On the Ramsey number $R\left(C_{n}\right.$ or $\left.K_{n-1}, K_{m}\right)(m=3,4)$

Yang Jian Sheng, Huang Yi Ru
Department of Mathematics, Shanghai University
Shanghai 201800, People's Republic of China
Zhang Ke Min*
Department of Mathematics, Nanjing University
Nanjing 210008, People's Republic of China

Abstract

The Ramsey number $R\left(C_{n}\right.$ or $\left.K_{n-1}, K_{m}\right)$ is the smallest integer p such that every graph G on p vertices contains either a cycle C_{n} with length n or a K_{n-1}, or an independent set of order m. In this paper we prove that $R\left(C_{n}\right.$ or $\left.K_{n-1}, K_{3}\right)=2(n-2)+1(n \geq 5), R\left(C_{n}\right.$ or $\left.K_{n-1}, K_{4}\right)=$ $3(n-2)+1(n \geq 7)$. In particular, we prove that $R\left(C_{4}\right.$ or $\left.K_{3}, K_{3}\right)=6$, $R\left(C_{4}\right.$ or $\left.K_{3}, K_{4}\right)=8, R\left(C_{5}\right.$ or $\left.K_{4}, K_{4}\right)=11$ and $R\left(C_{6}\right.$ or $\left.K_{5}, K_{4}\right)=14$.

1. Introduction.

We shall consider only graphs without multiple edges or loops.
The Ramsey number $R\left(C_{n}\right.$ or $\left.K_{n-1}, K_{m}\right)$ is the smallest integer p such that every graph G on p vertices contains either a cycle C_{n} with length n or a complete graph K_{n-1} on $n-1$ vertices, or an independent set of order m.

In 1976, R.H. Schelp and R.J. Faudree in [2] stated the following problem:
Problem 1.1 ([2]). Is it true that $R\left(C_{n}\right.$ or $\left.K_{n-1}, K_{m}\right)=(n-2)(m-1)+1$ $(n \geq m)$?

With this problem, the aim of Schelp and Faudree was to solve the following problem:
Problem 1.2 ([2]). Find the range of integers n and m such that $R\left(C_{n}, K_{m}\right)=$ $(n-1)(m-1)+1$. In particular, show that the equality holds for $n \geq m$.

However, we think that Problem 1.1 is more difficult than Problem 1.2. And in fact, the statement is false for $m \leq n \leq 2(m-1)$. (See Lemma 2.3 below.)

In [3], we proved that $R\left(C_{n}, K_{4}\right)=3(n-1)+1(n \geq 4)$.
In this paper, we prove that $R\left(C_{n}\right.$ or $\left.K_{n-1}, K_{3}\right)=2(n-2)+1(n \geq 5)$ and $R\left(C_{n}\right.$ or $\left.K_{n-1}, K_{4}\right)=3(n-2)+1(n \geq 7)$. In particular, we prove that $R\left(C_{4}\right.$ or

[^0]$\left.K_{3}, K_{3}\right)=6, R\left(C_{4}\right.$ or $\left.K_{3}, K_{4}\right)=8, R\left(C_{5}\right.$ or $\left.K_{4}, K_{4}\right)=11$ and $R\left(C_{6}\right.$ or $\left.K_{5}, K_{4}\right)=$ 14.

The following notation will be used in this paper. If G is a graph, the vertex set (resp. edge set) of G is denoted by $V(G)$ (resp. $E(G)$). For $x \in V(G), N(x)=$ $\{v \in V(G) \mid x v \in E(G)\}$ and $N[x]=N(x) \cup\{x\}$. If $X \subset V(G)$, then $\langle X\rangle$ is the subgraph induced by X. We denote by $\alpha(G)$ the independence number of G, and by $g(G)$ the girth of G.

