The number of 8 -cycles in 2-factorizations of K_{n}

Selda Küçükçifçi
Department of Discrete and Statistical Sciences
120 Math Annex, Auburn University
Auburn, Alabama 36849-5307, USA
email:kucuks1@mail.auburn.edu

Abstract

This paper gives a complete solution (with one possible exception) of the problem of constructing 2 -factorizations of K_{n} containing a specified number of 8-cycles.

1 Introduction

A 2-factor of the complete undirected graph K_{n} is a collection of vertex disjoint cycles which span the vertex set of K_{n}. A 2-factorization of order n is a pair (S, F), where F is a collection of edge disjoint 2-factors of K_{n} (with vertex set S) which partitions the edge set of K_{n}.

Of course, a 2-factorization of K_{n} exists if and only if n is odd and in this case the number of 2 -factors is $(n-1) / 2$.

A smallest cycle in K_{n} is a 3-cycle and a largest cycle is a Hamiltonian cycle (a cycle of length n). The most extensively studied 2-factorizations are Kirkman Triple systems (in which all cycles have length 3) and Hamiltonian decompositions (in which all cycles have length n). It is well known that Kirkman triple systems exist precisely when $n \equiv 3(\bmod 6)[6]$ and Hamiltonian decompositions exist for all odd $n[5]$.

In [2] I. J. Dejter, F. Franek, E. Mendelsohn, and A. Rosa looked at the problem of constructing 2-factorizations of K_{n} containing a specified number of 3-cycles. Modulo a few exceptions they give a complete solution for $n \equiv 1 \operatorname{or} 3(\bmod 6)$. The problem remains open for $n \equiv 5(\bmod 6)$.

In [3] I.J. Dejter, C.C. Lindner, and A. Rosa gave a complete solution of the problem of constructing 2-factorizations of K_{n} containing a specified number of 4cycles. In [1] P. Adams and E. J. Billington gave a complete solution of the problem of constructing 2 -factorizations of K_{n} containing a specified number of 6-cycles.

To date, the first unsettled case of constructing 2-factorizations of K_{n} containing a specified number of cycles of even length is for 8 -cycles. The purpose of this paper is to give a complete solution (with 3 possible exceptions) of the problem of
constructing 2 -factorizations of K_{n} containing a specified number of 8 -cycles. To be specific let $Q(n)$ denote the set of all x such that there exists a 2 -factorization of K_{n} containing $x \quad 8$-cycles and let

$$
F C(n)= \begin{cases}\{0,1, \ldots, 8 k(2 k-1)\} & \text { if } n=16 k+1, \\ \{0,1, \ldots, 2 k(8 k+1)\} & \text { if } n=16 k+3, \\ \{0,1, \ldots, 2 k(8 k+2)\} & \text { if } n=16 k+5, \\ \{0,1, \ldots, 2 k(8 k+3)\} & \text { if } n=16 k+7, \\ \{0,1, \ldots, 8 k(2 k+1)\} & \text { if } n=16 k+9, \\ \{0,1, \ldots,(2 k+1)(8 k+5)\} & \text { if } n=16 k+11, \\ \{0,1, \ldots,(2 k+1)(8 k+6)\} & \text { if } n=16 k+13, \text { and } \\ \{0,1, \ldots,(2 k+1)(8 k+7)\} & \text { if } n=16 k+15 .\end{cases}
$$

We will show that $Q(n)=F C(n)$ for all odd n, with the possible exception $47 \in F C(33)$.

We will organize our results into 3 sections: a general recursive construction for $n \equiv 9,11,13$, and $15(\bmod 16)$, a general recursive construction for $n \equiv 1,3,5$, and 7 $(\bmod 16)$, and a summary followed by an appendix. The appendix contains all examples not used in the recursive constructions.

Now, let F be a 2 -factor with cycles $C_{1}, C_{2}, \ldots, C_{n}$. In what follows we will denote the 2 -factor F by $\left[C_{1}, C_{2}, \ldots, C_{n}\right]$.

$2 \mathrm{n} \equiv 9,11,13$ or $15(\bmod 16)$

The following construction is the principal tool used in this section.

Construction A:

Write $n=t v+r$, where t is odd and v is even and $r \in\{1,3,5,7\}$. Let $X=$ $\{1,2, \ldots, t\}, V=\{1,2, \ldots, v\}$, and Z be a sct of size r. Further, let (X, \circ) be an idempotent commutative quasigroup of order $t[4]$ and set $S=Z \cup(X \times V)$.

Define a collection F of 2 -factors of $K_{t v+r}$ as follows:
(1) Let $\left(Z \cup(\{1\} \times\{1,2, \ldots, v\}), F_{1}\right)$ be a 2 -factorization of K_{v+r}, where $F_{1}=$ $\left\{f_{1_{1}}, f_{1_{2}}, \ldots, f_{(v+r-1) / 2}\right\}$.
(2) For each $x \in X \backslash\{1\}$, let $\left(Z \cup(\{x\} \times\{1,2, \ldots, v\}), F_{x}\right)$ be a 2 -factorization of K_{v+r} containing either 0 or $\operatorname{maxFC}(v+r) \quad 8$-cycles and containing a sub-2factorization of order r, where $\max F C(v+r)$ is the largest value in the set $F C(v+r)$. Let $F_{x}=\left\{f_{x_{1}}, f_{x_{2}}, \ldots, f_{x_{(v+r-1) / 2}}\right\}$, where the last $(r-1) / 22$-factors contain the sub-2-factorization of order r.
(3) For each pair $a \neq b \in X$ such that $a \circ b=b \circ a=x$, let $\left(K_{a, b}, f_{x}(a, b)\right)$ be any 2 -factorization of $K_{v, v}$ with parts $\{a\} \times\{1,2, \ldots, v\}$ and $\{b\} \times\{1,2, \ldots, v\}$, where $f_{x}(a, b)=\left\{f_{x_{1}}(a, b), f_{x_{2}}(a, b), \ldots, f_{x_{v} / 2}(a, b)\right\}$.
(4) Each of $\left\{f_{x_{i}}\right\} \cup\left\{f_{x_{i}}(a, b) \mid a \circ b=b \circ a=x\right\}$, where $i=1,2, \ldots, v / 2$ is a 2-factor of $K_{t v+r}$.
(5) Piece together the remaining $(r-1) / 2 \quad 2$-factors of F_{1}, along with the remaining $(r-1) / 2 \quad 2$-factors of each F_{x}, for $x=2,3, \ldots, t$, making sure to delete the cycles belonging to the sub- 2 -factorization from each of the remaining 2 -factors in
each F_{x}.
(6) For each $x \in X$, place the $v / 2$ 2-factors in (4) in F as well as the 2 -factors in (5).

The union of the 2 -factors in (6) gives a total of $\sum_{x \in X}(v / 2)+(r-1) / 2=$ $(t v+r-1) / 2$ 2-factors which form a 2-factorization of $K_{t v+r}$ with vertex set S.

Corollary 2.1 Construction A gives a 2-factorization of $K_{t v+r}$ containing exactly $\sum_{i=1}^{\binom{t}{2}} n_{i}+\sum_{i=1}^{t} m_{i} \quad 8$-cycles, where $n_{i} \in Q\left(K_{v, v}\right)$, $m_{1} \in Q(v+r)$, and $m_{i} \in$ $\{0, \max F C(v+r)\}$ for $i=2,3, \ldots, t$.

It is easy to see that $Q(n) \subseteq F C(n)$ for odd n. Now, with Construction A and Corollary 2.1 we will show that $F C(n) \subseteq Q(n)$ for the cases $n \equiv 9,11,13$, and 15 $(\bmod 16)$. In each of the following cases we will take $t=2 k+1$ and $v=8$.

$\mathrm{n} \equiv 9(\bmod 16)$

Example $2.2 Q(9)=F C(9)$.
Since $F C(9)$ is 0 , we need to construct a 2 -factorization containing 0 -cycles. Any Kirkman Triple system of order 9 will do [4].

