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Abstract 

We prove that cubic homogeneous bent functions f : V2n -t GF(2) exist 
for all n ~ 3 except for n = 4. 

1 Introduction 

The theory of S-boxes emerged as a branch of cryptography whose main aim is 
the design of cryptographically strong Boolean functions or S-boxes. Typically the 
strength of an S-box is quantified by a collection of cryptographic criteria. There is an 
intimate relation between cryptographic attacks and this collection of cryptographic 
criteria. A new criterion is added to the collection every time a new cryptographic 
attack is invented. If an S-box satisfies the criterion, then the designer may immunise 
a cryptographic algorithm against the attack by using the S-box. Bent functions are 
basic algebraic constructions which enable designers of cryptographic algorithms to 
make them immune against a variety of attacks including the linear cryptanalysis~ 

We concentrate on homogenous bent functions. Homogeneousity becomes a 
highly desirable property when efficient evaluation of the function is important. It 
was argued in [5], that for cryptographic algorithms which are based on the structure 
of MD4 and MD5 algorithms, homogeneous Boolean functions can be an attractive 
option; they have the property that they can be evaluated very efficiently by re-using 
evaluations from previous iterations. 

Let us summarise some arguments from [5] which can be used to justify our 
interest in homogenenous functions. Note that in the MD-type hashing (such as 
MD4 or MD5 or HAVAL), a single Boolean function is used for a number of rounds 
(in MD4 and MD5 this number is 16, in HAVAL it is 32). In two consecutive 
rounds, the same function is evaluated with all variables the same except one. More 
precisely, in the i-th round the function f(x) is evaluated for (Xl,." 1 xn). In the 
(i + l)-th round, the same function is evaluated for f(X2, ... ,Xn , yd where Yl is a 
new variable generated in the i-th round. Note that variables are rotated between 
two rounds. It can be proved that evaluations from the i-th round can be re-used 
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if f (x) = f (ROT (x) ). These Boolean functions create a class of rotation-symmetric 
functions. An important property of rotation-symmetric functions is that they can 
be decomposed into one or more homogeneous parts. To keep a round function f(x) 
short, one would prefer a homogeneous rotation-symmetric function. 

In [4] we proved there do not exist homogeneous bent functions of degree n in 
G F(2)2n when n > 3. However the construction of high degree homogeneous bent 
functions has remained an open problem. In this paper we show how to construct 
cubic homogeneous bent functions in GF(2)2n where n ~ 3 and n =1= 4. 

2 Background 

Let Vn = GF(2)n be the set of all vectors with n binary co-ordinates. Vn contains 2n 

different vectors from (Yo = (0,0, ... ,0) to (Y2 n -1 = (1,1, ... ,1). A boolean function 
f : Vn ~ GF(2} assigns binary values to vectors from Vn- Let x = (Xl,"', xn) 
and Y = (Yl?"', Yn) be two vectors in GF(2)n. Throughout the paper we use the 
following notations: 

• the inner product of x and Y defined as 
n 

(x, y) = x 0 Y = XIYI EB··· EB XnYn = LXiYi, 
i=l 

where x = (Xl,' . " xn) and Y = (YI," " Yn); 

• the inner addition of x and Y given by 

x EB Y = (Xl EB YI,'" ,Xn EB Yn), 

where x = (Xl,"" xn) and Y = (YI,"', Yn). Note that inner addition is 
equivalent to bit-by-bit XOR addition; 

• the extension of vector x E Vn by a vector Y E Vm is defined as 

The vector x 0 Y E Vn+m . 

• the Hadamard product of vector a = (al,"', an)' and vector b = (b1,' •. ,bn)' 
given by 

a * b = (alb!?· . . ,anbn)' 

where the symbol ,"" means transpose of the vector or matrix. 

Definition 1 A boolean function f : Vn ~ GF(2) is homogeneous of degree k if it 
can be represented as 

f(x) = ED ait· .. ikxil .. 'Xik' (1) 
l:5iI :5·":::.;ik:5n 

where x = (Xl, ... , Xn). Each term XiI'" Xik) ail ... ik E GF(2) is a product of precisely 
k co-ordinates. 
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Let Pn denote the set of all boolean functions in G F(2)n. For f E Pn we let 
deg(f) be the degree of f. Define 

R(m, n) = {f E Pn: deg(f) ~ m}. 

