On the spectrum of an F-square

L. F. Fitina and Jennifer Seberry
Centre for Computer Security Research
School of Information Technology and Computer Science
University of Wollongong
NSW 2522 Australia

Abstract

Given an F -square of some type $F\left(n ; \alpha_{0}, \alpha_{1}, \ldots, \alpha_{v-1}\right)$, what critical set sizes can we obtain for this type? Such a question was considered by Donovan and Howse (1999), in the case of latin squares. In this note we solve this question for the type $F(n ; 1, n-1)$, and also obtain partial results for type $F(n ; 2, n-2)$.

1 Introduction

Let $n=\alpha_{0}+\alpha_{1}+\ldots+\alpha_{v-1}$, where α_{i} is a natural number for each i. A frequency square or F-square of type $F=F\left(n ; \alpha_{0}, \alpha_{1}, \ldots, \alpha_{v-1}\right)$ and of order n is an $n \times n$ array with entries chosen from the set $N=\{0,1, \ldots, v-1\}$, such that each element i occurs α_{i} times in each row and in each column. An F-square F can also be thought of as the set of ordered triples $F=\{(i, j ; k)\}$ where element k occurs in position (i, j). The set $\{0,1, \ldots, v-1\}$ is called the underlying set of F. A subset of F will also be called a sub square or partial F-square. A subset S of $F=F\left(n ; \alpha_{0}, \alpha_{1}, \ldots, \alpha_{v-1}\right)$ is a critical set (of F) if

1. F is the only F-square of order n which has element k in position (i, j) for each $(i, j ; k) \in S$. (We then say that F is uniquely completable from S, and that S is uniquely completable to F.)
and
2. (a) every proper subset of S is contained in at least two F-squares of type $F\left(n ; \alpha_{0}, \alpha_{1}, \ldots, \alpha_{v-1}\right)$
or
(b) for every $(i, j ; k) \in S, \ell \in N, \ell \neq k \rightarrow$ there does not exist any F-square of type
$F\left(n ; \alpha_{0}, \alpha_{1}, \ldots, \alpha_{v-1}\right)$ which contains $(S \backslash\{(i, j ; k)\}) \cup\{(i, j ; \ell)\}$.

We say that a critical set has the same order as the original F-square.
A latin square of order n is an F-square of type $F(n ; 1,1, \ldots, 1)$.
The spectrum of type $F\left(n ; \alpha_{0}, \alpha_{1}, \ldots, \alpha_{v-1}\right)$, is denoted by
$S p\left(n ; \alpha_{0}, \alpha_{1}, \ldots, \alpha_{v-1}\right)$ and defined as follows:
An integer s belongs to $S p\left(n ; \alpha_{0}, \alpha_{1}, \ldots, \alpha_{v-1}\right)$ if there is an F-square of type $F\left(n ; \alpha_{0}, \alpha_{1}, \ldots, \alpha_{v-1}\right)$ which has a critical set of size s.

A collection \mathcal{K} of partial latin squares I is called a latin collection if the entries in the cells of each row (and column) of each $I \in \mathcal{K}$ are the same as those in the corresponding row (and column) of every other partial square in \mathcal{K}, and if the intersection of all the partial latin squares, regarded as sets of triples, is empty. A latin interchange pair is a latin collection of size 2. Elements of a latin interchange pair are called latin interchanges, and each is called the disjoint mate of the other. Donovan and Howse [3] have studied the spectrum of type $F(n ; 1,1, \ldots, 1)$.

2 Some Preliminary Results

The following is an adaptation of a result in Donovan and Howse[3]:
Lemma 1 Let F be any F-square, and let \mathcal{C} be any latin collection in F. Let K be a critical set of F. If $I \in \mathcal{C}$ is such that $K \cup I$ has a unique completion to F, then $(K \backslash I) \cup I^{\prime}$ has a unique completion to $(F \backslash I) \cup I^{\prime}$, for every $I^{\prime} \in \mathcal{C}, I^{\prime} \neq I$.