Example 2.3 $K_{8,8}$ can be 2-factorized into $\{0,1,2,3,4,5,6,7,8\}$ 8-cycles.
Proof: Let the parts of $K_{8,8}$ be $\{1,2,3,4,5,6,7,8\}$ and $\{9,10,11,12,13,14,15,16\}$.
(i) $0 \in Q\left(K_{8,8}\right)$:
$[(1,11,3,13,5,15,7,10,2,12,4,14,6,16,8,9)]$,
$[(1,10,8,15,6,13,4,11,2,9,7,16,5,14,3,12)]$,
$[(1,13,7,11,5,10,4,16,2,14,8,12,6,9,3,15)]$,
$[(1,14,7,12,5,9,4,15,2,13,8,11,6,10,3,16)]$.
(ii) $1 \in Q\left(K_{8,8}\right)$:
$[(1,9,2,10,3,11,4,12),(5,13,6,14),(7,15,8,16)]$,
$[(1,10,4,13,7,14,8,9,3,12,5,15,6,16,2,11)]$,
$[(1,14,2,15,4,9,7,12,8,13,3,16),(5,10,6,11)]$,
$[(1,13,2,12,6,9,5,16,4,14,3,15),(7,10,8,11)]$.
(iii) $2 \in Q\left(K_{8,8}\right)$:
$[(1,13,2,14,3,16,4,15),(5,9,7,12,8,11,6,10)]$,
$[(1,14,4,9,6,12,2,15,3,13,8,10,7,11,5,16)]$,
$[(1,10,4,12,3,9,8,14,7,13,5,15,6,16,2,11)]$,
$[(1,9,2,10,3,11,4,13,6,14,5,12),(7,15,8,16)]$.
(iv) $3 \in Q\left(K_{8,8}\right)$:
$[(1,13,2,14,3,16,4,15),(5,9,7,12,8,11,6,10)]$,
$[(1,9,2,10,3,11,4,12),(5,13,6,14),(7,15,8,16)]$,
$[(1,14,4,9,6,12,2,15,3,13,8,10,7,11,5,16)]$,
$[(1,10,4,13,7,14,8,9,3,12,5,15,6,16,2,11)]$.
(v) $4 \in Q\left(K_{8,8}\right):$
$[(1,13,7,11,5,9,3,15),(2,14,8,12,6,10,4,16)]$,
$[(1,14,7,12,5,10,3,16),(2,13,8,11,6,9,4,15)]$,
$[(1,11,3,13,5,15,7,10,2,12,4,14,6,16,8,9)]$,
$[(1,10,8,15,6,13,4,11,2,9,7,16,5,14,3,12)]$.
$\left(\right.$ vi) $5 \in Q\left(K_{8,8}\right):$
$[(1,14,2,13,4,16,3,15),(5,10,8,9,7,12,6,11)]$,
$[(1,13,3,14,8,12,5,16),(2,11,7,10,6,9,4,15)]$,
$[(5,13,8,16,7,15,6,14),(1,10,2,9),(3,12,4,11)]$,
$[(1,11,8,15,5,9,3,10,4,14,7,13,6,16,2,12)]$.
$\left(\right.$ vii) $6 \in Q\left(K_{8,8}\right):$
$[(1,14,2,13,4,16,3,15),(5,10,8,9,7,12,6,11)]$,
$[(1,13,3,14,8,12,5,16),(2,11,7,10,6,9,4,15)]$,
$[(1,9,2,10,3,11,4,12),(5,14,6,13,8,16,7,15)]$,
$[(1,10,4,14,7,13,5,9,3,12,2,16,6,15,8,11)]$.
$\left(\right.$ vii $7 \in Q\left(K_{8,8}\right):$
$[(1,14,2,13,4,16,3,15),(5,10,8,9,7,12,6,11)]$,
$[(1,13,3,14,8,12,5,16),(2,11,7,10,6,9,4,15)]$,
$[(1,10,4,14,7,13,8,11),(2,12,3,9,5,15,6,16)]$,
$[(1,9,2,10,3,11,4,12),(5,13,6,14),(7,15,8,16)]$.
$\left(\right.$ viii) $8 \in Q\left(K_{8}, 8\right):$
$[(1,9,7,15,5,13,3,11),(2,10,8,16,6,14,4,12)]$,
$[(1,10,7,16,5,14,3,12),(2,9,8,15,6,13,4,11)]$,
$[(1,13,7,11,5,9,3,15),(2,14,8,12,6,10,4,16)]$,
$[(1,14,7,12,5,10,3,16),(2,13,8,11,6,9,4,15)]$.

Lemma 2.4 $F C(16 k+9) \subseteq Q(16 k+9)$.
Proof: Take $r=1$ in Construction A. Since $Q\left(K_{8,8}\right)=\{0,1,2,3,4,5,6,7,8\}$ Corollary 2.1 gives $F C(16 k+9) \subseteq Q(16 k+9)$.

$\mathrm{n} \equiv 11(\bmod 16)$

Example 2.5 $Q(11)=F C(11)$, where the 2-factorizations of K_{11} having 0 8-cycles and 58 -cycles contain a cycle of length 3 .

Proof: (i) Take K_{11} to have vertex set $\{A\} \cup\left(\{1,2\} \times Z_{5}\right)$ and let
$F=[(A,(1,2),(2,4)),((1,0),(2,0),(2,1),(2,3)),((1,1),(1,4),(1,3),(2,2))]$. If $x \in$ Z_{5} denote by $F+x$ the 2 -factor of K_{11} obtained from F by adding $x(\bmod 5)$ to the second coordinates of the ordered pairs belonging to F. Then $\left\{F+x \mid x \in Z_{5}\right\}$ is a 2-factorization of K_{11} containing 0 -cycles.
(ii) The 2 -factorization of K_{11} given by
$[(1,2,7),(3,10,8,4,5,6,9,11)],[(5,8,9)(1,3,2,4)(6,10,11,7)]$,
$[(1,5,2,6,11,8,7,3,4,9,10)],[(1,6,8,2,10,5,3,9,7,4,11)]$,
$[(1,8,3,6,4,10,7,5,11,2,9)]$
shows that $1 \in Q(11)$.
(iii) Take K_{11} to have vertex set $\{A, B, C, D, E\} \cup\left(\{1,2\} \times Z_{3}\right)$ and let
$F=\left[(A,(1,2), D,(2,0), B,(1,1), E,(2,2)),((C,(1,0),(2,1))]\right.$. Then $\left\{F+x \mid x \in Z_{3}\right\}$ with the following two 2 -factors:
$F_{4}=[(A, B, C, D, E),((1,0),(1,1),(1,2)),((2,0),(2,1),(2,2))]$ and
$F_{5}=[(A, C, E, B, D),((1,0),(2,0),(1,1),(2,1),(1,2),(2,2))]$
is a 2 -factorization of K_{11} containing 38 -cycles.
(iv) The union of F, F_{4} and F_{5} can be decomposed into three 2 -factors as follows: $[(C,(1,0),(2,1)),(A, B, D, E),((1,1),(1,2),(2,2),(2,0))]$,
$[((1,0),(1,1),(2,1),(2,2)),(A, C, E, B,(2,0), D,(1,2))]$, and
$[((1,0),(1,2),(2,1),(2,0)),(A, D, C, B,(1,1), E,(2,2))]$.
This reduces the number of 8 -cycles by 1 . Hence $2 \in Q(11)$.
(v) Take K_{11} to have vertex set $\{A, B, C\} \cup\left(\{1,2\} \times Z_{4}\right)$ and let
$F=[(C,(1,1),(2,0)),(A,(1,3),(1,2), B,(2,1),(1,0),(2,2),(2,3))]$. Then $\{F+x \mid$ $\left.x \in Z_{4}\right\}$ with the following 2 -factor:
$[(A, B, C),((1,0),(1,2),(2,2),(2,0)),((1,1),(1,3),(2,3),(2,1))]$ is a 2 -factorization of K_{11} containing 48 -cycles.
(vi) Finally, take K_{11} to have vertex set $\{A\} \cup\left(\{1,2\} \times Z_{5}\right)$ and let
$F=[(A,(1,2),(2,4)),((1,0),(2,1),(2,2),(2,0),(1,1),(1,4),(1,3),(2,3))]$. Then $\left\{F+x \mid x \in Z_{5}\right\}$ is a 2-factorization of K_{11} containing 58 -cycles.

Combining all the above cases shows that $Q(11)=F C(11)$.
Lemma 2.6 $F C(16 k+11) \subseteq Q(16 k+11)$.
Proof: Take $r=3$ in Construction A. Since $Q\left(K_{8,8}\right)=\{0,1,2,3,4,5,6,7,8\}$, $Q(11)=F C(11)$ and $m_{i} \in\{0,5\}$ for $i=2,3, \ldots, t$, Corollary 2.1 gives $F C(16 k+11) \subseteq$ $Q(16 k+11)$.

$n \equiv 13(\bmod 16)$

Example 2.7 $Q(13)=F C(13)$, where the 2-factorizations of K_{13} having 0 and 6 8 -cycles contain sub-2-factorizations of order 5 .