If f E P2n is a bent function, we call f + R(l, 2n) a bent coset. 
Let", denote the equivalence relation under the action of linear transformation. 

We define for any nonsingular n x n matrix A and vector a E GF(n), 

a(f) = f(XA EB a), where X (Xl," ·,Xn). 

Let F f denote the Fourier transform of f. Thus F f is defined as 

Ff(o:) = 21n L (_l)f(X)EB(X,a). 

XEV2n 

3 The Rank 

(2) 

For 0 ~ t ~ n, let Sf be the set of all t-subsets of {l,.··, n}. For any I C Sf, 
we write X[ = IljE[ Xj. Let t l , t2 2::: 0 with t1 + t2 = t, and f = 'E[CSr arXJ E 

R(t, n)j R(t-l, n), where a[ E GF(2). We define an ( ~ ) x ( ~ ) matrix Bg:~; (f) 

over GF(2) as follows: 

l. The rows and columns of Bg:~l (f) are labelled by the elements of S~ and the 
elements of S~, respectively. 

2. a[ = 0 for I C {1, ... , n} with 11111 < t. 

For F E R(t, n)/ R(t - 1, n), t 2::: 1, let 

rt(F) = rank (Bi~t~\(F)). 

If FE R(t, n), we define rt(F) = rt(F EB R(t - 1, n)). 

Theorem 1 (Hou[3]) Let F be a cubic bent function in P2n' 

1. Ifr2(F) > 0, then 

where P is a cubic bent function in P2n-2' 

2. If r3(F) < n, then r2(F) > 0. 

3. If r3(F) = nand T2(F) = 0, then 

n 

F rv Q(Xl,"" xn) EB L XiXn+i 
i=l 

for some Q E Pn. 
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Theorem 2 Let f(x) be a boolean function in GF(2)n and g(y) be a boolean function 
in GF(2)m. f(x) EB g(y) is a homogeneous bent function of degree k in GF(2)n+m if 
and only if both f(x) and g(y) are homogeneous bent functions of degree k. 

Proof. If f(x) and g(y) are homogeneous bent functions of degree k, it is easy to 
see H(z) = f(x) EB g(y) is a homogeneous bent function of degree k where z = x 0 y. 

On the other hand, if H(z) = f(x) EB g(y) is a homogeneous bent function of 
degree k where z = x 0 y, we know f(x) and g(y) are bent functions, too. Obviously 
f(x) and g(y) are homogeneous bent functions. 

The proof is complete. 0 

4 The Equivalence 

Definition 2 Let F(X) and G(X) be two bent functions in GF(2)2n. If there exists 
a matrix T E G L(2n, 2) and bEG F(2)2n, such that 

F(XT) EB (X, b) = G(X), 

we say that F equivalent to G, and denote this by F rv G. 

Theorem 3 Let F(X) be a cubic bent function in G F(2)2n and G(X) be a homoge
neous cubic bent function in GF(2)2n. If F rv G, then r2(F) = ° and r3(F) ~ n. 

Proof. Since F rv G, from the results of the work[3] we know ri(F) ri(G), i = 2,3. 
Because G is a homogeneous bent function, we have r2(G) = 0, r2(F) = r2(G) = 0. 
From Theorem 1 we know r3(F) ~ n, which completes the proof. 0 

Lemma 1 Let A = (aij) be an n x n matrix, aij E GF(2), 1 ::;; i,j ::;; n, and X be a 
vector in G F (2) n, Then X AX' is a linear boolean function if and only if A = A' . 

Proof. If XAX' is a linear boolean function, then there exists a vector b E GF(2)n, 
such that 

XAX' = (X,b) (6) 

for all X E GF(2)7l. As b = (bl ,"', bn ), and X = (Xl,"', xn ), we can rewrite (6) in 
the following form: 

n n 

I: aijxiXj = I:biXi' (7) 
i,j=1 i=1 

For any fixed i, 1 ::;; i ::;; n, let Xi = 1 and Xj = 0, j =I- i, 1 ::;; j ::;; n, then from (7) we 
have 

aii = bi, i = 1, ... , n. (8) 
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For any pair of i, j, i #- j, 1 ~ i, j ~ n, let Xi = Xj = 1, Xk = 0, k #- i and k #- j, 
1 ~ k ~ n, then from (7) we have 

From (8) and (9) we have 

and A = A'. 
Assume that A = A'. We obtain the following: 

n 

X AX' = L aijXiXj 
i,j=l 

n n-l n n 

= L aii x ; EB L L (aij EB aji)xiXj = L aiiXi 
i=l i=l j=i+l i=l 

is a linear boolean function. This completes the proof. 