Proof. Let I^{\prime} be any other set in \mathcal{C}. Every row/column in I^{\prime} must contain the same elements as the corresponding row/column in I. Hence every unfilled cell outside of the set $(K \backslash I) \cup I^{\prime}$ must be filled in precisely the same way, if $(K \backslash I) \cup I^{\prime}$ was replaced by $K \cup I$.
The proofs of the following two lemmas are straightforward.
Lemma 2 Let $F=F\left(n ; \alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\right)$, with underlying multiset M and let $S \subseteq$ F be a partial F-square in F. Then an unfilled cell (i, j) in S can be uniquely filled if $M \backslash\left(R_{i} \cup C_{j}\right) \subseteq\{a, a, \ldots, a\}$ for some $a \in\{0,1, \ldots, n-1\}$.

Two F-squares of the same type are isotopic if one can be obtained from the other by permuting rows and columns or renaming elements.

Lemma 3 Any two F-squares of type $F(n ; 1, n-1)$ are isotopic.

3 Spectrum of type $F(n ; 1, n-1)$

In this section we will consider only the spectrum of type $F(n ; 1, n-1)$.
Theorem 1 For any $n \geq 3$,

$$
\{1,2, \ldots, n-2\} \cap S p(n ; 1, n-1)=\emptyset
$$

That is, none of $1,2, \ldots, n-2$ belongs to the spectrum of type $F(n ; 1, n-1)$.
Proof. Let F be an F-square of type $F(n ; 1, n-1)$ and having the underlying multiset $M=\{0,1,1, \ldots, 1\}$. By Theorem 2 of [4] there cannot exist a critical set of F of size less than or equal to $n-2$.

Theorem 2 There exists a critical set in an F-square of type $F(n ; 1, n-1)$ with size

$$
s+\frac{(n-s)(n-s-1)}{2}
$$

for each $s=0,1,2, \cdots, n-1$.
Proof. Let $A(n, s)$ be the set

$$
A(n, s)=\{(i, j ; 1): i=0,1, \cdots, n-1-s ; j=s+i+1, \cdots, n-1\}
$$

for $s=0,1, \cdots, n-2$ and $A(n, n-1)=\emptyset$.
Let $B(n, s)$ be the set

$$
B(n, s)=\{(p, q ; 0): p=n-s, \cdots, n-1 ; q=n-p-1\}
$$

for $s=1,2, \cdots, n-1$ and $B(n, 0)=\emptyset$.
Let

$$
D(n, s)=A(n, s)+B(n, s)
$$

We illustrate this set with the following example: here $n=8$ and $s=4$. The F-square of type $F(8 ; 1,7)$ is on the right, and $D(8,4)$ is on the left.

1	1	1	1	0	1	1	1
1	1	1	1	1	0	1	1
1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	0
1	1	1	0	1	1	1	1
1	1	0	1	1	1	1	1
1	0	1	1	1	1	1	1
0	1	1	1	1	1	1	1

Each of the rows $n-s, n-s+1, \ldots, n-1$ in $D(n, s)$ has a 0 in it, so each empty cell in each of these rows must be filled with the element 1 . Column $n-1$ now has the element 1 occurring in every cell, except cell $(n-s-1, n-1)$. Fill this cell with element 0 . Now each of the empty cells in row $n-s-1$ can be filled with element 1 . Column $n-2$ now has every cell filled with element 1 , except cell ($n-s-2, n-2$). Fill this cell with element 0 , etc. Following this procedure, eventually the empty cells in $D(n, s)$ will be filled uniquely with either the element 1 or 0 . Each row and column will have 0 occurring once and 1 occurring $n-1$ times. Thus $D(n, s)$ completes uniquely to F.
We need now to show that each triple in $D(n, s)$ has a latin interchange associated with it. For each of the triples $(n-1,0 ; 0), \ldots,(n-s, s-1 ; 0)$ the latin interchange associated with a triple $(i, j ; 0)$ is of the form:

$$
I_{(i, j ; 0)}
$$

	j	s
0	1	0
i	0	1

where the leftmost column gives the first coordinates of the triples, and the top row gives the second coordinates. Thus this diagram refers to the set $\{(0, j ; 1),(0, s ; 0)$, $(i, j ; 0),(i, s ; 1)\}$.
It can be easily verified that each of these latin interchanges intersects $D(n, s)$ at ($i, j ; 0$).
For each of the triples $(i, j ; 1): i=0,1, \ldots, n-s-2 ; j=s+1+i, \ldots, n-1$, the latin interchange associated with each triple $(i, j ; 1)$ is of the form:

$$
I_{(i, j ; 1)}
$$

	$s+\mathrm{i}$	j
i	0	1
$\mathrm{j}-\mathrm{s}$	1	0

It is easy to verify that each such latin interchange intersects $D(n, s)$ at the given triple. Thus $D(n, s)$ is a critical set of F.