Proof: (i) The 2-factorization of K_{13} given by
$[(1,2,3,4,5),(6,10,7,11),(8,12,9,13)],[(1,3,5,2,4),(6,12,7,13),(8,10,9,11)]$, $[(1,6,7,8,9),(2,10,3,11),(4,12,5,13)],[(1,7,9,6,8),(2,12,3,13),(4,10,5,11)]$, $[(1,10,11,12,13),(2,6,3,7),(4,8,5,9)],[(1,11,13,10,12),(2,8,3,9),(4,6,5,7)]$ has 0 8 -cycles and contains a sub-2-factorization of order 5 .
(ii) The 2-factorization of K_{13} given by
$[(1,2,3,4,5),(6,10,7,11,8,12,9,13)],[(1,3,5,2,4),(6,11,9,10,8,13,7,12)]$, $[(1,6,7,8,9),(2,10,3,11,4,12,5,13)],[(1,7,9,6,8),(2,11,5,10,4,13,3,12)]$, $[(1,10,11,12,13),(2,6,3,7,4,8,5,9)],[(1,11,13,10,12),(2,7,5,6,4,9,3,8)]$ has 68 cycles and contains a sub-2-factorization of order 5 .
(iii) For $\{2,4\} \subseteq Q\left(K_{13}\right)$ take $r=1, t=3$, and $v=4$ in Construction A. Since $Q\left(K_{4,4}\right)=\{0,2\}$, it follows immediately that $\{2,4\} \subseteq Q\left(K_{13}\right)$.

Now take K_{13} to have vertex set $\{A, B, C\} \cup\left(\{1,2\} \times Z_{5}\right)$ in (iv), (v), and (vi).
(iv) Let $F=[(A,(1,3),(2,1),(2,4),(2,0),(1,4),(1,2),(1,1),(2,3), B,(1,0), C$, $(2,2))]$. Then $\{F+x \mid x=0,1,2,3\}$ with the following 2 -factors $[(A, B,(1,4), C,(2,1)),((1,0),(1,1),(2,0),(1,2),(2,2),(1,3),(2,3),(2,4))]$ and $[(A, C, B,(2,2),(1,0),(2,0),(2,3),(1,4),(2,4),(1,3),(1,1),(2,1),(1,2))]$
is a 2 -factorization of K_{13} containing 18 -cycle.
(v) Now let
$F=[(A,(1,4),(1,1),(1,0),(2,1)),(B,(1,3), C,(2,0),(1,2),(2,4),(2,2),(2,3))]$.
Then $\left\{F+x \mid x \in Z_{5}\right\}$ with the following 2 -factor
$[(A, B, C),((1,0),(2,0),(1,1),(2,1),(1,2),(2,2),(1,3),(2,3),(1,4),(2,4))]$
is a 2 -factorization of K_{13} containing 58 -cycles.
(vi) Finally, the union of F and $F+1$ in (v) can be decomposed into 2 2-factors as follows:
$[(A,(1,0),(1,2),(1,1),(1,4), B,(2,4),(2,2),(2,3),(2,0), C,(1,3),(2,1))]$ and $[(A,(1,4), C,(2,1),(1,0),(1,1),(2,2)),(B,(1,3),(2,0),(1,2),(2,4),(2,3))]$.

This reduces the number of 8 -cycles by 2 . Hence $3 \in Q(13)$.
Lemma $2.8 F C(16 k+13) \subseteq Q(16 k+13)$.
Proof: Take $r=5$ in Construction A. Since $Q\left(K_{8,8}\right)=\{0,1,2,3,4,5,6,7,8\}$, $Q(13)=F C(13)$ and $m_{i} \in\{0,6\}$ for $i=2,3, \ldots, t$, Corollary 2.1 gives $F C(16 k+13) \subseteq$ $Q(16 k+13)$.

$\mathrm{n} \equiv 15(\bmod 16)$

Example $2.9 Q(15)=F C(15)$, where the 2-factorizations of K_{15} having 0 or 7 8 -cycles contain a sub-2-factorization of order 7 .

Proof: (i) The 2 -factorization of K_{15} given by
$[(1,4,3,6,7,2,5),(8,12,9,13),(10,14,11,15)]$,
$[(1,6,2,4,5,3,7),(8,14,9,15),(10,12,11,13)]$,
$[(1,8,3,10,11,2,9),(4,13,5,12),(6,14,7,15)]$,
$[(1,10,2,8,9,3,11),(4,14,5,15),(6,12,7,13)]$,
$[(1,12,3,14,15,2,13),(4,8,5,9),(6,10,7,11)]$,
$[(1,14,2,12,13,3,15),(4,10,5,11),(6,8,7,9)]$, and
$[(1,2,3),(4,6,5,7),(8,10,9,11),(12,14,13,15)]$ has 08 -cycles and contains a sub-2factorization of order 7 .
(ii) For $\{2,4,6\} \subseteq Q(15)$ take $r=3, t=3$, and $v=4$ in Construction A. It follows that $\{2,4,6\} \subseteq Q(15)$.
(iii) $1 \in Q(15)$:
$F_{1}=[(1,4,3,6,7,2,5),(8,15,13,9,11,14,10,12)]$,
$F_{2}=[(1,6,2,4,5,3,7),(8,10,13,14),(9,12,11,15)]$,
$F_{3}=[(1,8,3,10,11,2,9),(4,14,5,12),(6,13,7,15)]$,
$F_{4}=[(1,10,2,8,9,3,11),(4,13,5,15),(6,12,7,14)]$,
$F_{5}=[(1,12,3,14,15,2,13),(4,10,5,8),(6,9,7,11)]$,
$F_{6}=[(1,14,2,12,13,3,15),(4,9,5,11),(6,8,7,10)]$,
$F_{7}=[(1,2,3),(4,6,5,7),(8,11,13),(10,9,14,12,15)]$.
(iv) The union of F_{3} and F_{4} in (iii) can be decomposed into the following two 2-factors:
$F_{3}^{\prime}=[(1,8,3,10,11,2,9),(4,12,5,14,6,13,7,15)]$ and
$F_{4}^{\prime}=[(1,10,2,8,9,3,11),(4,14,7,12,6,15,5,13)]$.
This increases the number of 8 -cycles by 2 . Hence $3 \in Q(15)$.
(v) The union of F_{5} and F_{6} in (iii) can be decomposed into the following two 2-factors:
$F_{5}^{\prime}=[(1,12,3,14,15,2,13),(4,8,5,10,6,9,7,11)]$ and
$F_{6}^{\prime}=[(1,14,2,12,13,3,15),(4,10,7,8,6,11,5,9)]$
Then $\left\{F_{1}, F_{2}, F_{3}^{\prime}, F_{4}^{\prime}, F_{5}^{\prime}, F_{6}^{\prime}, F_{7}\right\}$ is a 2-factorization of K_{15} containing 5 8-cycles.
(vi)Finally replace the two 2 -factors F_{2} and F_{7} in (v) by the following two 2factors:
$F_{2}^{\prime}=[(1,6,2,4,5,3,7),(8,11,13,14,12,15,9,10)]$ and
$F_{7}^{\prime}=[(1,2,3),(4,6,5,7),(8,13,10,15,11,12,9,14)]$. Hence $7 \in Q(15)$.
Lemma $2.10 F C(16 k+15) \subseteq Q(16 k+15)$.
Proof: Take $r=7$ in Construction A. Since $Q\left(K_{8,8}\right)=\{0,1,2,3,4,5,6,7,8\}$, $Q(15)=F C(15)$ and $m_{i} \in\{0,7\}$ for $i=2,3, \ldots, t$, Corollary 2.1 gives $F C(16 k+15) \subseteq$ $Q(16 k+15)$.

$3 \mathrm{n} \equiv 1,3,5$ or $7(\bmod 16)$

We will begin with the following construction.
Construction B:
Write $n=t v+r$, where v and t are even and $r \in\{1,3,5,7\}$. Let $X=\{1,2, \ldots, t\}$, $V=\{1,2, \ldots, v\}$, and Z be a set of size r. Further, let (X, o) be a commutative quasigroup of order $t \geq 6$ with holes $H=\left\{h_{1}, h_{2}, \ldots, h_{t / 2}\right\}$ of size $2[4]$ and set $S=Z \cup(X \times V)$.

