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Abstract 

Given an F-square of some type F(n; ao, al, ... , av-d, what critical set 
sizes can we obtain for this type? Such a question was considered by 
Donovan and Howse (1999), in the case of latin squares. In this note 
we solve this question for the type F{n; 1, n - 1), and also obtain partial 
results for type F(n; 2, n 2). 

1 Introduction 

Let n = ao + a1 + ... + av -1, where ai is a natural number for each i. A frequency 
square or F-square of type F = F(n; ao, aI, ... , av-d and of order n is an n x n 
array with entries chosen from the set N = {O, 1, ... , v - I}, such that each element 
i occurs ai times in each row and in each column. An F -square F can also be thought 
of as the set of ordered triples F = {( i, j; k)} where element k occurs in position (i, j). 
The set {O, 1, ... , v-I} is called the underlying set of F. A subset of F will also be 
called a sub square or partial F-square. A subset S of F = F(n; ao, a1,"" av-l) is 
a critical set (of F) if 

1. F is the only F -square of order n which has element k in position (i, j) for each 
(i,j; k) E S. (We then say that F is uniquely completable from S, and that S 
is uniquely completable to F.) 

and 

2. (a) every proper subset of S is contained in at least two F-squares of type 
F(n; ao, al,"" av-I) 
or 

(b) for every (i, j; k) E S, C E N, £. =1= k -+ there does not exist any F -square 
of type 
F(n; ao, al,"" av-I) which contains (S \ {(i,j; k)}) U {(i,j; e)}. 
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We say that a critical set has the same order as the original F -square. 

A latin square of order n is an F-square of type F(n; 1, 1, ... ,1). 

The spectrum of type F(n; ao, a1, ... ,av-d, is denoted by 
Sp(n; ao, all' .. ,av-d and defined as follows: 

An integer s belongs to Sp(n; ao, a1, ... ,av-d if there is an F-square of type 
F(n; ao, a1, ... , av -1) which has a critical set of size s. 

A collection Ie of partial latin squares I is called a latin collection if the entries 
in the cells of each row (and column) of each I E Ie are the same as those in 
the corresponding row (and column) of every other partial square in Ie, and if the 
intersection of all the partial latin squares, regarded as sets of triples, is empty. A 
latin interchange pair is a latin collection of size 2. Elements of a latin interchange 
pair are called latin interchanges, and each is called the disjoint mate of the other. 

Donovan and Howse [3] have studied the spectrum of type F(n; 1,1, ... ,1). 

2 Some Preliminary Results 

The following is an adaptation of a result in Donovan and Howse(3]: 

Lemma 1 Let F be any F-square, and let C be any latin collection in F. Let K be 
a critical set of F. If I E C is such that K U I has a unique completion to F, then 
(K \ 1) U I' has a unique completion to (F \ 1) U 1', for every If E C, l' =1= I. 

Proof. Let l' be any other set in C. Every row/column in l' must contain the same 
elements as the corresponding row/column in I. Hence every unfilled cell outside 
of the set (K \ 1) U l' must be filled in precisely the same way, if (K \ I) U I' was 
replaced by K U I. 0 

The proofs of the following two lemmas are straightforward. 

Lemma 2 Let F = F(n; ao, a1, ... , an-I), with underlying multiset M and let S ~ 
F be a partial F-square in F. Then an unfilled cell (i, j) in S can be uniquely filled 
ifM\(RiUCj)~{a,a, ... ,a}forsomeaE{O, 1, ... , n I}. 0 

Two F -squares of the same type are isotopic if one can be obtained from the other 
by permuting rows and columns or renaming elements. 

Lemma 3 Any two F-squares of type F(n; 1, n - 1) are isotopic. o 
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3 Spectrum of type F(n; 1, n - 1) 

In this section we will consider only the spectrum of type F (n; 1, n - 1). 

Theorem 1 For any n 2: 3, 

{I, 2, ... ,n - 2} n Sp(n; 1, n - 1) 0. 