Corollary 1 Each of the numbers in the set $S P_{1}=\{n-1, n, n+2, n+5, \ldots$, $\left.\frac{1}{2}(n-1) n\right\}$ belongs to the spectrum of $F(n ; 1, n-1)$.

Theorem $3 n+1$ does not belong to the spectrum of $F(n ; 1, n-1)$.
Proof. Let E be a subset of F of size $n+1$. If E contains $n-1$ or n triples of the form ($i, k ; 0$) then E must contain a critical set of size $n-1$ (see Theorem 2). Thus E cannot be a critical set.

Suppose that E contains $n-2$ triples of the form $(i, j ; 0)$. Consider E now as a partial F-square. It has precisely one 0 each in $n-2$ rows, and three cells filled with the entry 1. If at least one of these $1^{\prime} s$ does not fall in any of the rows that contain the $0^{\prime} s$, then by Theorem 2 above, E will contain a critical set, and hence cannot be a critical set itself. Otherwise each of the $1^{\prime} s$ falls into a row that already contains a 0 . In this case, having filled all the rows containing 0 's, there will be four cells that cannot be uniquely filled. Each of these cells can be filled with either 0 or 1 . In any case, E is not uniquely completable, and thus is not a critical set.
Suppose E contains $n-3$ triples of the form ($i, j ; 0$), then it has four triples in the form $(i, j ; 1)$. Each of the empty cells in the rows that contains a 0 can be filled with element 1. There are now six cells that are either still empty, or that contain element 1 , from the original subsquare E. One can permute the rows and columns so that these cells appear on the upper right hand corner of the partial F-square. One now needs to consider how to fill a 3×3 square with four $1^{\prime} s$, into an F -square of type $F(3 ; 1,2)$. But this can be done only if the partial F -square contains the following configuration (up to isotopy):

	1	1
		1

But then E, by Theorem 2 above, must contain a critical set, and is not itself a critical set. This is sufficient to show that no other configuration of elements of E will give a critical set.
An argument similar to that described above shows that if E contains $n-s 0^{\prime} s$, $s \geq 4$ then E cannot be a critical set.
Thus there cannot exist a critical set of size $n+1$, and $n+1$ does not belong to the spectrum of $F(n ; 1, n-1)$.
We rewrite one of the implications in the above proof, so as to help with proofs of the next theorems.
Lemma 4 Let F be an F-square of type $F(n ; 1, n-1), n \geq 3$. Then a subsquare H of F consisting of just 1 's in every cell in H, is a critical set of F only if $|H|=\frac{1}{2}(n-1) n$, and the elements of H are arranged in the following configuration:
For each $i, 0 \leq i \leq n-1$, there exists exactly one row that contains $i 1$'s, and for each $j, 0 \leq j \leq n-1$, there exists exactly one column that contains $j 1$ s.

Proof. We present below an example of such a 7×7 partial F -square and an isotope:

1	1	1	1	1	1	
1	1	1	1	1		
1	1	1	1			
1	1	1				
1	1					
1						

1	1	1	1	1	1	
1	1	1	1	1		
1	1		1	1		
1	1		1			
1	1					
1						

It is easy to show that with the above configuration H is a critical set. Suppose that H does not have the above configuration, that is, there exist at least two rows or two columns with the same number of 1 's.
We assume the rows are arranged in decreasing size: that is, the rows with the most numbers of $1^{\prime} s$ at the top, etc. Suppose also that the columns are arranged in decreasing size; that is with the columns containing the most number of 1's to the left, etc.
Suppose that row 0 and row 1 have the same size. Row 0 is uniquely completable if it contains $n-11$'s. Suppose that cell $(0, n-1)$ is the only empty cell in row 0 . Then this cell can be uniquely filled with element 0 . If the empty cell in row 1 is also in column $n-1$ then we get a contradiction. Suppose the empty cell in row 1 is not in column $n-1$. Then cell $(1, n-1)$ must contain a 1 . But since element 0 must be forced into cell $(0, n-1)$, this forces the element 1 into every other cell in column $n-1$. Thus the 1 in cell $(1, n-1)$ is redundant. That is, H is not the smallest uniquely completable set contained in itself, and so cannot be a critical set. Similarly, no other two rows can have the same size in H. Arguing similarly, no two columns can have the same size in H.
Thus H is a critical set only if it has the above configuration.
By modifying the proof of the above theorem and using the above lemma, we have the following result:

