamiltonian circuit can be obtained by designing a determin­
istic finite automaton which accepts those strings in L(Qn) which are simple. To do 
this the automaton needs states of the form (81'" 8n ,q), where 8i E {O, 1} and q is 
a state dictated by converting Qn into an automaton. If the first component of the 
state has Si 0 and Vi is read, Si is set to 1. If 8i 1 and Vi is read, the automaton 
quits in failure. It should be evident that an automaton with (n· IQnl)n ·2n states 
can accept exactly those strings in V* which represent simple, spanning cycles in 
G. Now, IQnl = nO(l) so the emptiness problem for this automaton can be solved in 
(nO(l) . 2n )O(1) = 20(nttime. 

Now we will formulate Hamiltonian circuit for the graph G as a forbidden pairs 
problem (X, B, V, C). We define B = {Xi' Xi 1 i = 1, ... , n}, which is the smallest 
possible B. Note that B enforces the constraint that no vertex recur in a cycle. The 
set C, which represents the graph G is just V x V-E. It is clear that G has a 
Hamiltonian circuit iff there exists a monomial-string pair whose total degree is n. 

Theorem 1 :F is NP-hard, and is at least as hard as counting the number of Hamil­
tonian circuits. 

Proof: We use the grammar Qn described in the 20(nttime algorithm for Hamilto­
nian circuit. By regarding the terminals VI, ... ,Vn of Qn and nonterminals Yl, ... , Yn 
as mutually commuting indeterminates, 9n becomes a system of equations that is 
linear in the nonterminals. This system can be explicitly solved and the solution of 
each Yi will be a polynomial in the terminals. These solutions are polynomials and 
not rational functions because L(Qn) is a finite language. A detailed and much more 
general discussion of this method is contained in [4]. In particular, the solution for 
Yl will actually be an expression E such that 

where w is to be thought of as a monomial rather than a string. Notice that two 
strings wand V such that w = iJ will give rise to the same monomial so that coeffi­
cients exceeding 1 are possible. 

Now, G has a Hamiltonian circuit iff at least one of the monomials w in it is 
admissible W.r.t. the forbidden pair set B = {Vi' Vi 1 i = 1, ... , vn }, In turn, this 
condition is equivalent to 
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i.e., the monomial VI V2 •.• Vn has a coefficient of at least 1. This implies that evalu­
ation of Di ... D~E will provide the number of Hamiltonian circuits. 

What is the time complexity of computing the polynomials YI, ... , Yn? The solu­
tions can be obtained by summing the products of powers of the system matrix and 
the vector whose i-th entry is VI if Yi -+ VI, otherwise O. We need powers up to the 
n - I-st. In evaluating each power, we do not expand anything. This means that 
the solution of each Yi will be an expression with a high degree of nesting. Provided 
this is done, the time required is certainly nO(I). 0 

3 Reduction of forbidden pairs to :F 
We show that forbidden pairs problems can be PTIME reduced to F. We employ 
the Hadamard product to do this. The coefficient of a monomial z in a polynomial 
p in the commuting indeterminates Xl, ... ,Xn is written [z]p. If p and q are polyno­
mials in the commuting indeterminates Xl, ... , X n , their Hadamard product r is the 
polynomial given by [z]r = [z]p· [z1q for all monomials z. We write r = p 8 q. Of 
course, p 8 q = q 8 p. 

It may be helpful for the reader to see the reduction of a particular forbidden 
pairs problem to F. Consider the following forbidden pairs problem (X, B, A, C) 
where X = {Xl, X2, X3, X4}, C = 0 and B = {xI,··., x~, Xl' X2, X2' X3, X2' X4, X3' X4}' 

Define four expressions as follows. 

El = (Xl + X2) . (1 + X3) . (1 + X4) 

E2 = (X2 + X3) . (1 + Xl) . (1 + X4) 

E3 = (X2 + X4) . (1 + xd . (1 + X3) 

E4 = (X3 + X4) • (1 + X2) . (1 + X3) 

Let J = El 0 E2 0 E3 8 E 4. Note that j contains a monomial w iff w is ad­
missible w.r.t. B. We now investigate an explicit way to compute J. This method 
is an application of the residue theorem and was used by Jungen in his proof of 
the elementary part of what is now known as the Jungen-Schiitzenberger theorem. 
See [8] for a discussion of the generalisation of Jungen's theorem. A related topic is 
discussed in [1]. 

To faciliate the exposition, we introduce some auxiliary notation. For i = 1, ... ,4 
let Vi, f.i-i' rJi be new variables which commute with everything. Define E~ to be E I , 

but with every occurrence of Xi replaced by Xi • Vi • 7]i. Define E~ to be E2, but 
with every occurrence of Xi replaced by I/vi. Define E~ to be E3, but with every 
occurrence of Xi replaced by f.i-i/7]i. Define E~ to be E4, but with every occurrence of 
Xi replaced by 1/ fti. Define FI = E~ . E~ and F2 = E~ . E~. Finally define 

1 1 dVl ••• dV4 • df.i-l ... df.i-4 • d7]1 ... drJ4 
K = . F I ·F2 • . 

(27fJ=l)12 "I f.i-I ... f.i-4 . VI •.. f.i-4 . 7]1 ... 7]4 
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The integral is around a circle 'Y of suitable radius, concentric with the origin in 
the complex plane. By the residue theorem, k includes all and only those monomials 
that are in common to Ell' .. , E4 , i.e., K = J. 