2. Lemmas.

For convenience, in Lemma 1 to Lemma 3 below, we assume G is a graph that contains the cycle ($v_{1}, v_{2}, \cdots, v_{n}$) of length n but no cycle of length $n+1$.
Lemma 2.1 ([3]). Let $X \subseteq V(G) \backslash\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. Then
(a) No vertex $x \in X$ is adjacent to two consecutive vertices on the cycle.
(b) If $x \in X$ is adjacent to v_{i} and v_{j}, then $v_{i+1} v_{j+1} \notin E(G)$.
(c) If $x \in X$ is adjacent to v_{i} and v_{j}, then no vertex $x^{\prime} \in X$ is adjacent to both v_{i+1} and v_{j+2}.
Lemma 2.2. Let I_{m-1} be an independent set of order $m-1$ with $I_{m-1} \subseteq V(G) \backslash$ $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. If $n \geq 2 m-3$ and $\left|N(x) \cap\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}\right|=k$, where $x \in I_{m-1}$, then $k \leq m-3$.

Proof. For $x \in I_{m-1}$ suppose the neighbors of x on the cycle are $v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}$. By parts (a) and (b) of Lemma 2.1 we know that that $\left\{x, v_{i_{1}+1}, \ldots, v_{i_{k}+1}\right\}$ is an independent set; hence $k+1 \leq m-1$. To prove that $k \leq m-3$, suppose to the contrary that $k=m-2$. Then $2 k=2 m-4$ so since $n \geq 2 m-3$ we may put $z=v_{i_{k}+2}$, where $i_{k}+2 \not \equiv i_{1}(\bmod n)$. Then $x z \notin E(G)$. If $x^{\prime} z \in E(G)$ for some $x^{\prime} \in I_{m-1}$ then by part (c) of Lemma $2.1\left\{x, x^{\prime}, v_{i_{1}}, \ldots, v_{i_{k}}\right\}$ is an m-element independent set; otherwise $I_{m-1} \cup\{z\}$ is an m-element independent set. Hence $k \leq m-3$.
Corollary. If $n>(m-1)(m-3)+1$ and G contains a C_{n-1} and a vertex disjoint independent set I_{m-1} with size $m-1$, then G either contains a C_{n} or an independent set of m vertices.
Proof. If there is no independent set of m vertices then each vertex on the C_{n-1} is adjacent to at least one vertex in I_{m-1}. But then some vertex in I_{m-1} is adjacent to at least $\lceil(n-1) /(m-1)\rceil \geq m-2$ vertices on the cycle, contradicting Lemma 2.2 .

Lemma 2.3.

(1) $R\left(C_{n}\right.$ or $\left.K_{n-1}, K_{m}\right) \geq(n-2)(m-1)+1(n \geq m)$.
(2) $R\left(C_{n}\right.$ or $\left.K_{n-1}, K_{m}\right) \geq(n-2)(m-1)+2(m \leq n \leq 2(m-1))$.

Proof.
(1) This is trivial.
(2) Starting with the cycle $\left(x_{1}, y_{2}, \ldots, x_{m-1}, y_{m-1}, x_{m}\right)$, let G be the graph obtained by replacing each y_{i} by a K_{n-3}. (Thus each vertex in the K_{n-3} that
replaces y_{i} is adjacent to x_{i} and x_{i+1}.) It is easy to see that G contains no K_{n-1} and $\alpha(G) \leq m-1$. If the edge $x_{m} x_{1}$ is removed, then each block of the resulting graph has $n-1$ vertices; hence there is no C_{n}. Any other cycle in G must use the edge $x_{m} x_{1}$, and then it must have length at least $2(m-1)+1 \geq n+1$.

Lemma 2.4 [1]. Let G be a graph on $n \geq 3$ vertices. If $\delta(G) \geq n / 2$, then G either is pancyclic or else $G=K_{n / 2, n / 2}$.
3. The Ramsey number $R\left(C_{n}\right.$ or $\left.K_{n-1}, K_{m}\right)$ for $m=3,4$.

Theorem 3.1. $R\left(C_{n}\right.$ or $\left.K_{n-1}, K_{3}\right)=2(n-2)+1(n \geq 5)$.
Proof.
Let G be a graph with order $2(n-2)+1$. Suppose $\alpha(G) \leq 2$ and suppose G contains neither a C_{n} nor a K_{n-1}.