Define a collection F of 2-factors of $K_{t v+r}$ as follows:
(1) For the hole $h_{1} \in H$, let $\left(Z \cup\left(h_{1} \times\{1,2, \ldots, v\}\right), F_{1}\right)$ be any 2-factorization of $K_{2 v+r}$, where $F_{1}=\left\{f_{1_{1}}, f_{1_{2}}, \ldots, f_{1_{v+(r-1) / 2}}\right\}$.
(2) For each hole $h_{i} \in H \backslash\left\{h_{1}\right\}$, let $\left(Z \cup\left(h_{i} \times\{1,2, \ldots, v\}\right), F_{i}\right)$ be any 2 factorization of $K_{2 v+r}$ having either 0 or $\max F C(2 v+r) 8$-cycles and containing a sub-2-factorization of order r, where $\max F C(2 v+r)$ is the largest value in the set $F C(2 v+r)$. Let $F_{i}=\left\{f_{i_{1}}, f_{i_{2}}, \ldots, f_{i_{v+(r-1) / 2}}\right\}$, where the last $(r-1) / 2$ 2-factors contain the sub-2-factorization of order r.
(3) For each $x \in X$, set $F(x)=\{\{a, b\} \mid a \neq b, a \circ b=b \circ a=x$, and a and b do not belong to the hole containing $x\}$. Denote by $\left(K_{a, b}, f_{x}(a, b)\right),\{a, b\} \in F(x)$, any 2 factorization of $K_{v, v}$ with parts $\{a\} \times\{1,2, \ldots, v\}$ and $\{b\} \times\{1,2, \ldots, v\}$, where $f_{x}(a, b)=\left\{f_{x_{1}}(a, b), f_{x_{2}}(a, b), \ldots, f_{x_{v / 2}}(a, b)\right\}$.
(4) For each hole $h_{i}=\{x, y\} \in H$, each of the following is a 2 -factor of $K_{t v+r}$: $\begin{cases}\left\{f_{i_{j}}\right\} \cup\left\{f_{x_{j}}(a, b) \mid\{a, b\} \in F(x)\right\}, & j=1,2, \ldots, v / 2, \\ \left\{f_{i_{k}}\right\} \cup\left\{f_{y_{j}}(c, d) \mid\{c, d\} \in F(y)\right\}, & j=1,2, \ldots, v / 2 \text { and } k=v / 2,(v / 2)+1, \ldots, v .\end{cases}$
(5) Piece together the remaining $(r-1) / 2 \quad 2$-factors of F_{1}, along with the remaining $(r-1) / 22$-factors of each F_{x}, for $x=2,3, \ldots, t$, making sure to delete the cycles belonging to the sub-2-factorization from each of the remaining 2 -factors in each F_{x}.
(6) For each hole in H, place the $v 2$-factors in (4) in F as well as the 2-factors in (5).

The union of the 2 -factors in (6) gives a total of $\sum_{h \in H}(v)+(r-1) / 2=(t v+r-1) / 2$ 2 -factors which form a 2 -factorization of $K_{t v+r}$ with vertex set S.

Corollary 3.1 Construction B gives a 2-factorization of $K_{t v+r}$ containing exactly $\sum_{i=1}^{t(t-2) / 2} n_{i}+\sum_{i=1}^{t / 2} m_{i} \quad 8$-cycles, where $n_{i} \in Q\left(K_{v, v}\right), m_{1} \in Q(2 v+r)$, and $m_{i} \in\{0, \max F C(2 v+r)\}$ for $i=2,3, \ldots, t / 2$.

We will now use Construction B and Corollary 3.1 to show that $F C(n) \subseteq Q(n)$ for the cases $n \equiv 1,3,5$ and $7(\bmod 16)$.

$n \equiv 1(\bmod 16)$

Example $3.2 Q(17)=F C(17)$.
Proof: (i) Take K_{17} to have vertex set $\{A, B, C, D, E, F, G\} \cup\left(\{1,2\} \times Z_{5}\right)$ and let $F=[(A,(1,0), B,(2,0),(1,3), C,(2,3), F,(1,4), G,(2,4),(1,1),(2,2), E,(1,2), D$, $(2,1))]$. Then $\left\{F+x \mid x \in Z_{5}\right\}$ with the following three 2 -factors
$F_{1}=[(A, B, C, D, E, F, G),((1,0),(1,1),(1,2),(1,3),(1,4)),((2,0),(2,1),(2,2)$, $(2,3),(2,4))]$,
$F_{2}=[(A, C, E, G, B, D, F),((1,0),(1,2),(1,4),(1,1),(1,3)),((2,0),(2,2),(2,4)$, $(2,1),(2,3))]$,
$F_{3}=[(A, D, G, C, F, B, E),((1,0),(2,0),(1,1),(2,1),(1,2),(2,2),(1,3),(2,3)$, $(1,4),(2,4))]$
is a 2 -factorization of K_{17} containing 0 -cycles.
(ii) The union of F and F_{1} in (i) can be decomposed into the following two 2factors:
$F^{\prime}=[(A, B, C, D,(1,2), E, F, G),((1,0),(1,1),(2,4),(2,3),(2,2),(2,1),(2,0),(1,3),(1,4))]$,
$F_{1}^{\prime}=[(A,(1,0), B,(2,0),(2,4), G,(1,4), F,(2,3), C,(1,3),(1,2),(1,1),(2,2), E, D,(2,1))]$.
This increases the number of 8 -cycles by 1 . Hence $1 \in Q(17)$.
(iii) $2 \in Q(17)$:
$F_{1}=[(9,11,13,15,17,10,12,14,16),(1,6,4,5,3,8,2,7)]$,
$F_{2}=[(9,12,15),(10,13,16),(11,14,17),(1,5,2,6,3,7,4,8)]$,
$F_{3}=[(9,13,17,12,16,11,15,10,14),(1,2,3,4)(5,6,7,8)]$,
$F_{4}=[(9,1,10,2,11,3,12,4,13,5,14,6,15,7,16,17,8)]$,
$F_{5}=[(9,2,17,1,16,15,8,14,7,13,6,12,5,11,4,10,3)]$,
$F_{6}=[(9,4,17,3,16,2,15,14,1,13,8,12,7,11,6,10,5)]$,
$F_{7}=[(9,6,17,5,16,4,15,3,14,13,2,12,1,11,8,10,7)]$,
$F_{8}=[(9,10,11,12,13,3,1,15,5,7,17),(14,2,4),(16,6,8)]$.
(iv) $3 \in Q(17)$:

The union of F_{2} and F_{3} in (iii) can be decomposed into the following two 2-factors:
$F_{2}^{\prime}=[(9,12,15),(10,13,16),(11,14,17),(1,8,5,2,6,3,7,4)]$ and
$F_{3}^{\prime}=[(9,13,17,12,16,11,15,10,14),(1,5,6,7,8,4,3,2)]$.
This increases the number of 8 -cycles by 1 . Hence $3 \in Q(17)$.
(v) $4 \in Q(17)$:
$F_{1}=[(1,2,3,16,15,14,13,17,9,8,12,11,10,4,5,6,7)]$,
$F_{2}=[(1,3,5,7,2,4,6),(8,10,12,9,11),(13,15,17,14,16)]$,
$F_{3}=[(1,4,7,3,6,2,5),(8,13,9,14,10,15,11,16,12,17)]$,
$F_{4}=[(1,15,2,12,3,4,16,17,6,9,10),(8,5,14),(11,13,7)]$.
$F_{5}=[(1,16,2,8,3,17,4,11),(9,5,15),(10,6,13),(12,14,7)]$,
$F_{6}=[(1,17,2,9,3,13,4,12),(10,5,16),(11,6,14),(8,15,7)]$,
$F_{7}=[(1,13,2,10,3,14,4,8),(11,5,17),(12,6,15),(9,16,7)]$,
$F_{8}=[(1,14,2,11,3,15,4,9),(12,5,13),(8,6,16),(10,17,7)]$.
(vi) $5 \in Q(17)$:

The union of F_{1} and F_{4} in (v) can be decomposed into the following two 2-factors:
$F_{1}^{\prime}=[(1,2,3,4,5,6,7),(8,9,10,11,12),(13,14,15,16,17)]$ and
$F_{4}^{\prime}=[(1,15,2,12,3,16,4,10),(8,5,14),(9,6,17),(11,13,7)]$,
This increases the number of 8 -cycles by 1 . Hence $5 \in Q(17)$.
(vii) $6 \in Q(17)$:

Take K_{17} to have vertex set $\{A, B, C, D, E\} \cup\left(\{1,2\} \times Z_{6}\right)$ and let
$F=[(C,(1,2),(2,0),(2,5),(1,3),(1,1),(1,0),(2,3)),(A,(1,4), B,(2,1), D,(1,5), E$, $(2,4),(2,2))]$.

