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Abstract 

Various graph labelings that generalize the idea of a magic square have 
been discussed. In particular a magic labeling on a graph with v vertices 
and e edges will be defined as a one-to-one map taking the vertices and 
edges onto the integers 1, 2, ... , v+e with the property that the sum of the 
label on an edge and the labels of its endpoints is constant independent 
of the choice of edge. 

Properties of these labelings are surveyed and the question of which 
families of graphs have magic labelings are addressed. 

1 Graph labelings 

All graphs in this paper are finite, simple and undirected (although the imposition 
of directions will cause no complications). The graph G has vertex-set V(G) and 
edge-set E(G). A general reference for graph-theoretic ideas is [19]. 

"This author wishes to thank the Department of Computer Science and Software Engineering, 
University of Newcastle, for its support. 
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A labeling (or valuation) of a graph is a map that carries graph elements to num
bers (usually to the positive or non-negative integers). In this paper the domain will 
usually be the set of all vertices and edges; such labelings are called totallabelings. 
Some labelings use the vertex-set alone, or the edge-set alone, and we shall call them 
vertex-labelings and edge-Iabelings respectively. Other domains are possible. The 
most complete recent survey of graph labelings is [5]. 

We shall define two labelings of the same graph to be equivalent if one can be 
transformed into the other by an automorphism of the graph. 

2 The magic property 

Various authors have introduced labelings that generalize the idea of a magic square. 
Sedlacek [17] defined a graph to be magic if it had an edge-labeling, with range the 
real numbers, such that the sum of the labels around any vertex equalled constant, 
independent of the choice of vertex. These labelings have been studied by Stewart 
(see, for example, [18]), who called a labeling supermagic if the labels are consecu
tive integers, starting from 1. Several others have studied these labelings; a recent 
reference is [6]. Some writers simply use the name "magic" instead of "supermagic" 
(see, for example, [3D. 

Kotzig and Rosa [10] define a magic labeling to be a total labeling in which the 
labels are the integers from 1 to W(G)I + IE(G)I. The sum of labels on an edge and 
its two endpoints is constant. In 1996 Ringel and Llado [16] redefined this type of 
labeling (and called the labelings edge-magic, causing some confusion with papers 
that have followed the terminology of [12], mentioned below); see also [7]. Recently 
Enomoto et al [4] have introduced the name super edge-magic for magic labelings in 
the sense of Kotzig and Rosa, with the added property that the v vertices receive 
the smaller labels, {1, 2, .. " v}. 

In 1983, Lih [13] introduced magic labelings of planar graphs where labels ex
tended to faces as well as edges and vertices, an idea which he traced back to 13th 
century Chinese roots. Baca (see, for example, [1, 2]) has written extensively on 
these labelings. A somewhat related sort of magic labeling was defined by Dickson 
and Rogers in [3]. 

Lee, Seah and Tan [12] introduced a weaker concept, which they called edge
magic, in 1992. The edges are labeled and the sums at the vertices are required to 
be congruent modulo the number of vertices. 

Total labelings have also been studied in which the sum of the labels of all edges 
adjacent to the vertex x, plus the label of x itself, is constant. A paper on these 
labelings is in preparation [14]. 

In order to clarify the terminological confusion defined above, we define a labeling 
to be edge-magic if the sum of all labels associated with an edge equals a constant 
independent of the choice of edge, and vertex-magic if the same property holds for 
vertices. (This terminology could be extended to other substructures: face-magic, 
for example.) The domain of the labeling is specified by a modifier on the word 
"labeling". We shall always require that the labeling is a one-to-one map onto the 
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appropriate set of consecutive integers starting from 1. For example, Stewart studies 
vertex-magic edge-labelings, and Kotzig and Rosa define edge-magic totallabelings. 
Hypermagic labelings are vertex-magic totallabelings. 

In this paper we shall study edge-magic totallabelings. Two of the early papers 
on such labelings, [9] and [11], appeared only as research reports. Probably because 
of this, only a few papers have appeared, but there has recently been a resurgence of 
interest in these labelings - [16], [7] and [4]. Because of the confusion of terminology, 
and because several results have not appeared in the open literature, the present 
paper includes a partial survey of the field, and contains more details of known 
results than is usual. 