5 The Matrix Representation of Cubic Bent 
Functions 

Let F(X) be a cubic bent function in GF(2fn, T = T3(F) 2:: n, T2(F) = 0, then 

F(X) = L XiXjXk EB L XuXv, 
(i,j,k)EE (u,v)ED 

(9) 

(10) 

o 

(11) 

i #- j, j #- k, k #- i, U #- v. Suppose E is a collection of unordered triples, and further 
suppose D is a collection of unordered pairs. Since T = T3(F), the cubic part of 
F(X) can be represented as 

We denote 

f(xl, .. " x r ) = L XiXjXk· 
(i,j,k)EE 

X = (Xl,"" X2n) = X(l) 0 X(2) , 

X(1) = (Xl,"',X r ), X(2) = (Xr +l"",X2n). 

The quadratic part of F(X) can be represented as 

g(Xl, .•. ,X2n) = L XuXv = XQX~1)' 
(u,v)ED 

where Q = (Qij) is a 2n x T matrix with 

{
I, 

qij = 0, 
i > j and (i, j) E D, 
otherwise, 
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where 1 ::; i ::; 2n, 1 ::;: j ::; r. It is known that r3(F) = r3(J). We can construct 
a matrix Bi~{) (J) with r rows and r(r;l) columns. The rows of the matrix are 
ordered (1,2),·", (1, r), (2,3), "', (2, r), "', (r - 1, r), and the columns of the 
matrix are ordered 1" . " r. Then the ith row and (j, k)th column of the matrix is 
1, if (i,j,k) E E, or is 0, if (i,j,k) ~ E. 

Notation 1 Let T = (tij), 1 ::;: i ::;: n,1 ::; j ::; p. We denote the jth column of the 
matrix by t j , so T = (h,"', t p ). Let 

Let X = (Xl, ... ,xn ) E Vn , we denote 

T* is a matrix with n rows and p(p;l) columns. We denote 

Then 

f(xl,"', x r ) = X(I)GX(l)' 

where X(1), G, XCl) are defined as (13), (18), (17). 
From (11), (12), (13), (14), and (19) we have 

F(X) = X(l)GX(l) EB XQX(l)' 

(17) 

(18) 

(19) 

(20) 

Example 1 F(Xl,"', X6) XIX2X3 EB X2X4X5 EB XIX2 EB XIX4 EB X2X6 EB X3X5 EB X4X5. 

r = r3(F) = 5. X(1) = (Xl, X2,' • " X5), and 

C1=[n 
o 0 
o 0 

Q= 

o 0 1 000 
o 0 0 0 0 0 
o 000 0 0 
o 0 0 0 1 0 
000 1 0 0 

00000 
10000 
00000 
10000 
00110 
o 1 000 
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Theorem 4 Let F(X) be the cubic bent function in GF(2)2n which is defined by 
(20). The function F(X) possesses a cubic homogeneous equivalent if and only if 
there exists a nonsingular 2n x 2n matrix T = T(l) ® T(2), and 

(21) 

where T(l) is a matrix with 2n rows and r = r3(F) columns. Ttl) is defined by {16}. 

Proof. From formula (12) we have the cubic part of F(X): 

f(X(1») = L XiXjXk· 
(i,j,k)EE 

(22) 

We fix (i,j, k) E E, when Y = XT, T = (TI ,"', T2n ) , where Tu is the uth column of 
matrix T, and tui denote the uth column and ith row of the matrix T, 1 ::; u, i ::; 2n. 
Yi, Yj, Yk become XTi, XTj , XTk· 