Theorem 4 No number outside of $\left\{(n-s)+\frac{1}{2}(s-1) s: s=2,3, \cdots, n\right\}$ belongs to the spectrum of $F(n ; 1, n-1)$.

Thus we have:
Theorem 5 The spectrum of $F(n ; 1 ; n)$ is precisely the set

$$
S p(n ; 1, n-1)=\left\{(n-s)+\frac{1}{2}(s-1) s: s=2,3, \cdots, n\right\}
$$

4 Spectrum of type $F(n ; 2, n-2)$

4.1 Case $n=2 k+1$ ($\mathrm{Or} n$ is odd)

For $i=0,2, \ldots, 2(k-1)$, form the subsquares

$$
\begin{aligned}
S_{i} & =\{(i, i ; 0),(i, i+1 ; 0),(i+1, i ; 0),(i+1, i+1 ; 0)\} \\
{S_{i}^{\prime}}_{i} & =\{(i, i ; 0),(i, i+1 ; 0),(i+1, i ; 0)\} \\
{S_{i}^{\prime \prime}}_{i} & =\{(i, i ; 0)\}
\end{aligned}
$$

Form the subsquares
$T_{r}=\{(i, j ; 1) \mid i=r, r+1, \ldots, n-1 ; j=n-i+r-1, n-i+r, \ldots, n-1\}$,
for $r=2,3,4, \cdots, n-1$ and $T_{n}=\emptyset$.
For $r=0,1, \ldots,(k-1)$, let

$$
U_{2 r}^{\prime \prime}=\bigcup_{p=0}^{r-1} S_{2 p} \cup S_{2 r}^{\prime \prime} \cup T_{2 r+2}
$$

and

$$
U_{2 r}^{\prime}=\bigcup_{p=0}^{r-1} S_{2 p} \cup S_{2 r}^{\prime} \cup T_{2 r+3}
$$

Example 1 Let $n=9$. Then $U_{0}^{\prime \prime}=S_{0}^{\prime \prime} \cup T_{2}, U_{0}^{\prime}=S_{0}^{\prime} \cup T_{3}$, and $U_{4}^{\prime \prime}=S_{0} \cup S_{2} \cup S_{4}^{\prime \prime} \cup T_{6}$, and $U_{4}^{\prime}=S_{0} \cup S_{2} \cup S_{4}^{\prime} \cup T_{7}$.
We display these subsquares below:

0								
								1
							1	1
						1	1	1
					1	1	1	1
				1	1	1	1	1
			1	1	1	1	1	1
		1	1	1	1	1	1	1
$U_{0}^{\prime \prime}$								

0	0							
0								
								1
							1	1
						1	1	1
					1	1	1	1
				1	1	1	1	1
			1	1	1	1	1	1
U_{0}^{\prime}								

0	0							
0	0							
		0	0					
		0	0					
				0				
								1
							1	1
						1	1	1
$U_{4}^{\prime \prime}$								

0	0							
0	0							
		0	0					
		0	0					
				0	0			
				0				
								1
							1	1
U_{4}^{\prime}								

The proof of the following theorem is similar to the proofs of similar theorems in the previous section.

Theorem 6 The sets $U_{2 r}^{\prime \prime}$ and $U_{2 r}^{\prime}$ defined above are critical sets of type $F(n ; 2, n-2)$.