3 Edge-magic total labelings 

For brevity we shall follow Gallian's lead, and use the term "magic" as was done by 
Kotzig and Rosa [10] - a "magic labeling" will henceforward mean an edge-magic 
total labeling. 
Definition. A magic labeling on G will mean a one-to-one map>. from V(G) UE(G) 
onto the integers 1, 2, ... , v + e, where v = IV (G) I and e = IE( G) I, with the property 
that, given any edge (x, y), 

>'(X) + >'(x, y) + >.(y) = k 

for some constant k. It will be convenient to call >,(x) + >.(x, y) + ,\(y) the edge sum 
of (x, y), and k the (constant) magic sum of G. A graph is called magic if it admits 
any magic labeling. 

The basic requirements in order that {Xl,X2,"',Xv } = >'(V(G», where'\ is a 
magic labeling of a graph G with magic sum k, are 

(i) Xh+Xi+Xj = k cannot occur if any two of>. -1 (Xi), >. -1 (Xj), >. -1 (Xk) are adjacent; 

(ii) the sums Xi + Xj, where (,\-I(Xi), >.-l(Xj» is an edge, are all distinct; 

(iii) 0 < k - (Xi + Xj) ::; v + e when >.-1 (Xi) is adjacent to ,\ -l(Xj). 
Suppose ,\ is a magic labeling of a given graph. If x and yare adjacent vertices, 

then edge (x, y) has label k - '\(x) - >.(y). Since the sum of all these labels plus the 
sum of all the vertex labels must equal the sum of the first v + e positive integers, k 
is determined. So the vertex labels specify the complete labeling. 

Of course, not every possible assignment will result in a magic labeling: the above 
process may give a non-integral value for k, or give repeated labels. 

4 Some elementary counting 

As a standard notation, assume the graph G has v vertices and e edges. It will be 
convenient to write M = v + e + 1. For notational convenience, we always say vertex 
Vi has degree di and receives label Xi. 
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Among the labels, write S for the set {Xi: 1 ::; i ::; v} of vertex labels, and 8 for 
the sum of elements of S. Then S can consist of the v smallest labels, the v largest 
labels, or somewhere in between, so 

v v+e 

I>::; 8::; 2: i, 
i=l i=l+e 

(V~l) ::; 8 ::; ve + (V~l). (1) 

Clearly, 2:XYEE(A(X, Y) + A(X) + A(Y)) ek. This sum contains each label once, 
and each vertex label Xi an additional di - 1 times. So 

(2) 

If e is even, every di is odd and v + e == 2(mod4) then (2) is impossible, as noted in 
[16]. We have 

Theorem 1 [16] If G has e even and v + e == 2(mod4), and every vertex of G has 
odd degree, then G is not magic. 0 

Corollary 1.1 The complete graph Kn is not magic when n == 4(mod8). The n
spoke wheel Wn is not magic when n == 3( mod 4). 0 

(We shall see in Section 7 that Kn is never magic for n > 6, so the first part of the 
Corollary really only eliminates K4.) 

In particular, suppose G is regular of degree d. Then (2) becomes 

ke (d-1)8+Ci)=(d 1)8+Hv+e)(v+e+1) (3) 

or, since e = ~dv, 
kdv = 2(d -1)8 + (v + e)(v + e + 1). (4) 

5 Duality 

Given a labeling A, its dual labeling X is defined by 

and for any edge X, 

A'(X) = M A(X). 

It is easy to see that if A is a magic labeling with magic sum k then X is a magic 
labeling with magic sum k' = 3M - k. The sum of vertex labels is 8' = vM - 8. 

Either 8 or 8' will be less than or equal to ~vM. This means that, in order to see 
whether a given graph is magic, it suffices to check either all cases with 8 ::; 4vM or 
all cases with 8 ~ ~vM (equivalently, k ::; ~M or k ~ ~M). 
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6 Graphs with complete sub graphs 

A well-spread sequence A = (aI, a2, ... ,an) of length n is a sequence with the follow
ing properties: 

2. ai + aj =I=- ak + at whenever i =I=- j and k =I=- e (except, of course, when {ai, aj} = 

{ak' at}). 