Let $x \in V(G)$ and $V_{x}=V(G) \backslash N(x)$. Then $\left\langle V_{x}\right\rangle$ is a clique of G. Since G does not contain a K_{n-1} then $\left|V_{x}\right| \leq n-2$. Thus $d(x) \geq n-2$.

If $d(x) \geq n-1$ for every $x \in V(G)$ then by Lemma $2.4 G$ is pancyclic, a contradiction.

Thus there is a vertex $x \in V(G)$ such that $d(x) \leq n-2$. (Note $n \geq 5$). Hence we have $d(x)=n-2$ and $\left\langle V_{x}\right\rangle \cong K_{n-2}$. It is clear that there are two nonadjacent vertices in $N(x)$, say y_{1}, y_{2}. Since $\alpha(\bar{G}) \leq n-2$, there is a vertex z_{1} in V_{x} such that $z_{1} \notin N\left(y_{1}\right)$. Thus $z_{1} \in N\left(y_{2}\right)$ since $\alpha(G) \leq 2$. Similarly, there is a vertex in V_{x}, say z_{2}, such that $z_{2} \notin N\left(y_{2}\right)$ and $z_{2} \in N\left(y_{1}\right)$.

Thus ($x, y_{1}, v_{1}, v_{2}, \cdots, v_{n-4}, v_{n-3}, y_{2}$) is a cycle of G, where $v_{1}=z_{1}, v_{n-3}=z_{2}$ and $\left\{v_{2}, v_{3}, \cdots, v_{n-4}\right\} \subset V_{x} \backslash\left\{z_{1}, z_{2}\right\}$, a contradiction.

Therefore $R\left(C_{n}\right.$ or $\left.K_{n-1}, K_{3}\right)=2(n-2)+1(n \geq 5)$.

Theorem 3.2.

(1) $R\left(C_{4}\right.$ or $\left.K_{3}, K_{3}\right)=6$.
(2) $R\left(C_{4}\right.$ or $\left.K_{3}, K_{4}\right)=8$.
(3) $R\left(C_{5}\right.$ or $\left.K_{4}, K_{4}\right)=11$.
(4) $R\left(C_{6}\right.$ or $\left.K_{5}, K_{4}\right)=14$.

Proof.
(1) It is clear that $R\left(C_{4}\right.$ or $\left.K_{3}, K_{3}\right)=6$.
(2) Suppose G is of order eight and girth at least five. We shall prove that $\alpha(G) \geq 4$. If G is bipartite, this conclusion is immediate, so we assume that G contains an odd cycle. If $\langle X\rangle \cong C_{7}$ is the shortest odd cycle in G, then the remaining vertex u is adjacent to at most one vertex in X. But any five-element subset of X contains a three-element independent set; hence $\left\{x_{i}, x_{j}, x_{k}, u\right\}$ is an independent set for appropriate i, j, k. If $\langle X\rangle \cong C_{5}$ is the shortest odd cycle in G, then since $\{u, v, w\}=V(G) \backslash X$ does not span K_{3} we may assume that u and v are nonadjacent. Since $g(G) \geq 5$ neither u nor v is adjacent to more than one vertex in X. Hence there are three vertices in X, none of which is adjacent to either u or v. Since G contains no K_{3}, we thus find that $\left\{x_{i}, x_{j}, u, v\right\}$ is an independent set for appropriate i, j.
(3) Suppose G is a graph of order eleven that contains neither C_{5} nor K_{4}, and $\alpha(G) \leq 3$. In view of the result $R\left(C_{5}\right.$ or $\left.K_{4}, K_{3}\right)=7$ obtained earlier, we have $\delta(G) \geq 4$. Using $R\left(C_{4}, K_{4}\right)=10$ as well, we may assume that

$$
V(G)=X \cup Y \cup Z=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cup\left\{y_{1}, y_{2}, y_{3}\right\} \cup\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}
$$