That is, none of 1, 2, ... ,n - 2 belongs to the spectrum of type F(n; 1, n - 1). 

Proof. Let F be an F-square of type F(n; 1, n - 1) and having the underlying 
multiset M {a, 1, 1, ... ,I}. By Theorem 2 of [4] there cannot exist a critical set 
of F of size less than or equal to n - 2. 0 

Theorem 2 There exists a critical set in an F-square of type F(n; 1, n -1) with size 

(n - s)(n - s - 1) 
s + 2 

for each s = 0,1,2, ... ,n - 1. 

Proof. Let A(n, s) be the set 

A(n, s) = {(i, j; 1) : i = 0,1, . ", n - 1 - s; j s + i + 1, .. " n - I} 

for s 0,1, .. " n - 2 and A(n, n - 1) = 0. 
Let B(n, s) be the set 

B(n, s) = {(p, q; 0) : p = n - S,"', n - 1; q = n - p - I} 

for s = 1,2"" ,n 1 and B(n,O) = 0. 
Let 

D(n, s) = A(n, s) + B(n, s). 

We illustrate this set with the following example: here n = 8 and s = 4. The 
F-square of type F(8; 1,7) is on the right, and D(8,4) is on the left. 

1 1 1 1 1 1 1 ° 1 1 1 
1 1 1 1 1 1 1 0 1 1 

1 1 1 1 1 1 1 ° 1 
1 1 1 1 1 1 1 ° 

° 1 1 1 10 11 I 1 1 1 

° 1 1 ° 11 11 11 1 1 

° 1 ° 1 1 1 1 1 1 

° ° 1 1 1 1 1 1 1 
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Each of the rows n - s, n - s + 1, ... ,n - 1 in D(n, s) has a 0 in it, so each empty 
cell in each of these rows must be filled with the element 1. Column n - 1 now has 
the element 1 occurring in every cell, except cell (n - s 1, n - 1). Fill this cell with 
element O. Now each of the empty cells in row n - s - 1 can be filled with element 1. 
Column n - 2 now has every cell filled with element 1, except cell (n - s - 2, n - 2). 
Fill this cell with element 0, etc. Following this procedure, eventually the empty 
cells in D(n, s) will be filled uniquely with either the element 1 or O. Each row 
and column will have 0 occurring once and 1 occurring n - 1 times. Thus D(n, s) 
completes uniquely to F. 
We need now to show that each triple in D(n, s) has a latin interchange associated 
with it. For each of the triples (n - 1,0; 0), ... , (n s, s - 1; 0) the latin interchange 
associated with a triple (i,j;O) is of the form: 

=lliffi
. s 

o I 0 
i 0 1 

where the leftmost column gives the first coordinates of the triples, and the top row 
gives the second coordinates. Thus this diagram refers to the set {(O,j;I),(O,s;O), 
(i, j; 0), (i, s; I)}. 
It can be easily verified that each of these latin interchanges intersects D( n, s) at 
(i,j; 0). 

For each of the triples (i, j; 1) : i = 0, I, ... , n - s - 2; j s + 1 + i, ... , n - 1, the 
latin interchange associated with each triple (i, j; I) is of the form: 

s+i j 
i 0 1 

j-s 1 0 

It is easy to verify that each such latin interchange intersects D(n, s) at the given 
triple. Thus D(n, s) is a critical set of F. 

o 

Corollary 1 Each of the numbers in the set SPI = {n 1, n, n + 2, n + 5, 
~(n l)n} belongs to the spectrum of F(n; 1, n - 1). 0 

Theorem 3 n + 1 does not belong to the spectrum of F(n; 1, n - 1). 