Then $\left\{F+x \mid x \in Z_{6}\right\}$ with the following two 2-factors:
$[(A, B, C, D, E),((1,0),(2,0),(2,3),(1,3)),((1,1),(2,1),(2,4),(1,4)),((1,2),(2,2)$, $(2,5),(1,5))]$ and
$[(A, C, E, B, D),((1,0),(2,1),(1,2),(2,3),(1,4),(2,5)),((1,1),(2,0),(1,5),(2,4)$, $(1,3),(2,2))]$.
is a 2 -factorization of K_{17} containing 68 -cycles.
(viii) $7 \in Q(17)$:

Now take K_{17} to have vertex set $\{A, B, C\} \cup\left(\{1,2\} \times Z_{7}\right)$ and let
$F=[(B,(1,0),(2,2),(2,3),(1,5),(1,6),(1,2),(2,5)),(A,(1,4),(2,1),(2,6))$, (C, (1, 1), (1, 3), (2, 4), (2, 0))].
Then $\left\{F+x \mid x \in Z_{7}\right\}$ with the following 2 -factor:
$[((1,0),(2,0),(1,1),(2,1),(1,2),(2,2),(1,3),(2,3),(1,4),(2,4),(1,5),(2,5),(1,6)$, $(2,6)),(A, B, C)]$
is a 2 -factorization of K_{17} containing 78 -cycles.
(ix) $8 \in Q(17)$:

Take K_{17} to have vertex set $\{A\} \cup Z_{16}$ and let
$F=[(2,5,7,6,10,13,15,14),(1,8,3,9,0,11),(A, 4,12)]$. Then $\{F+x \mid x=0,1,2,3$, $4,5,6,7\}(\bmod 16)$ is a 2 -factorization of K_{17} containing 8 -cycles.

Example 3.3 $K_{10,10}$ can be 2-factorized into 0 or 10 8-cycles.
Proof: See Appendix

Example 3.4 K_{33} can be 2-factorized into $F C(33) \backslash\{47\}$ 8-cycles.
Proof: See Appendix
Lemma 3.5 $F C(16 k+1) \subseteq Q(16 k+1)$, with the possible exception of $47 \in F C(33)$.
Proof: Take $r=1, t=2 k$ and $v=8$ in Construction B. Since $Q\left(K_{8,8}\right)=$ $\{0,1,2,3,4,5,6,7,8\}$ and $Q(17)=F C(17)$, Corollary 3.1 gives $F C(16 k+1) \subseteq$ $Q(16 k+1)$ for $k \geq 3$. Examples 3.2 and 3.4 complete the proof.
$\mathrm{n} \equiv 3(\bmod 16)$
Example 3.6 $K_{6,6}$ can be 2-factorized into 0,1, or 3 8-cycles.
Proof: See Appendix

Example $3.7 Q(19)=F C(19)$.
Proof: See Appendix
Lemma 3.8 $F C(16 k+3) \subseteq Q(16 k+3)$.
Proof: Take $r=3, t=4 k$ and $v=4$ in Construction B. Since $n_{i} \in\{0,2\}$, $m_{1} \in Q(11)$ and $m_{i} \in\{0,5\}$ for $i=2,3, \ldots, 2 k$, Corollary 3.1 gives $F C(16 k+3) \subseteq$ $Q(16 k+3)$ for $k \geq 2$. Example 3.7 completes the proof.
$\mathrm{n} \equiv 5(\bmod 16)$
Example $3.9 Q(21)=F C(21)$.
Proof: See Appendix
Lemma 3.10 $F C(16 k+5) \subseteq Q(16 k+5)$.
Proof: Take $r=5, t=4 k$ and $v=4$ in Construction B. Since $n_{i} \in\{0,2\}$, $m_{1} \in Q(13)$ and $m_{i} \in\{0,6\}$ for $i=2,3, \ldots, 2 k$, Corollary 3.1 gives $F C(16 k+5) \subseteq$ $Q(16 k+5)$ for $k \geq 2$. Example 3.9 completes the proof.
$\mathrm{n} \equiv 7(\bmod 16)$
Example $3.11 Q(23)=F C(23)$, where the 2-factorizations of K_{23} having 0 and 22 8 -cycles contain sub-2-factorizations of order 7 .

Proof: (i) The following 2-factorization of K_{23} gives $0 \in Q(23)$.
$[(1,4,3,6,7,2,5),(8,22,10,20),(9,21,11,23),(12,16,14,18),(13,17,15,19)]$, $[(1,6,2,4,5,3,7),(8,21,10,23),(9,20,11,22),(12,17,14,19),(13,16,15,18)]$, $[(1,8,3,10,11,2,9),(12,22,14,20),(13,21,15,23),(4,18,5,16),(6,17,7,19)]$, $[(1,10,2,8,9,3,11),(12,21,14,23),(13,20,15,22),(4,17,5,19),(6,16,7,18)]$, $[(1,12,3,14,15,2,13),(16,22,18,20),(17,21,19,23),(4,8,5,10),(6,9,7,11)]$, $[(1,14,2,12,13,3,15),(16,21,18,23),(17,20,19,22),(4,9,5,11),(6,8,7,10)]$, $[(1,16,3,18,19,2,17),(8,12,10,14),(9,13,11,15),(4,20,5,22),(6,21,7,23)]$, $[(1,18,2,16,17,3,19),(8,13,10,15),(9,12,11,14),(4,21,5,23),(6,20,7,22)]$, $[(1,20,3,22,23,2,21),(8,18,10,16),(9,17,11,19),(4,14,5,12),(6,13,7,15)]$, $[(1,22,2,20,21,3,23),(8,17,10,19),(9,16,11,18),(4,13,5,15),(6,12,7,14)]$, $[(1,2,3),(4,6,5,7),(8,10,9,11),(12,14,13,15),(16,18,17,19),(20,22,21,23)]$.
(ii) Take $r=5, t=3$ and $v=6$ in Construction A. It follows that
$F C(23) \backslash\{21,22\} \subseteq Q(23)$.
(iii) The 2 -factorization of K_{23} given by
$F_{1}=[(1,6,2,4,5,3,7),(8,10,9,11,23,21,22,20),(12,16,14,18,13,17,15,19)]$,
$F_{2}=[(1,4,3,6,7,2,5),(8,22,11,20,9,23,10,21),(12,18,15,16,13,19,14,17)]$,
$F_{3}=[(1,8,3,10,11,2,9),(12,22,15,20,13,23,14,21),(4,18,7,16,6,19,5,17)]$,
$F_{4}=[(1,10,2,8,9,3,11),(12,20,14,22,13,21,15,23),(4,16,5,18,6,17,7,19)]$,
$F_{5}=[(1,12,3,14,15,2,13),(16,22,19,20,17,23,18,21),(4,10,7,8,6,11,5,9)]$,
$F_{6}=[(1,14,2,12,13,3,15),(16,20,18,22,17,21,19,23),(4,8,5,10,6,9,7,11)]$,
$F_{7}=[(1,16,3,18,19,2,17),(8,14,11,12,9,15,10,13),(4,22,7,20,6,23,5,21)]$,
$F_{8}=[(1,18,2,16,17,3,19),(8,12,10,14,9,13,11,15),(4,20,5,22,6,21,7,23)]$,
$F_{9}=[(1,20,3,22,23,2,21),(8,18,11,16,9,19,10,17),(4,14,7,12,6,15,5,13)]$,
$F_{10}=[(1,22,2,20,21,3,23),(8,16,10,18,9,17,11,19),(4,12,5,14,6,13,7,15)]$,
$F_{11}=[(1,2,3),(4,6,5,7),(12,14,13,15),(16,18,17,19),(8,23,20,10,22,9,21,11)]$.
shows that $21 \in Q(23)$.
(iv) Finally the union of F_{1} and F_{11} in (iii) can be decomposed into two 2-factors as follows:
$F_{1}^{\prime}=[(1,6,2,4,5,3,7),(8,10,9,11,23,21,22,20),(12,14,13,15,19,17,18,16)]$ and
$F_{11}^{\prime}=[(1,2,3),(4,6,5,7),(8,23,20,10,22,9,21,11),(12,19,16,14,18,13,17,15)]$.
This increases the number of 8 -cycles by 1 . Hence $22 \in Q(23)$.
Example $3.12 K_{12,12}$ can be 2-factorized into 0 or 18 8-cycles.

Proof: See Appendix

Example $3.13 Q(39)=F C(39)$.

Proof: See Appendix

Lemma 3.14 $F C(16 k+7) \subseteq Q(16 k+7)$.

