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Abstract 

A (d, k) -forest is a forest consisting of trees whose diameters are at most d 
and whose maximum vertex degree ,6. is at most k. The (d, k)-arboricity of 
a graph G is the minimum number of (d, k}-forests needed to cover E(G). 
This concept is a common generalization of linear k-arboricity and star 
arboricity. Using a probabilistic approach developed recently for linear k­
arboricity, we obtain an upper bound on the (d, k )-arboricity of r-regular 
graphs. 

1 Introduction 

We are concerned in this paper with decompositions of regular graphs into forests. 
A linear forest is a forest consisting entirely of paths, and the linear arboricity of 
a graph G is the minimum number of linear forests required to partition E(G). 
An outstanding unsolved problem for decompositions of regular graphs into linear 
forests is the conjecture of Akiyama et al. [1] that every r-regular graph has linear 
arboricityexactly r(r+1)/2l This was shown to be asymptotically correct as r ---t ex) 

by Alon [3]. 
A linear k-forest is a forest consisting of paths of length at most k. The linear 

k-arboricity of G, introduced by Bermond et al. [7], is the minimum number of 
linear k-forests required to partition E(G), and is denoted by lak(G). The linear 
k-arboricity of an r-regular graph must be at least (k+ 1)r/(2k), simply by counting 
edges. For large k, this is close to the following upper bound shown in [6]: there 
is an absolute constant c > 0 such that for every r-regular graph G and every k, 
/d> k?: 2, lak(G) ~ (k+1)d/(2k)+cVkdlogd. Moreover, for suitable k this upper 
bound gives the upper bound in [3] for linear arboricity. In this paper we extend 
this upper bound so as to apply to forests in which the trees have upper bounds on 
their diameter and vertex degrees. This concept is a common generalization of the 
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problems of linear arboricity and star arboricity (in which the trees are all stars, as 
in the papers by Truszczynski [9] and Alon et al. [4]). 

Define a {d,k)-forest to be a forest consisting of trees whose diameters are at 
most d and whose maximum vertex degree ~ is at most k. The (d,k}-arboricityof 
a graph G, denoted by ad,k(G), is the minimum number of (d, k)-forests needed to 
cover E(G). 

For any r-regular graph G and k ~ 2, it was shown in [6, Lemma 1] that, 

Immediately we have 
(1) 

In this paper we give an upper bound on the (d, k)-arboricity of regular graphs, 
which is better than (1) when r is fairly large. Instead of working directly with 
(d, k)-arboricity, we will prove the following theorem. To obtain the theorem, which 
generalizes [6, Theorem 3], we use the same probabilistic approach as in [6]. 

We use D K t to denote the complete directed graph on t vertices. We could 
equally well use Kt, the complete graph on t vertices in which every pair of vertices 
is joined by double edges, but DKt is slightly more convenient. 

Theorem 1 There exists a positive constant c such that the following holds. Let G 
be an r-regular graph and let 3 ~ t < Vi so that for a given set of trees T there is a 

rt ~ covering of D K t by t trees in T. Then G can be covered by -2 --+ c tr log r forests 
t - 2 

of subtrees of trees in T. 

The proof of this theorem is given in Section 2. In Section 3, we give a decom­
position of complete directed graphs into isomorphic directed trees whose diameters 
and degrees are bounded. By this decomposition, Theorem 1 gives us the desired 
result of the upper bound on the (d, k)-arboricity of regular graphs. 

Theorem 2 There exists a positive constant c such that for every r-regular graph G 
and for every d, k ~ 2 with f(d, k) < Vr 

rf(d,k)j 
ad,k(G) ~ 2f(d, k) _ 2 + Cv f(d, k)rlogr 

where 

if d = 2l 

if d = 2l + 1. 

As a maximum tree with diameter d and maximum vertex degree k has f (d, k) -1 
edges, we note that by counting edges the (d, k)-arboricity of an r-regular graph must 
be at least r f(d, k)/(2f(d, k) - 2). 

Since Theorem 2 is obtained using some results in Section 3, we defer the proof 
until the end of Section 3. 
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2 Proof of Theorem 1 

To prove Theorem 1 we need the following lemma. The proof given here is extracted 
from the argument in [6], while the undirected version of the lemma can be found in 
[2J. 