It is easy to verify that:
Theorem 7

$$
\left|U_{2 r}^{\prime \prime}\right|=4 r+1+\frac{1}{2}(n-2 r-2)(n-2 r-1)
$$

and

$$
\left|U_{2 r}^{\prime}\right|=4 r+3+\frac{1}{2}(n-2 r-3)(n-2 r-2)
$$

Thus we have:
Theorem 8 Let $n=2 k+1$. Then the spectrum of $F(n ; 2, n-2)$ contains each of the following numbers:
$4 k-1+\frac{1}{2}(n-2 k-1)(n-2 k), 4 k-3+\frac{1}{2}(n-2 k)(n-2 k+1), \ldots, 7+\frac{1}{2}(n-$ 5) $(n-4), 5+\frac{1}{2}(n-4)(n-3), 3+\frac{1}{2}(n-3)(n-2), 1+\frac{1}{2}(n-2)(n-1)$, or

$$
i+\frac{1}{2}\left(n-\frac{1}{2} i-\frac{3}{2}\right)\left(n-\frac{1}{2} i-\frac{1}{2}\right), i=1,3,5, \cdots, 4 k-1 .
$$

Example 2 Let $n=9$. Then $k=4$ and $\{14,15,17,20,24,29\} \subseteq S p(9 ; 2,7)$.

4.2 Case $n=2 k$ (Or n is even)

For $i=0,2, \ldots, 2(k-2)$, form the subsquares

$$
S_{i}=\{(i, i ; 0),(i, i+1 ; 0),(i+1, i ; 0),(i+1, i+1 ; 0)\}
$$

the subsquares

$$
S_{i}^{\prime}=\{(i, i ; 0),(i, i+1 ; 0),(i+1, i ; 0)\}
$$

and the subsquares

$$
S_{i}^{\prime \prime}=\{(i, i ; 0)\}
$$

Form the subsquare

$$
\begin{aligned}
& T_{r}=\{(i, j ; 1) \mid i=r, r+1, \ldots, n-1 ; j=n-i+r-1, n-i+r, \ldots, n-1\}, \\
& \text { for } r=2,3,4, \cdots, n-1 \text { and } T_{n}=\emptyset
\end{aligned}
$$

For $r=0,1, \ldots,(k-2)$, let

$$
\begin{aligned}
& U_{2 r}^{\prime \prime}=\bigcup_{p=0}^{r-1} S_{2 p} \cup S_{2 r}^{\prime \prime} \cup T_{2 r+2} \\
& U_{2 r}^{\prime}=\bigcup_{p=0}^{r-1} S_{2 p} \cup S_{2 r}^{\prime} \cup T_{2 r+3}
\end{aligned}
$$

For $r=k-2$, let

$$
U_{2(k-2)}=\bigcup_{p=0}^{k-2} S_{2 p} .
$$

We state the following theorem without proof, as it is similar to theorems in the last two sections.

Theorem 9 The sets $U_{2 r}^{\prime}, U_{2 r}^{\prime \prime}$ and $U_{2(k-2)}$ are critical sets of type $F(n ; 2, n-2)$, where n is an even number.

Theorem 10 If n is even then the spectrum of $F(n ; 2, n-2)$ contains the numbers $\left|U_{2 r}^{\prime \prime}\right|,\left|U_{2 r}^{\prime}\right|$,
$\left|U_{2(k-2)}\right|, r=0,1, \ldots,(k-2)$.
Example 3 If $n=10$ then $\{20,21,23,26,30,41,48,56\} \subset \operatorname{Sp}(10 ; 2,8)$.

5 Conclusion

In this paper we have solved the spectrum of type $F(n ; 1, n-1)$ and also obtained partial solutions to the spectrums of $F(n ; 2, n-2)$ for n even and n odd. It is quite possible that we have in fact obtained all the spectrums of type $F(n ; 2, n-2)$ for n odd.

References

[1] D. Curran and G.H.J. Van Rees, Critical sets in latin squares, Congr. Num., 22 (1979), 165-168.
[2] D. Donovan and Joan Cooper, Critical sets in back circulant latin squares, Aequationes Mathematicae, 52 (1996), 157-179.
[3] Diane Donovan and Adelle Howse, Towards the spectrum of critical sets, Australas. J. Combin., 21 (2000), 107-130.
[4] L.F. Fitina, Jennifer Seberry and Dinesh Sarvate, On F-squares and their critical sets, Australas. J. Combin., 19 (1999), 209-230.