Let 

p(A) = an + an-l - a2 - al + 1 
p*(n) = minp(A) 

where the minimum is taken over all well-spread sequences A of length n. Well
spread sequences were defined in [9]. The value of p*(n) is discussed in [9] (see also 
[15]); for our purposes we need to know that 

p*(7) = 30, p*(8) = 43, (5) 

and 
p*(n) 2: n2 - 5n + 14 when n > 8. (6) 

Suppose G has a magic labeling A with magic sum k, and suppose G contains a 
complete sub graph H with n vertices. (The usual parameters v and e refer to G, not 
to H.) Write Xl, X2,"', Xn for the vertices of H, ai = A(Xi), and suppose the vertices 
have been ordered so that al < a2' .. < an- Then obviously A = (al < a2 ... < an) 
is a well-spread sequence. Then 

and since A(XnXn-l) is a label, 

(7) 

Similarly 

and since A(X2Xd is a label, 

(8) 

Combining (7) and (8) we have 

v + e 2: an + an-l - a2 - al + 1 = p(A) 2: p*(n). 

Theorem 2 [11] lfthe magic graph G contains a complete subgraph with n vertices, 
then the number of vertices and edges in G is at least p*(n). 0 
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7 Complete graphs 

Theorem 3 [11] No complete graph with more than 6 vertices is magic. 

Proof. Suppose a magic labeling of Kn existed. From Theorem 2, 

n + (;) ~ p*(n). 

For n = 7, this says 28 ~ 30, and for n = 8, it says 36 2:: 43: see (5). Both are false. 
And for n > 8, (6) yields 

~n(n - 1) + n ~ n2 
- 5n + 14 

or equivalently 
n2 

- l1n + 28 :s; 0, 

which is false for n > 8. o 

7.1 All magic labelings of complete graphs 

Here are all magic labelings for complete graphs. Notice that in every case the 
solution for a given k is unique (if one exists). 
K2 Trivially possible. 
K3 Sum values to be considered are k = 9, 10, 11, 12. 

k = 9, s = 6, S = {I, 2, 3}. 
k 10, s = 9, S = {I, 3, 5}. 
k = 11, s = 12, S = {2, 4, 6}. 
k = 12, s = 15, S = {4,5,6}. 

K4 No solutions, by Corollary 1.l. 
K5 Sum values to be considered are k = 18,21,27,30,33. 

k 18, s = 20, S = {1,2,3,5,9}. 
k = 21, s = 30, no solutions. 
k = 24, s = 40, S = {I, 8, 9, 10, 12}. 
k = 24, s = 40, S = {4,6, 7,8, 15}. 
k = 27, s = 50, no solutions. 
k 30, s = 60, S = {7, 11, 13, 14, 15}. 

K6 Sum values to be considered are k = 21,25,29,33,37,41,45. 
k 21, s = 21, no solutions. 
k 25, s = 36, S = {I, 3, 4,5,9, 14}. 
k 29, s = 51, S = {2, 6, 7, 8,10, 18}. 
k 33, s = 66, no solutions. 
k 37, s 81, S = {4, 12, 14, 15, 16, 20}. 
k = 41, s = 96, S = {8, 11, 17, 18,19, 21}. 
k = 45, s = 111, no solutions. 
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8 Cycles 

The cycle Cv is regular of degree 2 and has v edges. So (1) becomes 

v(v+1)~2s~2v2+V(v+1) v(3v+1), 

and (3) is 
kv = s + v(2v + 1), 

whence v divides s; in fact s = (k 2v - l)v. When v is odd, s has v + 1 possible 
values ~v(v + 1), ~v(v + 3)" ", ~v(v + 2i - 1)"", ~v(3v + 1), with corresponding 
magic sums !(5v + 3), !(5v + 5)"", H5v + 2i + 1)"", !(7v + 3). For even v, there 
are v values s = !v2 + V, !v2 + 2v,"', ~V2 + iv,"', ~V2, with corresponding magic 
sums ~v + 2, ~v + 3, .. " ~v + i + 1,' . " '2v + 1. 

All odd cycles are super edge-magic as it is shown in [4]. Kotzig and Rosa [10] 
proved that all cycles are magic, producing examples with k = 3v + 1 for v odd, 
k ~v + 2 for v == 2(mod 4) and k = 3v for v O(mod 4). In [7], labelings are 
exhibited for the minimum values of k in all cases. For convenience we give proofs 
for all cases, not exactly the same as the proofs in the papers cited. In each case the 
proof consists of exhibiting a labeling. If vertex-names need to be cited, we assume 
the cycle to be (Ul, U2,"', uv ). 