Proof: Take $r=7, t=2 k$ and $v=8$ in Construction B. Since $n_{i} \in\{0,1,2,3,4,5,6$, $7,8\}, m_{1} \in Q(23)$ and $m_{i} \in\{0,22\}$ for $i=2,3, \ldots, k$, Corollary 3.1 gives $F C(16 k+$ 7) $\subseteq Q(16 k+7)$ for $k \geq 3$. Examples 3.11 and 3.13 complete the proof.

4 Summary

We summarize our results with the following theorem.
Theorem 4.1 $Q(n)=F C(n)$ for all odd n with the possible exception of $47 \in$ $F C(33)$.

Acknowledgment

The author wishes to thank Professors D. G. Hoffman and C. C. Lindner for helpful comments during the preparation of this paper. The author also wishes to thank the referee for Examples 3.7 (xi) and 3.9 (vii).

References

[1] P. Adams, E. J. Billington, The number of 6-cycles in 2-factorizations of K_{n}, (to appear).
[2] I. J. Dejter, F. Franek, E. Mendelsohn, and A. Rosa, Triangles in 2factorizations, J. Graph Theory 26 (1997), 83-94.
[3] I. J. Dejter, C. C. Lindner, A. Rosa, The number of 4 -cycles in 2-factorizations of K_{n}, JCMCC 28 (1998), 101-112.
[4] C. C. Lindner, C. A. Rodger, Design Theory, CRC Press, Boca Raton 1997.
[5] E. Lucas, Recreations mathematiques, Gauthier-Villars, Paris 1883.
[6] D. K. Ray-Chaudhuri, R. M. Wilson, Solution of Kirkman's school-girl problem, in: Combinatorics, Proc. Sympos. Pure Math. 19, AMS, 1971, 187-203.

Appendix

Example 3.3 $K_{10,10}$ can be 2-factorized into 0 or 108 -cycles.
Proof: (i) $0 \in Q\left(K_{10,10}\right)$:
Take a Hamilton decomposition of $K_{10,10}$.
(ii) $10 \in Q\left(K_{10,10}\right)$:

Let $\{1,2,3,4,5,6,7,8,9,10\}$ and $\{11,12,13,14,15,16,17,18,19,20\}$ be the parts of $K_{10,10}$. The following 2 -factors form a 2 -factorization of $K_{10,10}$ containing 108 -cycles. $[(1,11,2,12,3,13,4,14),(5,15,6,16,7,17,8,18),(9,19,10,20)]$, $[(1,13,2,14,3,15,4,16),(5,17,6,18,7,19,8,20),(9,11,10,12)]$, $[(1,15,2,16,3,17,4,18),(5,12,8,11,7,20,6,19),(9,13,10,14)]$, $[(1,17,2,18,3,19,4,20),(5,11,6,12,7,13,8,14),(9,15,10,16)]$, $[(1,12,4,11,3,20,2,19),(5,13,6,14,7,15,8,16),(9,17,10,18)]$.

Example $3.4 K_{33}$ can be 2-factorized into $F C(33) \backslash\{47\}$ 8-cycles.
Proof: (i) Take $r=3, t=3$ and $v=10$ in Construction A. Since a 2 -factorization of K_{13} containing a cycle of length 3 can not have 68 -cycles, in step (2) of the construction for each $x \in\{2,3\}$ place a 2 -factorization of K_{13} having either 0 or 58 -cycles and containing a cycle of length 3 . (The 2 -factorization of K_{13} having 58 -cycles in Example 2.7 contains a 3-cycle. For a 2 -factorization of K_{13} having 0 -cycles and containing a cycle of length 3, replace F in Example 2.7(v) by $[(A,(1,2),(2,0),(2,3),(2,4),(1,3),(1,1),(1,0),(2,2), B,(1,4), C,(2,1))]$. Then it follows that $F C(33) \backslash\{47,48\} \subseteq Q(33)$.
(ii) Now, take $r=1, t=8$ and $v=4$ in Construction B. In step (3) for each $x \in X$, let $\left(K_{a, b}, f_{x}(a, b)\right)$ be any 2 -factorization of $K_{4,4}$ containing 28 -cycles. This gives $48 \in Q(33)$.