Lemma 1 There exists a positive constant Co such that the following holds. Let G 
be an r-regular graph with r is even and let 3 ::; k < Vi. Then the vertex set of 
G can be coloured by k colours 1, ... , k so that for each v E V and each colour i, 
1 ::; i ::; k, the numbers N+(v,i) and N-(v,i) of out-neighbours and in-neighbours 
of v in G with colour i satisfy 

\ 
+ r\ ~ N (v,i) - 2k ::; cOY~-k-' \N-( .) - ~\ < Jr logr 

v, '/, 2k - Co k' (2) 

Proof. Orient the edges of G along an Euler cycle. Then each vertex has in-degree 
and out-degree r /2. Colour the vertices randomly by k colours. Let A;'i be the event 
that N±(v, i) does not satisfy inequality (2). Every event A;,i is independent of all 
other events except the events A;,j where i =1= j (there are k 1 of these), A;;;,j if 
(u,v) and (u,w) are in G for some vertex u (there are k(r/2)(r/2-1) of these), and 
event A~,j if (u, v) and (w, u) are in G for some vertex u (there are k(r /2)2 of these). 
Therefore, every event is independent of all except at most kr(r - 1)/2 + k - 1 < r3 
of the others. 

Since N± (v, i) is distributed as the binomial random variable Bin( r /2, 1/ k), by 
[5, Theorem A.ll]' for every v E V and 1 ::; i ::; k 

Pr(A+) < e-41ogr 
v,~ , 

Since e(r3 + 1)/r4 < 1, by the Lovasz Local Lemma [5, Corollary 1.2] there exists a 
vertex colouring such that no event A;'i occurs. Hence, there is a vertex colouring 
which satisfies (2) for all v E V and 1 ::; i ::; k. • 

Given a set of trees T let ar( G) denote the minimum number of forests of subtrees 
of trees in T needed to cover edges of G. For convenience, we define 

ar(r) = . max ar(G). 
G IS r-regular 

Then 
(3) 

since every graph whose maximum degree r occurs as a sub graph of an r-regular 
graph and the restriction of a forest of subtrees of trees in T to a subgraph is still 
such a forest. 

We now prove Theorem 1. In view of Lemma 1, we can assume r is even and 
colour the vertices of G by t colours, such that the set of edges from a vertex of 
colour i to one colour j, i =1= j forms a bipartite graph whose vertex degrees are at 
most F(r) = r/2t+coJrlogr/t. These edges can be covered by F(r) matchings. 
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Now consider the complete directed graph DKt where each vertex represents a 
colour. Suppose this can be covered by t trees in T. Since for every two different 
colours there are at most F(r) matchings and the t trees in T cover DKt , all edges 
joining vertices of different colours can be covered by 

( 
r r;:r;;g;) r ~ 

tF( r) = t 2t + Co y ~-t- = 2 + Co V tr log r 

forests of subtrees of trees in T. The remaining graph which joins the vertices of the 
same colours has in-degree (out-degree) at most F(r). Therefore, by equation (3) it 
can be covered by ar(2F(r)) forests of subtrees of trees in T. 

Thus, 

aT(G) S ~+covtrlogr+ar(2F(r)) 

By applying iteration on r equation (4) gives 

(4) 

ar(G) S (~ + covtrlogr) + (~ + covtrdOgrl) + ... + (r~o + covtrio log rio ) 

+aT(rio+d (5) 

where ri = 2F(ri-l) for 1 SiS io with ro = rand rio+l S t2
. 

Using ri = 2F(ri-d for 1 SiS io and ar(rio+d S rio+! equation (5) can be 
written as 

(6) 

We note here that if ri/ logri > 4c~t then ri+l = 2F(ri) < 2ri/t S 2ri/3. Other­
wise, t < Vii implies ri is bounded above, thus the number of terms inside the square 
brackets in equation (6) corresponding to such ri is bounded. Hence, in any case the 
terms inside the square brackets in equation (6) are dominated by O( Jtr log r). The 
assertion follows immediately by choosing c sufficiently large. The case of odd r is 
done by applying to graphs with maximum degree r + l. I 
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3 Decomposition of complete directed graphs into 
isomorphic directed trees 

A directed tree is a tree with oriented edges. (We introduce orientations merely as 
a convenient way to handle a complete graph with doubled edges.) Given a directed 
tree T and vertices u and v, there mayor may not be a u - v path in T. Therefore in 
this paper we define the diameter of a directed tree as the diameter of the underlying 
tree. 

I . 
Let us define Sk,l = 1 + .,,£(k - l)t. Let T be a (directed) tree with diameter 

t=l 
diam(T) ::; d and t:.(T) ::; k, where d, k ~ 2. 
Then 

IV(T)I ::; { 1 + kSk,l-l 
2Sk ,1 

if d = 2l 
if d = 2l + 1. 

For convenience, we denote the set {I, 2, ... , k} by [k1. 

<. 
Figure 1: A maximum tree with t:. = 4 and diameter 3 

Lemma 2 For k ~ 2 and I ~ 1, DK2Sk I can be decomposed into 2Sk,1 isomorphic 
directed trees whose diameters are 2l + 1 'and maximum vertex degrees are k. 

Proof. We construct the 2Sk ,1 isomorphic directed trees in the following way. 
Put 2Sk ,1 points on a circle, and label them as 0,1, ' .. , 2Sk,1 - 1. 