2n 
YiYjYk = XTiXTjXTk = L XutuixvtvjXwtwk = 8 1 $ 82 , (23) 

u,v,w=l 

where 

81 = L tuitvjtwkxuXvXw = 6ijk 
U::fv,V::fw,W::fU 

(24) 

is a cubic homogeneous polynomial, and 

So, 

8, = Cl;w Ell .f~" Ell .E,w Ell ,,;J t.,t"jtwkX.X"Xw 

= ((.l;w Ell .~) Ell (.f~" Ell .~) Ell (.E,w Ell .~)) t.,t"jtwkx.x"xw 
2n 2n 2n 2n 2n 2n 

tuitujXu L twkxw $ L tuitukxu L tvjXv $ L tvjtvkxv L tuixu 
w=l u=1 v=1 v=l u=1 

= X(Ti * Tj).XTk $ X(Ti * Tk).XTj $ X(Tj * Tk).XTi. (25) 

f(XT(1») L XTiXTjXTk = L 6ijk 
(i,j,k)EE (i,j,k)EE 

$ L (X(Ti * Tj).XTk $ X(Ti * Tk).XTj $ X(Tj * Tk).X1i) 
(i,j,k)EE 

L 6ijk $ "t ( L X(Tj * Tk)) X1i 
(i,j,k)EE i=l (j,k)EEi 

L 6ijk $ XT(1)C(XT(1»)'. (26) 
(i,j,k)EE 
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We define 

Now we have 

H(X) = 2: 6ijk' 
(i,j,k)EE 

(27) 

F(XT) = f(XT(l)) EEl XTQ(XT(l))' = H(X) EEl X (Ttl)C ffi TQ)T~l)X', (28) 

So the necessary and sufficient condition for F(X) rv H(X) is that there exists a 
nonsingular matrix T that makes X(Ttl)C ffi TQ)T(l)X' be a linear function of X. 

From Lemma 1, (Ttl)C EEl TQ)T(l) must be a symmetric matrix. The proof is now 
completed. 0 

6 Cubic Homogeneous Bent Functions 

Lemma 2 (Rothaus[lj) Let f(Xl,"', xn) be a boolean function in GF(2t. Then 

n 

F(Xl' .. " X2n) = f(Xl' .. " xn) EEl 2: XiXi+n 
i=l 

is a bent function in GF(2)2n. 

(29) 

Lemma 3 For any n 2:: 3, there exist cubic bent functions with r3 = n in GF(2)2n. 

Proof. According to Lemma 2 we can easily construct cubic bent functions in 
GF(2)2k with r3(F) = n. 0 

Theorem 5 Let F(X) be a cubic bent function given by (29). We construct a non
singular 2n x 2n matrix T which has the following structure: 

(30) 

where I is a n x n identity matrix, 0 is a n x n zero matrix, M is a n x n nonsingular 
matrix, A = (aij), aij E GF(2), i, j = 1"", n. Then F(XT) is a cubic homogeneous 
bent function if and only if 

A*C = M, (31) 

where C is defined in (i8), and A * is defined as (16). 

Proof. For an arbitrary cubic bent function F(X), it probably can be represented 
in the form (20). When C and Q are uniquely defined, according to theorem 4, there 
exists a matrix T(l) of the form (21). We define Q and T(l) as 

(32) 
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then 

(33) 

F(X) rv H(X) where H(X) is a cubic homogeneous function if and only if formula 
(21) holds. Now 

(Ttl)C EB TQ)TC1 ) = ( A*COEB M ) (1, A') 

= ( A*C °EB M A*CA,OEB MA' ) (34) 

The resulting matrix is symmetric iff A*C EB M = 0. The proof is completed. 0 

Theorem 6 Let F(X) = f(xl,"', xn) EB Ef=l XiXHn be a bent function in GF(2)2n 
where f is a homogeneous cubic function of (Xl,"', xn) and r3(f) = n. Then there 
exists a nonsingular matrix T such that F(XT) is a cubic homogeneous bent function. 

Proof. Let C be the n x ~ matrix defined as in (18). Since rank(C) = n, there 

are n rows of C, say, (jl, kd,' . " Un, kn), such that the matrix M which consists of 
these n rows is a nonsingular matrix. We define A (aijh9,i:Sn as follows: 

{
I, if j = ji or j = ki,. 1 

aij = 0, otherwise, ~ = ,"', n. (35) 

Let T = (~ ~ ) 1 where I is the n x n identity matrix, ° is the n x n zero matrix. 