Theorem 4 Every odd cycle has a magic labeling with k = ~(5v + 3). 

Proof. Say v = 2n+ 1. Consider the cyclic vertex labeling (1, n+ 1, 2n+ 1, n, ... ,n+ 
2), where each label is derived from the preceding one by adding n(mod 2n+ 1). The 
successive pairs of vertices have sums n + 2, 3n + 2, 3n + 1, ... ,n + 3, which are all 
different. If k = 5n + 4, the edge labels are 4n + 2, 2n + 2, 2n + 3, .. " 4n + 1, as 
required. We have a magic labeling with k = 5n + 4 = ~(5v + 3) and s = ~v(v + 1) 
(the smallest possible values). 0 

By duality, we have: 

Corollary 4.1 Every odd cycle has a magic labeling with k = ~(7v + 3). 0 

Theorem 5 Every odd cycle has a magic labeling with k 3v + 1. 

Proof. Again write v = 2n + 1. Consider the cyclic vertex labeling (1, 2n + 1, 4n + 
1,2n - 1"", 2n + 3); in this case each label is derived from the preceding one by 
adding 2n(mod 4n + 2). The construction is such that the second, fourth, ... ,2n
th vertices receive labels between 2 and 2n + 1 inclusive, while the third, fifth, 
... , (2n + 1 )-th receive labels between 2n + 2 and 4n + 1. The successive pairs of 
vertices have sums 2n + 2, 6n + 2, 6n, 6n - 2, ... , 2n + 4; if k = 3v + 1 = 6n + 4, the 
edge labels are 4n + 2,2,4, ... ,4n. We have a magic labeling with k = 3v + 1 and 
s = v2 (the case i = ~(v + 1) in the list). 0 

Corollary 5.1 Every odd cycle has a magic labeling with k = 3v + 2. o 
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Theorem 6 Every even cycle has a magic labeling with k = ~ (5v + 4). 

Proof. Write v = 2n. If n is even, 

3n 

1 
(i + 1)/2 

A( Ui) = (2n + i) /2 
(i+2)/2 
(2n+i-1)/2 

while if n is odd, 

(i + 1)/2 
3n 

(2n + i + 2)/2 
(n + 3)/2 
(i + 3)/2 
(2n + i)/2 
n+2 

for i = 1,3, ... , n + 1 
for i = 2 
for i = 4, 6, ... , n 
for i = n + 2, n + 4,"" 2n 
for i = n + 3, n + 5"", 2n - 1, 

fori=1,3,"',n 
for i = 2 
for i = 4,6, ... , n - 1 
for i n + 1 
for i = n + 2, n + 4, ... , 2n - 1 
for i = n + 3, n + 5, ... , 2n - 2 
for i = 2n. 

o 

Corollary 6.1 Every cycle of length divisible by 4 has a magic labeling with k = 
~(7v+2). 0 

Theorem 7 Every cycle of length divisible by 4 has a magic labeling with k = 3v. 

Proof. For v = 4 the result is given by Theorem 6. So assume v 2: 8, write 
v = 4n, n > 1. The required labeling is 

i 
4n + i + 1 
i+1 
4n+i 
2 
2v - 2 

for i = 1,3,' ", 2n - 1 
for i = 2,4, ... , 2n - 2 
for i = 2n, 2n + 2, ... , 4n - 2 
for i = 2n + 1, 2n + 3,"', 4n - 3 
for i = 4n - 1 
for i = 4n. 

o 

Corollary 7.1 Every cycle of length divisible by 4 has a magic labeling with k = 
3v + 3. 0 

8.1 Small cycles 

We list all magic labelings of cycles up to C6 • 

There are four labelings of C3: see under K 3 , in Section 7.1. 
For C4 , the possibilities are k = 12,13,14,15, with s = 12, 16,20,24 respectively. 

The unique solution for k = 12 is the cyclic vertex-labeling (1,3,2,6). For k = 13 
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there are two solutions: (1,5,2,8) and (1,4,6,5). The other cases are duals of these 
two. 