Proof. Let E be a subset of F of size n + 1. If E contains n - 1 or n triples of the 
form (i, k; 0) then E must contain a critical set of size n 1 (see Theorem 2). Thus 
E cannot be a critical set. 
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Suppose that E contains n - 2 triples of the form (i, j; 0). Consider E now as a 
partial F-square. It has precisely one 0 each in n - 2 rows, and three cells filled with 
the entry 1. If at least one of these l's does not fall in any of the rows that contain 
the 0' s, then by Theorem 2 above, E will contain a critical set, and hence cannot be 
a critical set itself. Otherwise each of the l's falls into a row that already contains a 
O. In this case, having filled all the rows containing 0' s, there will be four cells that 
cannot be uniquely filled. Each of these cells can be filled with either 0 or 1. In any 
case, E is not uniquely completable, and thus is not a critical set. 
Suppose E contains n - 3 triples of the form (i, j; 0), then it has four triples in the 
form (i, j; 1). Each of the empty cells in the rows that contains a 0 can be filled with 
element 1. There are now six cells that are either still empty, or that contain element 
1, from the original subsquare E. One can permute the rows and columns so that 
these cells appear on the upper right hand corner of the partial F -square. One now 
needs to consider how to fill a 3 x 3 square with four l's, into an F -square of type 
F(3; 1, 2). But this can be done only if the partial F-square contains the following 
configuration (up to isotopy): 

But then E, by Theorem 2 above, must contain a critical set, and is not itself a 
critical set. This is sufficient to show that no other configuration of elements of E 
will give a critical set. 

An argument similar to that described above shows that if E contains n - s 0' s, 
s ;::::: 4 then E cannot be a critical set. 
Thus there cannot exist a critical set of size n + 1, and n + 1 does not belong to the 
spectrum of F(n; 1, n - 1). 0 

We rewrite one of the implications in the above proof, so as to help with proofs of 
the next theorems. 

Lemma 4 Let F be an F-square of type F(n; 1, n-l), n ~ 3. Then a subsquare H of 
F consisting of just l's in every cell in H, is a critical set of F only iflHI = ~(n-l)n, 
and the elements of H are arranged in the following configuration: 

For each i, 0 :::; i :::; n - 1, there exists exactly one row that contains i l' s, and for 
each j, 0:::; j :::; n - 1, there exists exactly one column that contains j l's. 0 

Proof. We present below an example of such a 7 x 7 partial F -square and an isotope: 

1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 
1 1 1 1 
1 1 
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It is easy to show that with the above configuration H is a critical set. Suppose that 
H does not have the above configuration, that is, there exist at least two rows or 
two columns with the same number of 1 'so 

We assume the rows are arranged in decreasing size: that is, the rows with the 
most numbers of l's at the top, etc. Suppose also that the columns are arranged in 
decreasing size; that is with the columns containing the most number of l's to the 
left, etc. 

Suppose that row 0 and row 1 have the same size. Row 0 is uniquely completable 
if it contains n - II's. Suppose that cell (0, n - 1) is the only empty cell in row 
O. Then this cell can be uniquely filled with element O. If the empty cell in row 1 
is also in column n - 1 then we get a contradiction. Suppose the empty cell in row 
1 is not in column n - 1. Then cell (1, n - 1) must contain a 1. But since element 
o must be forced into cell (0, n - 1), this forces the element 1 into every other cell 
in column n - 1. Thus the 1 in cell (1, n - 1) is redundant. That is, H is not the 
smallest uniquely completable set contained in itself, and so cannot be a critical set. 

Similarly, no other two rows can have the same size in H. Arguing similarly, no two 
columns can have the same size in H. 

Thus H is a critical set only if it has the above configuration. 0 

By modifying the proof of the above theorem and using the above lemma, we have 
the following result: 

Theorem 4 No number outside of {(n - s) + ~(s - l)s : s = 2,3",', n} belongs to 
the spectrum of F(n; 1, n - 1). 0 

Thus we have: 

Theorem 5 The spectrum of F(n; 1; n) is precisely the set 

Sp(n; 1, n 
1 

1) = {(n - s) + 2"(s - 1)8 : 8 = 2,3,' ", n}. 