Obviously, T is a nonsingular matrix. For any fixed i, 1 :::; i :::; n, in the ith row of 
A *, ail ai2, ... , ail ain, ... , ain-l ain, only one component aiji aiki = 1 and others are all 
O. So the matrix product of the ith row of A* with C gives the (jil ki)-th row of C. 
That is A*C = M, so (31) holds and F(XT) is a cubic homogeneous bent function. 
The theorem is proven. 0 

Let E be an unordered triple set: E = {(i,j,k) : 1 :::; i,j,k:::; r}, write Ei = 
{(j,k): (i,j,k) E E}, 1:::; i:::; n. 

Definition 3 (Regular unordered triplet set) The unordered triplet set E is 
called regular if Ei/(U#iEj) =f- (/), 1 :::; i, j :::; r. 

Theorem 7 Let F(X) = 'E(i,j,k)EE XiXjXk + 'Ef=l XiXHn, r3(F) = n be a boolean 
function in GF(2)2n. If E is a regular unordered triple set, then there exists a square 
matrix A which satisfies the equation (31) with M = i, and F(XT) is a cubic 
homogeneous bent function. 
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Proof. We expand the left side of (31). Hence we have 

( L aj * ak, .. " L:: aj * ak) M, 
(j,k)EEl (j,k)EEn 

(36) 

in which ai, 1 ~ i ~ n is the ith column of matrix A. Since E is regular, Ed(U'J=IEj ) =f=. 

0, so there exists at least one unordered pair (j, k) E Ei/(Uj=IEj ) which makes 

aik = aij = 1, ail = 0, j i- l i- k, 1 ~ l ~ n. 

In this case, only aijaik = 1, and if (u, v) i- (j, k), aiuaiv O. Now the ith row of the 
i-I n-i 

left side of (36) becomes (~, 1,~, and this is identical with the ith row 
of right side of (36). Hence equation (36) holds. Consequently, F(XT) is a cubic 
homogeneous bent function. The proof is completed. 0 

Theorem 8 For all n 2: 3 and n i- 4, there exist cubic homogeneous bent junctions 
in GF(2)2n. 

Proof. There are three cases: 

1. n 0 (mod 3), we can write n = 3m for some positive integer m. Let 

m 3m 

F(X} = L:: X3i-2 X3i-I X3i EB L:: Xi X i+3m' (37) 
i=1 i=1 

From Lemma 2 and we know that F(X) is a bent function. Now 

E = {(3i - 2, 3i - 1, 3i) : 1 ~ i ~ m} 

is the regular un-ordered triple set and F(X) has the form of (29). Hence from 
Theorem 5 we know that there exists a 2n x 2n nonsingular matrix T with 
the form of (30) which makes (31) hold. So F(XT) is cubic homogeneous bent 
function. 

2. n == 1 (mod 3), write n = 3m + 1 for some positive integer m. Because n =f=. 4, 
m 2: 2. Let 

m 3m+l 

F(X) = L x3i-2 X3i-l x 3i EB xIX4 X3m+l EB L Xi X i+3m+1' (38) 
i=1 i=1 

By Lemma 2 and we know it is a bent function. In this case, we have 

E = {(3i - 2,3i -1,3i): I ~ i ~ m} U {(1,4,3m+ I)}, (39) 

which is regular and F(X) has the form of (29), the conclusion of Theorem 8 
is also valid. 
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3. n == 2 (mod 3), write n = 3m + 2 for some m. Let 

m 3m+2 
F(X) L X3i-2 X3i-lX3i EEl Xlx3m+l x3m+2 EEl L Xi Xi+3m+2, (40) 

i=l i=l 

and we have 

E = {(3i - 2, 3i - 1, 3i) : 1 ~ i ~ m} U {(I, 3m + 1, 3m + 2)}. (41) 

The proof of this case is the same as before. 

Hence the statement of the theorem is true and the proof is completed. 0 

So 

and 

ell ) A= 1 0 1 . 
1 1 0 

1 0 0 0 0 0 
0 1 0 0 0 0 

T= 
0 0 1 0 0 0 
0 1 1 1 0 0 
1 0 1 0 1 0 
1 1 0 0 0 1 

F(XT) = XlX2X3 EEl XlX2X4 EEl XlX2X5 EEl XlX3X4 EEl XIX3X6 EEl XIX4X5 EEl XIX4X6 

EEl XIX5X6 EEl X2X3X5 EEl X2X3X6 EEl X2 X4X5 EEl X2 X4X6 EEl X2X5X6 EEl X3X4X5 
EEl X3X4X6 EEl X3X5X6, 

is a cubic homogeneous bent function. 