Example $3.6 K_{6,6}$ can be 2 -factorized into 0,1 , or 38 -cycles.
Proof: Let $\{1,2,3,4,5,6\}$ and $\{7,8,9,10,11,12\}$ be the parts of $K_{6,6}$.
(i) $0 \in Q\left(K_{6,6}\right)$:
$[(1,7,2,8,3,9,4,10,5,11,6,12)],[(1,8,6,7,5,12,4,11,3,10,2,9)]$,
$[(1,10,6,9,5,8,4,7,3,12,2,11)]$.
(ii) $1 \in Q\left(K_{6,6}\right)$:
$[(3,7,4,8,5,9,6,10),(1,11,2,12)],[(1,9,3,11,4,10),(2,7,5,12,6,8)]$, $[(1,7,6,11,5,10,2,9,4,12,3,8)]$.
(iii) $3 \in Q\left(K_{6,6}\right)$:
$[(3,9,4,10,5,11,6,12),(1,7,2,8)],[(3,8,6,7,5,12,4,11),(1,9,2,10)]$,
$[(3,7,4,8,5,9,6,10),(1,11,2,12)]$.
Example 3.7 $Q(19)=F C(19)$.
Proof: (i) Take $r=1, t=3$ and $v=6$ in Construction A. It follows that $\{0,1,2,3,4,5,6,7,9\} \subseteq Q(19)$.
(ii) Now, take K_{19} to have vertex set $\left(\{1,2\} \times Z_{8}\right) \cup\{A, B, C\}$ and let $F=[(B,(2,2),(2,5),(2,7),(1,4),(1,3),(2,1),(1,0))$,
$(A,(2,4),(2,3), C,(1,6),(2,0),(1,1),(2,6),(1,2),(1,7),(1,5))]$.
Then $\left\{F+x \mid x \in Z_{8}\right\}$ with the following 2 -factor
$[(A, B, C),((1,0),(2,0),(2,4),(1,4)),((1,1),(2,1),(2,5),(1,5))$,
$((1,2),(2,2),(2,6),(1,6))((1,3),(2,3),(2,7),(1,7))]$
is a 2 -factorization of K_{19} containing 8 -cycles.
(iii) Take K_{19} to have vertex set $\{A, B, C, D, E, F, G\} \cup\left(\{1,2\} \times Z_{6}\right)$ and let $F=[(A,(2,2),(1,0), B,(2,3),(2,1),(1,3),(1,5)),((1,1), G,(2,4))$,
$(C,(2,5), F,(1,4), E,(2,0), D,(1,2))]$.
Then $\left\{F+x \mid x \in Z_{6}\right\}$ with the following 3 2-factors:
$F_{1}=[(A, B, C, D, E, F, G),((1,0),(1,1),(1,2),(1,3),(1,4),(1,5))$,
$((2,0),(2,1),(2,2),(2,3),(2,4),(2,5))]$,
$F_{2}=[((1,0),(2,0),(1,1),(2,1),(1,2),(2,2),(1,3),(2,3),(1,4),(2,4),(1,5),(2,5))$,
$(A, E, B, F, C, G, D)]$,
$F_{3}=[(A, C, E, G, B, D, F),((1,0),(2,1),(2,4),(1,3)),((1,1),(2,2),(2,5),(1,4))$, $((1,2),(2,3),(2,0)(1,5))]$
is a 2-factorization of K_{19} containing 12 8-cycles.
(iv) The union of F and F_{1} in (iii) can be decomposed into 2 2-factors as follows: $[(A, B, C,(2,5),(2,4),(2,3),(2,2),(2,1),(2,0), D, E, F, G)$,
$((1,0),(1,1),(1,2),(1,3),(1,4),(1,5))]$ and
$[(A,(2,2),(1,0), B,(2,3),(2,1),(1,3),(1,5)),(C, D,(1,2))$,
$((E,(1,4), F,(2,5),(2,0)),((1,1), G,(2,4))]$.
This reduces the number of 8 -cycles by 1 . Hence $11 \in Q(19)$.
(v) Now consider again F and F_{1} in (iii). Their union can be decomposed into 2 2-factors as follows:
$[(A,(2,2),(1,0),(1,1), G,(2,4),(2,5), F,(1,4), E,(2,0), D,(1,2), C, B,(2,3),(2,1)$, $(1,3),(1,5))]$ and
$[(A, B,(1,0),(1,5),(1,4),(1,3),(1,2),(1,1),(2,4),(2,3),(2,2),(2,1),(2,0),(2,5), C$, $D, E, F, G)]$.
This reduces the number of 8 -cycles by 2 . Hence $10 \in Q(19)$.
(vi) Now take K_{19} to have vertex set $\{A, B, C, D, E\} \cup\left(\{1,2\} \times Z_{7}\right)$. Let
$F=[(A,(1,6),(2,2),(1,0),(1,2),(2,3),(2,5),(2,1)),(E,(2,0),(1,3))$,
(B, (1, 4), $(1,1),(2,6), D,(1,5), C,(2,4))]$.
Then $\left\{F+x \mid x \in Z_{7}\right\}$ with the following 2 2-factors:
$F_{1}=[(A, D, E, B, C),((1,0),(1,1),(1,2),(1,3),(1,4),(1,5),(1,6))$,
$((2,0),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6))]$ and
$F_{2}=[((1,0),(2,0),(1,1),(2,1),(1,2),(2,2),(1,3),(2,3),(1,4),(2,4),(1,5),(2,5)$, $(1,6),(2,6)),(A, B, D, C, E)]$.
is a 2 -factorization of K_{19} containing 14 8-cycles.
(vii) The union of F and F_{1} in (vi) can be decomposed into 2 2-factors as follows:
$[(A,(1,6),(2,2),(1,0),(1,2),(2,3),(2,5),(2,1))$,
$((1,1),(1,4),(1,3),(2,0),(2,6)),(B, E, D,(1,5), C,(2,4))]$ and
$[(A, D,(2,6),(2,5),(2,4),(2,3),(2,2),(2,1),(2,0), E,(1,3),(1,2),(1,1),(1,0),(1,6)$, $(1,5),(1,4), B, C)]$.
This reduces the number of 8 -cycles by 1 . Hence $13 \in Q(19)$.
(viii) Take K_{19} to have vertex set $\left(\{1,2\} \times Z_{8}\right) \cup\{A, B, C\}$ and let
$F=[(A,(1,1),(1,3),(2,5), C,(1,2),(1,5),(2,2)),((1,4),(2,7),(2,0))$,
($B,(1,0),(2,1),(2,3),(2,6),(1,7),(1,6),(2,4))]$.
Then $\left\{F+x \mid x \in Z_{8}\right\}$ with the following 2 -factor
$[(A, B, C),((1,0),(2,0),(2,4),(1,4)),((1,1),(2,1),(2,5),(1,5))$,
$((1,2),(2,2),(2,6),(1,6)),((1,3),(2,3),(2,7),(1,7))]$
is a 2 -factorization of K_{19} containing 168 -cycles.
(ix) The union of F and F_{1} in (viii) can be decomposed into the following 2 2 -factors:
$[(A, B,(2,4),(1,6),(1,7),(2,6),(2,2),(1,2),(1,5),(2,5), C)$, $((1,0),(2,0),(1,4),(2,7),(2,3),(1,3),(1,1),(2,1))]$ and
$[(B, C,(1,2),(1,6),(2,6),(2,3),(2,1),(2,5),(1,3),(1,7),(2,7),(2,0),(2,4),(1,4)$,
$(1,0)),(A,(1,1),(1,5),(2,2))]$.
This reduces the number of 8 -cycles by 1 . Hence $15 \in Q(19)$.
(x) Now take K_{19} to have vertex set $\{A\} \cup\left(\{1,2\} \times Z_{9}\right)$ and let
$F=[(A,(2,2),(1,7)),((1,0),(2,1),(2,3),(1,4),(2,6),(1,8),(1,5),(2,5))$, $((1,1),(1,3),(1,2),(1,6),(2,0),(2,8),(2,4),(2,7))]$.
Then $\left\{F+x \mid x \in Z_{9}\right\}$ is a 2 -factorization of K_{19} containing 18 -cycles.
(xi) $17 \in F C(19)$:
[(1, 2, 3, 4, 5, 6, 7, 19), (8, 9, 10, 11, 12, 13, 14, 15), (16, 17, 18)],
$[(2,4,1,3,5,7,8,19),(6,9,11,13,10,16,14,17),(12,15,18)]$,
$[(3,6,1,5,2,7,4,19),(8,10,12,9,13,16,15,17),(11,14,18)]$,
$[(5,8,1,7,3,9,14,19),(2,6,10,15,11,16,12,17),(4,13,18)]$,
$[(6,4,8,2,9,1,11,19),(3,15,13,17,10,18,5,16),(7,12,14)]$,
$[(9,4,10,1,12,2,13,19),(3,14,5,15,6,16,8,18),(7,11,17)]$,
$[(10,2,11,3,12,4,15,19),(1,13,5,17,9,18,7,16),(6,8,14)]$,
$[(12,5,10,7,15,9,16,19),(1,14,2,18,6,11,4,17),(3,8,13)]$,
$[(5,9,7,13,6,12,8,11),(19,17,3,10,14,4,16,2,15,1,18)]$.

Example $3.9 Q(21)=F C(21)$.

Proof: (i) Take $r=1, t=5$ and $v=4$ in Construction A. It follows that $\{0,2,4,6,8,10,12,14,16,18,20\} \subseteq Q(21)$.
(ii) Now take $r=3, t=3$ and $v=6$ in Construction A. It follows that $\{1,3,5,7,9\} \subseteq Q(21)$.
(iii) Now take K_{21} to have vertex set $\{A, B, C, D, E, F, G\} \cup\left(\{1,2\} \times Z_{7}\right)$. Let $F=[(A,(1,4),(2,1),(1,5),(2,4),(2,3),(1,1),(2,6)),(B,(1,2),(1,3), C,(2,2))$, ($D,(1,6), G,(2,0), F,(1,0), E,(2,5))]$.
Then $\{F+x \mid x=0,1,2,3,4,5\}$ with the following 42 -factors:
$F_{1}=[(A, F, D, B, G, E, C),((1,0),(1,2),(1,4),(1,6),(1,1),(1,3),(1,5))$,
$((2,0),(2,2),(2,4),(2,6),(2,1),(2,3),(2,5))]$,
$F_{2}=[(A, E, B, F, C, G, D),((1,0),(2,0),(1,5),(2,5),(1,3),(2,3),(1,1)$,
$(2,1),(1,6),(2,6),(1,4),(2,4),(1,2),(2,2))]$
$F_{3}=[(A,(1,3),(2,0),(1,4),(2,3),(2,2),(1,0),(2,5))$,
$((B, C,(2,1),(2,4), D, E,(1,6), F,(2,6), G,(1,5),(1,2),(1,1))]$, and
$F_{4}=[(A, B,(2,1),(2,5),(2,2),(2,6),(2,3),(2,0),(2,4), E, F, G)$,
$((1,0),(1,3),(1,6),(1,2), C, D,(1,5),(1,1),(1,4))]$
is a 2 -factorization of K_{21} containing 138 -cycles.
(iv) Now consider $\{F+x \mid x=1,2,3,4,5\}, F_{1}, F_{2}, F_{4}$ in (iii) and the following 2 2-factors:
$[(A,(1,3),(1,2),(1,5),(2,4),(2,1),(1,4),(2,3),(1,1),(2,6)),(B, C,(2,2))$, $(D,(1,6), G,(2,0), F,(1,0), E,(2,5))]$ and
$[(A,(1,4),(2,0),(1,3), C,(2,1),(1,5), G,(2,6), F,(1,6), E, D,(2,4),(2,3),(2,2)$, $(1,0),(2,5)),(B,(1,1),(1,2))]$.
This gives a 2-factorization of K_{21} containing 11 8-cycles.
(v) Take K_{21} to have the vertex set $\{A, B, C, D, E\} \cup\left(\{1,2\} \times Z_{8}\right)$. Let
$F=[(A,(1,7), E,(2,7), D,(1,5), C,(2,3)),((1,2),(2,1),(2,4),(1,0),(2,5))$,
$(B,(2,0),(2,6),(1,4),(2,2),(1,1),(1,3),(1,6))]$.
Then $\{F+x \mid x=0,1,2,3,4,5,6\}$ with the following 3 2-factors:
$[(B,(1,5),(1,2),(1,0),(1,1),(2,4),(1,7),(2,3),(2,0),(2,1),(1,3),(2,5),(2,7))$, $(A,(1,6), E,(2,6), D,(1,4), C,(2,2))]$,
$[(1,0),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(2,7),(2,0),(1,1),(1,2),(1,3),(1,4)$, $(1,5),(1,6),(1,7)),(A, C, E, B, D)]$, and
$[((1,0),(2,0),(2,4),(1,4)),((1,1),(2,1),(2,5),(1,5)),((1,2),(2,2),(2,6),(1,6))$, $((1,3,(2,3),(2,7),(1,7)),(A, B, C, D, E)]$,
is a 2 -factorization of K_{21} containing 158 -cycles.
(vi) Now take K_{21} to have the vertex set $\{A, B, C\} \cup\left(\{1,2\} \times Z_{9}\right)$. Let $F=[(B,(1,1),(2,1),(1,2),(2,4),(2,5),(1,7),(2,2)),(C,(1,4),(2,0),(1,6),(2,7))$, $(A,(1,3),(1,5),(1,8),(1,0),(2,6),(2,3),(2,8))]$.
Then $\{F+x \mid x=0,1,2,3,4,5,6,7\}$ with the following 22 -factors:
$[(B,(1,0),(2,0),(1,1),(2,3),(2,4),(1,6),(2,1)),((2,2),(2,5),(2,7))$, $(A,(1,2),(1,4),(1,8),(1,7),(1,3),(2,8),(1,5),(2,6), C)]$ and
$[(A, B, C,(1,3),(1,8),(2,5),(2,3),(2,1),(2,8),(2,6),(2,4),(2,2),(2,0),(2,7))$, $((1,0),(1,5),(1,1),(1,6),(1,2),(1,7),(1,4))]$
is a 2 -factorization of K_{21} containing 178 -cycles.
(vii) $19 \in F C(21)$:
$[(1,2,3,4,5,6,7,21),(8,9,10,11,12,13,14,15),(16,17,18,19,20)]$,
$[(2,4,1,3,5,7,8,21),(6,9,11,13,10,12,14,16),(15,18,20,17,19)]$,
$[(3,6,1,5,2,7,4,21),(8,10,14,9,12,17,11,18),(13,19,16,15,20)]$,
$[(5,8,1,7,3,9,13,21),(2,6,4,10,15,17,14,19),(11,16,18,12,20)]$,
$[(6,8,2,9,1,10,16,21),(3,11,4,15,12,19,5,17),(7,13,18,14,20)]$,
$[(9,4,8,3,10,2,14,21),(1,15,11,19,6,18,5,20),(7,12,16,13,17)]$,
$[(10,5,9,15,13,1,12,21),(2,16,3,18,4,17,6,20),(7,11,14,8,19)]$,
$[(11,1,14,3,12,2,17,21),(4,13,5,16,8,20,9,19),(6,10,18,7,15)]$,
$[(15,3,13,6,14,4,20),(2,11,5,12,8,17,9,18),(1,16,7,10,19)]$,
$[(18,1,17,10,20,3,19,21),(2,13,8,11,6,12,4,16,9,7,14,5,15)]$.