where $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is a C_{4} in G and Y is an independent set. Since each vertex in X is adjacent to at least one vertex in Y and G contains no C_{5}, there is no loss of generality in assuming $x_{1} y_{1}, x_{3} y_{1}, x_{2} y_{2} \in E(G)$. Then $x_{2} x_{4} \notin E(G)$; otherwise, $\left(x_{1}, y_{1}, x_{3}, x_{2}, x_{4}\right)$ is a C_{5} in G. Since there is no C_{5} in G, it is apparent that $x_{2} y_{1} \notin E(G)$ and $x_{4} y_{1} \notin E(G)$. In the same way $x_{1} y_{2} \notin E(G)$ and $x_{3} y_{2} \notin E(G)$. Since $\delta(G) \geq 4$, we have $y_{1} z \in E(G)$ for some $z \in Z$. Note that $x_{1} z \notin E(G), y_{2} z \notin E(G), z x_{3} \notin E(G)$; otherwise G contains $\left(z, x_{1}, x_{2}, x_{3}, y_{1}\right)$, $\left(z, y_{2}, x_{2}, x_{3}, y_{1}\right),\left(z, x_{3}, x_{2}, x_{1}, y_{1}\right)$, respectively. Now $x_{1} x_{3} \in E(G)$; otherwise $\left\{x_{1}, x_{3}, y_{2}, z\right\}$ is an independent set. Then $x_{4} y_{2} \notin E(G)$; otherwise G contains the cycle $\left(x_{4}, y_{2}, x_{2}, x_{1}, x_{3}\right)$. Since $x_{4} y_{1} \notin E(G)$ and $x_{4} y_{2} \notin E(G)$, we have $x_{4} y_{3} \in E(G)$ and thus $x_{3} y_{3} \notin E(G)$. Finally, if $z y_{3} \in E(G)$ then G contains the cycle $\left(z, y_{3}, x_{4}, x_{1}, y_{1}\right)$ and if $z y_{3} \notin E(G)$ then $\left\{x_{3}, y_{2}, y_{3}, z\right\}$ is an independent set.
(4) Suppose G is a graph of order fourteen that contains neither C_{6} nor K_{5}, and $\alpha(G) \leq 3$. In view of the results $R\left(C_{5}, K_{4}\right)=12$ and $R\left(C_{6}\right.$ or $\left.K_{5}, K_{3}\right)=9$, we may assume that $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ and $Y=\left\{y_{1}, y_{2}, y_{3}\right\}$ are disjoint subsets of $V(G)$ such that $\left(x_{1}, \ldots, x_{5}\right)$ is a C_{5} in G and Y is an independent set. Since $6>(4-1)(4-3)+1$, the desired result follows from the corollary to Lemma 2.2 .

Lemma. If G is a graph of order $2 m$ having independence number $\alpha(G)<3$ and containing neither K_{m+1} nor C_{m+2} then $G \supseteq 2 K_{m}$.
Proof. In view of Bondy's theorem, we may assume that $\delta(G) \leq m-1$. Let $x \in V(G)$ be a vertex of degree $\delta(G)$, and set $A=N[x]$ and $B=V(G) \backslash A$. Then $|B| \geq m$ and $\langle B\rangle$ is complete since $\alpha(G)<3$. Since $K_{m+1} \nsubseteq G$, we have $\delta(G)=m-1$. If $\langle A\rangle$ is complete then $G \supseteq 2 K_{m}$, so let us assume $u, v \in A$ and $u v \notin E(G)$. Since $K_{m} \not \subset G$ and $\alpha(G)<3$ there are distinct vertices $w, z \in B$ such that $u w \notin E(G)$ and $v z \notin E(G)$. Then the path w, v, x, u, z together with the appropriate path of length $m-2$ joining w and z in $\langle B\rangle$ yields a $C_{m+2} \subset G$ and thus a contradiction.