A maximum (directed) tree T with diam(T) = 2l + 1 and t:.(T) = k has two main 
branches at the central edge (see Figure 1). Let us consider that in each branch there 
are 1 levels of arcs and consider the single arc connecting the two branches as level 
O. In level i of each branch there are (k - l)i arcs, i 1,2, ... ,l. 
In one main branch, we take arcs in each level in the following way. 

1. Level 0: 

The arc (0, Sk,l)' 

2. Level r, where r is odd: 

Define SO,l = 0. 
For j E [(k - IY], let Sr,j = Sr-l,i + (j - (i -l)(k -l))Sk,l-n where i = r 61-
Then for each Sr-I,j, j E [(k - lY- I), 

take arcs (Sr-l,j, Sr,(k-W-(j-l)(k-l)-t+I), where t E [k - 1]. 

For example, if r = 1 then from this step we obtain arcs (SO,l, Sl,k-t) for 
t E [k -11. 
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3. Level r, where r is even: 

Define Sr-l,O = Sr-2,1, where Sl,O = SO,l O. 

For j E [(k - 1Y] , let Sr,j = Sr-1,i-1 + (j - 1 - (i - l)(k 1) )Sk,l-r + 1, where 
i= r6l 
Then for each Sr-l,j, j E [(k - 1y-1] , 

take arcs (Sr-l,j, Sr,(k-l)r_(j-l)(k-l)-t+l) , where t E [k - 1] . 

So far we have constructed one of the main branches of one tree. To obtain the 
other branch of the tree, repeat all steps after 1 using vertex Sk,l in place of 0 and 
reverse the orientation of the arcs. This gives one copy of the isomorphic directed 
trees. We can obtain the other copies by rotating the first one around the circle. 
This means the i-th copy has an arc (j', k) if and only if the first copy has an arc 
(j - i + 1, k - i + 1) (mod 2Sk,I). • 

Figure 2: The first factor in DKs-decomposition 

Corollary 1 KSk,1 can be decomposed into Sk,l i8omorphic tree8 whose diameter8 are 
2l + 1 and maximum vertex degrees are k, where k ;:::: 2 and 1 ;:::: 1. 

Proof. We rotate the first copy of the underlying tree around half of the circle 
instead of the whole circle. • 

Lemma 3 Let Rk,l = 1+kSk,I-1, with k ;:::: 2 and 1 ;:::: l. Then DKRk,1 can decomposed 
into Rk,l isomorphic directed trees whose diameters are 2l and maximum degrees are 
k. 

Proof. Put 1 + kSk,l-l points on a circle and label them as 0, 1, ... ,kSk,l-l' We 
construct the Rk,l isomorphic directed trees in the following way. 

A maximum (directed) tree T with diam(T) = 21 and 6.(T) = k can be viewed 
as a tree with 1 levels of arcs. In level i, there are k(k - l)i-l arcs, i = 1, .. . ,1 of 
distance i-I from the central vertex. We define the arcs in each level of one such 
tree as follows. 

1. Levell: 

Define SO,l = 0 and 81,j = jSk,l-l, for all j E [k}. 

Take edges (SO,l, sl,j) , where j E [k]. 
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2. Level r, where r is even: 

Define Sr-l,O = Sr-2,1, where SI,O = SO,1 = O. For j E [k(k - ly-l] , 
let Sr,j = Sr-l,i-l + (j - 1 - (i - 1)(k - 1))Sk,l-r + 1, where i = r 61-
Then for each Sr-1,j, j E [k(k - IV-2

] , 

take edges (Sr-1,j, Sr,k(k-W-L(j-l)(k-1)-t+1) , where t E [k - 1]. 

For example, if r = 2 and j = 1 then from this step we obtain edges 
(Sl,l, S2,k(k-l)-t+1) for t E [k 1]. 

3. Level r, where r is odd: 

For j E [k(k -It-I], let Sr,j = Sr-1,i+(j-(i-l)(k-l))Sk,l-r, where i = r 61-
Then for each Sr-l,j, j E [k(k - IV- 2

] , 

take edges (Sr-1,j, Sr,k(k-W-L(j-l)(k-l)-t+l), where t E [k - 1]. 

4. Direct the tree obtained from previous steps so that on every arc the direction 
points to the vertex with larger label. 

So far we have constructed one copy of the isomorphic directed trees. To obtain 
the other copies, rotate the first copy around the circle. That is, the i-th copy has an 
arc (j, k) if and only if the first copy has an arc (j - i+ 1, k - i+ 1) (mod 1 +kSk,l-l)' 

• 
Proof of Theorem 2: 
By Lemma 2 or Lemma 3 there exists a covering of DKf(d,k) by f(d, k) (d, k)-trees. 
Theorem 2 now comes immediately from Theorem 1. I 
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