Example $3.12 K_{12,12}$ can be 2-factorized into 0 or 188 -cycles.
Proof: (i) $0 \in Q\left(K_{12,12}\right)$:
Take a Hamilton decomposition of $K_{12,12}$.
(ii) $18 \in Q\left(K_{12,12}\right)$:

Let $\{1,2,3,4,5,6,7,8,9,10,11,12\}$ and $\{13,14,15,16,17,18,19,20,21,22,23,24\}$ be the parts of $K_{12,12}$. The following 2 -factors form a 2 -factorization of $K_{12,12}$ containing 188 -cycles.
$[(1,13,2,14,3,15,4,16),(9,21,10,22,11,23,12,24),(5,17,6,18,7,19,8,20)]$, $[(1,14,4,13,3,16,2,15),(5,18,8,17,7,20,6,19),(9,22,12,21,11,24,10,23)]$, $[(1,17,2,18,3,19,4,20),(5,21,6,22,7,23,8,24),(9,13,10,14,11,15,12,16)]$, $[(1,18,4,17,3,20,2,19),(5,22,8,21,7,24,6,23),(9,14,12,13,11,16,10,15)]$, $[(1,21,2,22,3,23,4,24),(5,13,6,14,7,15,8,16),(9,17,10,18,11,19,12,20)]$, $[(1,22,4,21,3,24,2,23),(5,14,8,13,7,16,6,15),(9,18,12,17,11,20,10,19)]$.

Example $3.13 \quad Q(39)=F C(39)$.
Proof: (i) Take $r=3, t=3$ and $v=12$ in Construction A. It follows that $F C(39) \backslash\{76\} \subseteq Q(39)$.
(ii) The 2-factorization of K_{39} given by
$[(1,4,3,6,7,2,5),(8,38,11,36,9,39,10,37),(12,34,15,32,13,35,14,33)$,
$(16,29,18,31,17,28,19,30),(20,26,23,24,21,27,22,25)]$,
$[(1,6,2,4,5,3,7),(8,10,9,11,39,37,38,36),(12,14,13,15,35,33,34,32)$,
$(16,18,17,19,31,29,30,28),(20,22,21,23,27,25,26,24)]$,
$[(1,8,3,10,11,2,9),(12,38,15,36,13,39,14,37),(16,34,19,32,17,35,18,33)$, $(20,30,23,28,21,31,22,29),(4,26,7,24,6,27,5,25)]$,
$[(1,10,2,8,9,3,11),(12,36,14,38,13,37,15,39),(16,32,18,34,17,33,19,35)$,
$(20,28,22,30,21,29,23,31),(4,24,5,26,6,25,7,27)]$,
$[(1,12,3,14,15,2,13),(16,38,19,36,17,39,18,37),(20,34,23,32,21,35,22,33)$,
$(24,30,27,28,25,31,26,29),(4,10,7,8,6,11,5,9)]$,
$[(1,14,2,12,13,3,15),(16,36,18,38,17,37,19,39),(20,32,22,34,21,33,23,35)$,
$(24,28,26,30,25,29,27,31),(4,8,5,10,6,9,7,11)]$,
$[(1,16,3,18,19,2,17),(8,14,11,12,9,15,10,13),(20,38,23,36,21,39,22,37)$, $(24,34,27,32,25,35,26,33),(4,30,7,28,6,31,5,29)]$,
$[(1,18,2,16,17,3,19),(8,12,10,14,9,13,11,15),(20,36,22,38,21,37,23,39)$,
$(24,32,26,34,25,33,27,35),(4,28,5,30,6,29,7,31)]$,
$[(1,20,3,22,23,2,21),(8,18,11,16,9,19,10,17),(4,14,7,12,6,15,5,13)$,
$(24,38,27,36,25,39,26,37),(28,34,31,32,29,35,30,33)]$,
$[(1,22,2,20,21,3,23),(8,16,10,18,9,17,11,19),(4,12,5,14,6,13,7,15)$,
$(24,36,26,38,25,37,27,39),(28,32,30,34,29,33,31,35)]$,
$[(1,24,3,26,27,2,25),(8,22,11,20,9,23,10,21),(12,18,15,16,13,19,14,17)$, $(28,38,31,36,29,39,30,37),(4,34,7,32,6,35,5,33)]$, $[(1,26,2,24,25,3,27),(8,20,10,22,9,21,11,23),(12,16,14,18,13,17,15,19)$, $(28,36,30,38,29,37,31,39),(4,32,5,34,6,33,7,35)]$, $[(1,28,3,30,31,2,29),(8,26,11,24,9,27,10,25),(12,22,15,20,13,23,14,21)$, $(32,38,35,36,33,39,34,37),(4,18,7,16,6,19,5,17)]$,
$[(1,30,2,28,29,3,31),(8,24,10,26,9,25,11,27),(12,20,14,22,13,21,15,23)$, $(32,36,34,38,33,37,35,39),(4,16,5,18,6,17,7,19)]$,
$[(1,35,3,33,32,2,34),(8,30,11,28,9,31,10,29),(12,26,15,24,13,27,14,25)$, $(16,22,19,20,17,23,18,21),(4,38,7,36,6,39,5,37)]$,
$[(1,33,2,35,34,3,32),(8,28,10,30,9,29,11,31),(12,24,14,26,13,25,15,27)$, $(16,20,18,22,17,21,19,23),(4,36,5,38,6,37,7,39)]$
$[(1,36,3,38,39,2,37),(8,34,11,32,9,35,10,33),(12,30,15,28,13,31,14,29)$, $(16,26,19,24,17,27,18,25),(4,22,7,20,6,23,5,21)]$,
$[(1,38,2,36,37,3,39),(8,32,10,34,9,33,11,35),(12,28,14,30,13,29,15,31)$, $(16,24,18,26,17,25,19,27),(4,20,5,22,6,21,7,23)]$,
$[(1,2,3),(4,6,5,7),(8,39,36,10,38,9,37,11),(12,35,32,14,34,13,33,15)$,
$(16,31,28,18,30,17,29,19),(20,27,24,22,26,21,25,23)]$
shows that $76 \in Q(39)$.