Theorem 3.3. $R\left(C_{n}\right.$ or $\left.K_{n-1}, K_{4}\right)=3(n-2)+1(n \geq 7)$.
Proof. Suppose $n \geq 7$ and G is a graph of order $3(n-2)+1$ that contains neither C_{n} nor K_{n-1} and satisfies $\alpha(G) \leq 3$. Since $R\left(C_{n-1}, K_{4}\right)=3(n-2)+1$ for $n \geq 5$, we may assume that $\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$ is a cycle in G. With $X=\left\{x_{1}, x_{2}, \ldots, x_{n-1}\right\}$ consider the subgraph of G spanned by $V(G) \backslash X$. If this graph has independence number 3 then we have $C_{n} \subset G$ or $\alpha(G) \geq 4$ by the corollary to Lemma 2.2. Hence the subgraph of G spanned by $V(G) \backslash X$ has $2(n-2)$ vertices and its independence number is 2. By the preceding Lemma, we thus find a partition $V(G) \backslash X=(Y, Z)$
such that $\langle Y\rangle \cong\langle Z\rangle \cong K_{n-2}$. Since $\langle X\rangle$ is not complete, we may assume that $x_{1} x_{k} \notin E(G)$ where $k \leq\lfloor(n+1) / 2\rfloor$. If $x_{1} v \notin E(G)$ and $x_{k} v \notin E(G)$ for every $v \in Y \cup Z$ then $\left\{x_{1}, x_{k}, y, z\right\}$ is a 4-element independent set for arbitrary $y \in Y$ and $z \in Z$ such that $y z \notin E(G)$. (There must be such a z since G contains no K_{n-1}.) Hence by symmetry we may assume that $x_{1} y_{1} \in E(G)$ and (since G contains no $\left.K_{n-1}\right) x_{1} y_{2} \notin E(G)$. Note that $x_{k} y_{i} \notin E(G)$ for all $i \neq 1$; otherwise (since $(n+1) / 2+1 \leq n)$ there is a cycle $\left(x_{1}, \ldots, x_{k}, y_{i}, \ldots, y_{1}\right)$ in G of length n. In particular, $x_{k} y_{2} \notin E(G)$. We now consider two cases.

Case (i). $x_{k} z \notin E(G)$ for all $z \in Z$. If $x_{1} z_{i} \in E(G)$ for some $z_{i} \in Z$ then $y_{2} z \notin E(G)$ for all $z \in Z$; otherwise there is a cycle $\left(x_{1}, y_{1}, \ldots, y_{2}, z, z_{i}\right)$ of length n in G. Then since there is some $z_{j} \in Z$ such that $x_{1} z_{j} \notin E(G)$ we find that $\left\{x_{1}, x_{k}, y_{2}, z_{j}\right\}$ is an independent set. If $x_{1} z \notin E(G)$ for all $z \in Z$ then we can pick a vertex $z_{j} \in Z$ such that $y_{2} z_{j} \notin E(G)$ and then $\left\{x_{1}, x_{k}, y_{2}, z_{j}\right\}$ is an independent set.

Case (ii). $x_{k} z_{1} \in E(G)$ and $x_{k} y_{2} \notin E(G)$. By repeating an earlier argument, we have $x_{1} z_{2} \notin E(G)$. If $y_{2} z_{2} \notin E(G)$ then $\left\{x_{1}, x_{k}, y_{2}, z_{2}\right\}$ is an independent set. Otherwise, $\left(x_{1}, \ldots, x_{k}, z_{1}, \ldots, z_{2}, y_{2}, \ldots, y_{1}\right)$ is a cycle in G of length $\geq k+4$ and G contains a C_{n} provided $n \geq\lfloor(n+1) / 2\rfloor+4$. This completes the proof in case $n \geq 8$. In case $n=7$, we are left to consider the case $k=4$. In particular, we may assume $x_{1} x_{3} \in E(G)$ and then the argument proceeds as before except that $\left(x_{1}, x_{3}, x_{4}, z_{1}, z_{2}, y_{2}, y_{1}\right)$ provides the C_{7}.

Acknowledgement: The authors would like to thank the referee for many helpful suggestions.

References

[1] J.A. Bondy, Pancyclic graphs I, Journal of Combinatorial Theory, 11 (1971), 80-84.
[2] R.H. Schelp and R.J. Faudree, Some problems in Ramsey theory, LNM 642 Springer, Berlin, 1978, 500-515.
[3] Yang Jian Sheng, Huang Yi Ru and Zhang Ke Min, The value of the Ramsey number $R\left(C_{n}, K_{4}\right)$ is $3(n-1)+1(n \geq 4)$, Australasian Journal of Combinatorics, 20 (1999), 205-206.

[^0]: * The project supported by NSFC and NSFJS