4 Spectrum of type F(n; 2, n - 2) 

4.1 Case n = 2k + 1 (Or n is odd) 

For i = 0, 2, ... , 2(k - 1), form the subsquares 

Si={(i,i;O), (i,i+l;O), (i+1,i;0), (i+1,i+1;On 

S'i={(i,i;O), (i,i+1;0), (i+1,i;On 
SUi = {(i, i; On. 
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Form the subsquares 

Tr ={(i,j;1)li=r,r+1, ... , n-1;j= n-i+r-1, n-i+r, ... , n-1}, 

for r = 2,3,4, ... , n - 1 and Tn = 0. 
For r = 0, 1, ... , (k - 1), let 

and 
I r-l I 

U2r = U 52p U S2r U T2r+3 . 
p=o 

Example 1 Let n == 9. Then U; = S~ UT2 , U~ = 5~UT3' and u~' = 50US2U5~ UT6 , 

and U~ = So U 52 U S~ U T7 . 

We display these subsquares below: 

0 0 0 
0 

1 
1 1 1 

1 1 1 1 1 
1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 

0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 

0 0 0 
0 

1 
1 1 1 

1 1 1 1 1 

o 

The proof of the following theorem is similar to the proofs of similar theorems in the 
previous section. 

87 



Theorem 6 The sets U~r and U;r defined above are critical sets of type F(n; 2, n-2). 
o 

It is easy to verify that: 

Theorem 7 
11 1 

IU2r l = 4r + 1 + "2(n - 2r - 2)(n - 2r - 1) 

and 

I 1 
IU2r l = 4r + 3 + "2(n - 2r - 3)(n - 2r - 2). 

o 

Thus we have: 

Theorem 8 Let n = 2k + 1. Then the spectrum of F(n; 2, n - 2) contains each of 
the following numbers: 

4k - 1 + !(n - 2k - l)(n - 2k), 4k - 3 + !(n - 2k)(n - 2k + 1), "., 7 + !(n-
5)(n - 4), 5 + ~(n - 4)(n - 3), 3 + !(n - 3)(n - 2), 1 + !(n - 2)(n - 1), 

or 
i + !(n - !i - ~)(n 

2 2 2 
!i - !) i = 1 3 5 ... 4k - 1 
2 2' "" . 

o 

Example 2 Let n = 9. Then k = 4 and {14, 15, 17,20,24, 29} ~ Sp(9; 2, 7). 0 

4.2 Case n = 2k (Or n is even) 

For i = 0, 2, ... , 2(k - 2), form the subsquares 

Si={(i,i;O), (i,i+l;O), (i+1,i;0), (i+1,i+1;On, 

the subsquares 
S; = {(i, i; 0), (i, i + 1; 0), (i + 1, i; On 

and the subsquares 
S~' = {( i, i; O)}. 

Form the subsquare 

Tr={(i,j;l) li=r,r+l, .'" n-l;j= n-i+r-l, n-i+r, ... , n-l}, 

for r = 2,3,4, ... , n - 1 and Tn = 0. 
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For r = 0, 1, ... , (k - 2), let 

For r = k - 2, let 

, r-l , 

U2r = U S2p U S2r U T2r+3' 
p=O 

k-2 

U2(k-2) = U S2p' 
p=O 

We state the following theorem without proof, as it is similar to theorems in the last 
two sections. 

Theorem 9 The sets U~r' U~r and U2(k-2) are critical sets of type F(n; 2, n - 2), 
where n is an even number. 0 

Theorem 10 If n is even then the spectrum of F(n; 2, n - 2) contains the numbers 

IU;r\, IU~rl, 
IU2(k-2)\' r = 0, 1, ... , (k - 2). 0 

Example 3 If n = 10 then {20, 21, 23, 26, 30, 41, 48, 56} c Sp{10; 2,8). 0 

5 Conclusion 

In this paper we have solved the spectrum of type F{n; 1, n - 1) and also obtained 
partial solutions to the spectrums of F(n; 2, n - 2) for n even and n odd. It is quite 
possible that we have in fact obtained all the spectrums of type F(n; 2, n - 2) for n 
odd. 
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