Using the residue theorem, K can also be wriiten as 

K = D91 ••• D94 . Dhl ... Dh4 . Dkl ... Dk4 Fl . F.2 
VI V4 /-Ll /-L4 711 7/4 ' 

where gi, hi, ki count the number of occurrences in Fl . F2 of l/vi, l/J-ki, l!rli, respec­
tively. Thus, this forbidden pairs problem can be cast as an instance of Y. We 
proceed to generalise this observation in the next theorem. 

The size of a forbidden pairs problem (X, B, A, C) is just the sum of the cardi­
nalities, IXI, IBI, IAI, ICI of the four sets. However, since IBI :::; IXI2 and ICI s IAI2 
and IXI = IAI it suffices to identify the size of the problem with IXI = n. Thus 
PTIME means nO(l) time. We will say that a monomial y in the X -variables and a 
string w E A* are commutatively equivalent if y = w. We also apply this term in 
case wand yare both over A or X. 

Theorem 2 Forbidden pairs can be PTIME reduced to Y. 

Proof: Let (X, B, A, C) be a forbidden pairs problem. Let L1 be the regular 
language associated with (A, C). Let all ,21' a2l ,22' ... , aQI ,Q2 be a listing of all of the 
strings that are commutatively equivalent to the monomials of B. For i = 1, ... , q 
define Ai = A - {ail, ai2}' If U is any regular expression (or language), define Urn] = 
Uj=l vj, where the superscript j indicates j-fold concatenation. For i = 1, ... , q, 
define the regular expression Ei as 

E . = A[n] + A(n] . A(n] + A(nJ . A(nJ 
t z z atl Z Z at2 t • 

It is easy to see that L(Ei) is the set of all strings that are commutatively equivalent 
to monomials that are admissible W.r. t. {xli' xl2' Xii' Xi2}' It follows from this that 
the ni=l L(Ei) is the set of all strings in A* that are commutatively equivalent to 
the admissible monomials W.r.t. the monomial set B. We have just established, 
then that W E Ll n nLl L(Ei) iff w is admissible w.r.t. (A, C) (membership in Ll , 

and w = ii, where y is an admissible monomial (membership in ni=1 L(Ei )), so by 
the definition of forbidden pairs admissibility, W E L1 n ni:=l L(Ei) iff there exists a 
monomial y such that y, w is an admissible monomial-string pair. 

The regular expressions Ei are modified so that each now yields the language 
L(Ei) n L 1 . Each of these modified regular expressions can be constructed in PTIME 
from the original Ei and the set C (Ld and it is evident that the entire process can 
be done in PTIME since C and the original Ei can be constructed in PTIME. Notice 
also that the intersection of all of the modified L(Ed equals the intersection of L1 
and the original L(Ei). 
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It will be convenient to assume that q = 2r. This will make the exposition cleaner, 
but the tree construction that we are about to describe can be carried out for any 
q. For 15k 5 2r = q, define FO,k = Ek. For 1 5 h 5 r, and 15k 5 2r- h 

define Fh,k Fh- 1,2k-l 0 Fh-1,2k. It is clear that Fr,1 is the Hadamard product of 
E l , ... , Eq. Next, for 1 5 i 5 q we introduce new variables Yh,i in the following 
way. Construct the complete binary tree of depth r whose vertices at depth r - h 
are labeled left to right as Fh,k. Note that the leaves are FO,l, ... , FO,2T. For depth 
o < h 5 r, if ai occurs in Fh,j, with odd j, associate Yh,i with it, and if ai occurs 
in Fh,j with even j, associate l/Yh,i with it. Notice that the root, Fr,l does not 
have any variable associated with it. Starting from the children of the root, apply 
the following rule in moving down the tree. Each vertex sends all of its associated 
expressions in Y variables to its left child, and all of its associated expressions in 
reciprocals of Y variables to its right child. Now we can redefine the leaf expression 
FO,l by concatenating each occurrence of ai with all of the associated Yh,i and l/Yh,i' 
In fact this leftmost leaf will not have any reciprocals associated with it. For Fo,j, 
j > 1 we do the same thing, except that we set ai = A, the empty string. 

We now regard all of the variables, including the ai as mutually commutative. 
Define F as 

( dYh,i 
F = j" FO,l ••. Fo,q' n n -. . 

')' h=O,r-Il;:;i;:;q Yh,t 

The pattern of redefinition of the FO,i guarantees that we recover the Hadamard 
products Fh,k for h > 0 in evaluating F so that F = Fr,l. 

We now have that F, up to an integer power of 21rj--1' of degree polynomial in n 
is a sum of the admissible monomials of (X, B, A, C). It is possible that admissible 
monomials may have coefficients greater than 1 because of nondeterminism in the 
regular expressions Ei . In any case, the monomial of highest total degree occurring in 
F is just the admissible monomial of highest total degree. Factor out each occurrence 
of l/Yh,i for 0 < h 5 r - 1 and 1 5 i ::; q. Let mh,i be the degree of I/Yh,i that 
results. Note that the extra factor dYh,dYh,i will make a contribution here. If I/Yh,i 
does not occur, mh,i = O. By the residue theorem, up to an integer power of 21rA' 

r_12T- h 

F = II II D:.~,k-1 FO,l'" Fo,q , 
h=l k=l 

where D:.~rl is again formal mh,k - I-fold differentiation w.r.t. Yh,k, followed by 
setting Yh,k = O. We use the convention that application of Dh',i is multiplication by 
O. What results is just an instance of :F. 0 
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