7 The Fourier Transform of Homogeneous Bent 
Functions 

Lemma 4 Let Z X 0 Y, where X = (Xl,"', Xn) E GF(2)n, Y = (Yl,"', Yn) E 

GF(2)n, T is a 2n x 2n matrix and T = (~ ~ ), where L, A, Mare n x n 

matrix and L -1 and M- l exist. f(Z) = P(X) EEl (X, Y) and g(Z) = j(ZT) are bent 
functions in GF(2)2n. The Fourier transform of g(Z) is: 

Fg(Z) = P((Y EEl X(AL-1)')M,-1 EEl ((Y EEl X(AL-1)')M'-\ XL,-I). (42) 
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Proof. Let W U 0 V, U = (Wl,"', W n ), V = (Wn+l,"', W2n). From the Fourier 
transform definition, we have 

F g( Z) 2-n 2:= (-1 )9(W)EB(W,Z) 

WEGF(2)2n 

2-n 2:= (_l)!(ULEBVA)EB(VLEBVA,VM)EB(U,X)EB(V,y) 

U,vEGF(2)n 

I-I 
2-n 2:= (_l)(V,Y)EB(VA,xL ) 

VEGF(2)n 
1-1 o 2:= (_l)!(VL,EBV A)EB(VLEBVA,VM)EB(VLEBVA,XL ) 

UEGF(2)n 
1-1 I I-I 

2-n 2:= (-1) (V,YEBXL A 2:= (_l)!(S)EB(S,VMEBXL ) 

VEGF(2)n SEGF(2)n 

1-1 I-I I I = 2-n 2:= (_l)!(S)EB(S,XL ) 2:= (_l)(V,YEBXL AEBSM) 

SEGF(2)n VEGF(2)n 

(-1 )!«YEBX(AL-1)/)M,-I)EB«YEBX(AL-I)')M
I
-

I 
,XLI-I) (43) 

o 

Lemma 5 Let f(X) be a homogeneous function of degree 3 in GF'(2)n, g(Z) = 
f(X EB Y A) EB (X EB Y A, Y) is a cubic homogeneous bent function, where A is a n x n 
nonsingular matrix. When A = A', Fg(Z) is a cubic homogeneous bent junction, 
too. 

Proof. Since A AI, from Lemma 4 we have 

Fg(Z) = f(Y EB XA) EEl (Y EB XA, X). (44) 

Since g(Z) is homogeneous bent function. The Fourier transform of g(Z) is also a 
bent function. We have 

g(Z) = f(x EB Y A) EEl (X EB Y A, Y) = EB aid2i3zil Zi2Zi3l 

l:Sil <i2<i3:Sn 

where aiti2 i 3' Zil' Zi2' Zi3 E G F(2). 

Because Z X 0 Y, Zij is either Xk or Yc, 1 ::; j ::; 3, 1 ::; k, C ::; n. We define 
Xi -+ Yi, Yi -+ Xi, 1 ::; i ::; n, then Z = Y 0 X, g(Z) is cubic homogeneous bent 
function. Then 

Fg(Z) = f(Y EB X A) EB (Y EB XA, X) = g(Y 0 X) 

is a cubic homogeneous bent function. The proof is completed. o 

Lemma 6 There exist cubic homogeneous bent functions g(X) in GF(2)2n when n ~ 
3, n =f. 4, and their Fourier transforms are also cubic homogeneous bent functions. 
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8 Remark 

Example 3 When n = 5, we define the function F(X) = X1X2X3EBXlx2X4EBX1X3X5EB 
2:7=1 Xi Xi+5 which is a cubic bent function in GF(2)10. r3(F) = 5, r2(F) = O. Set 
E = {(I, 2, 3), (1,2,4), (1,3, 5)}, El = {(2, 3), (2,4), (3, 5)}, E2 = {(I, 3), (1, 4)}, 
E3 = {(I, 2), (1, 5)}, E4 = {(I, 2)}, E5 = {(I, 3)}. We define 

and have El =E1 , E2 ={ (1, 4)}, E3={ (1, 5)}, E4=E5=0. SO E is not a regular triple 
set. But there exists n x n nonsingular matrix 

that makes A*C = I. So E regular is not a necessary condition for A*C = I. 
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