For C5, one must consider k = 14,15,16(8 = 15,20,25) and their duals. The 
unique solution for k = 14 is (1,4,2,5,3) (the solution from Theorem 4). There are 
no solutions for k = 15. For k = 16, one obtains (1,5,9,3,7) (the solution from 
Theorem 5) and also (1, 7,3,4,10). Many other possible sets S must be considered 
when k 15 or 16, but all can be eliminated using the following observation. The set 
S cannot contain three labels that add to k: for, in C5, some pair of the corresponding 
vertices must be adjacent (given any three vertices of C5 , at least two must be 
adjacent), and the edge joining them would require the third label. 

C6 has possible sums k = 17,18,19 (8 = 24,30,36) and duals. For k = 17 there 
are three solutions: (1,5,2,3,6,7), (1,6,7,2,3,5) and (1,5,4,3,2,9). Notice that two 
non-isomorphic solutions have the same set of vertex labels. There is one solution for 
k = 18, (1,8,4,2,5,10), and six for k = 19, namely (1,6,11,3,7,8), (1,7,3,12,5,8), 
(1,8,7,3,5,12), (1,8,9,4,3,11), (2,7,11,3,4,9) and (3,4,5,6,11,7). 

In the case of C7, the possible magic sums run from 19 to 26, and Godbold and 
Slater [7] found that all can be realized; there are 118 labelings up to isomorphism. 
The corresponding numbers for C8 , C9 and C lO are 282, 1540 and 7092 [7]. 

8.2 Generalizations of cycles 

Paths 
A path is a simplest caterpillar and those are known to be magic [10, 16]. 
Alternatively, the path Pn can be viewed as a cycle Cn with an edge deleted. 
Say A is a magic labeling of Cn with the property that label 2n appears on an 

edge. If that edge is deleted, the result is a Pn with a magic labeling. 
For every n, there is a labeling of Cn in which 2n appears on an edge - the 

labelings in Theorem 4 and 6 have this property. 
Suns 

An n-sun is a cycle Cn with an edge terminating in a vertex of degree 1 attached 
to each vertex. 

Theorem 8 All suns are magic. o 

Proof. First we treat the odd case. Denote by A the magic labeling of Cn given in 
Theorem 4. We construct a labeling J-t which has J-t(u) = A(U) + n whenever u is a 
vertex or edge of the cycle. If a vertex has label x then the new vertex attached to it 
has label ax, where ax == x - ~(n - l)(mod n) and 1 ::; ax ::; n, and the edge joining 
them has label bx, where bx == n + 1 - 2x(mod n) and 3n + 1 ::; bx ::; 4n. Then J-t is 
a magic labeling with k = !(lln + 3). 

In the even case, ). is the magic labeling of Cn given in Theorem 6. The labeling 
J1 again has J-t(u) = A(U) + n whenever u is an element of the cycle. The vertex with 
label x is adjacent to a new vertex with label ax, and the edge joining them has label 
bx , where: 

• if 1 ::; x ::; ~n then 
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- ax == x+ ~n(modn) and 1:::; ax:::; n, 

- bx == 2 - 2x(mod n) and 3n + 1 :::; bx :::; 4n; 
• if 1 + ~n :::; x < n then 

- ax == x+ ~n+ l(modn) and 1:::; ax:::; n, 

- bx == 1 - 2x(mod n) and 3n + 1 :::; bx :::; 4n; 

• a~ = b~ = 1. 
Then J-l1s a niagic labeling with k = ~(lln + 4). 0 

Kites 
An (n, t)-kite consists of a cycle of length n with a t-edge path (the tail) attached 

to one vertex. We write its labeling as the list of labels for the cycle (ending on 
the attachment point), separated by a semicolon from the list of labels for the path 
(starting at the vertex nearest the cycle). 

Theorem 9 An (n, 1) -kite (a kite with tail length 1) is magic. 

Proof. For convenience, suppose the tail vertex is Y and its point of attachment is 
Z. 

First, suppose n is odd. Denote by A the magic labeling of en given in Theorem 4, 
with the vertices arranged so that A(Z) = 4(n + 1). Define a labeling J-l by J-l(x) = 
A(X) + 1 whenever x is an element of the cycle, J-l(Y) = 2v + 2) and JL(Y, z) = 1. Then 
J-l is a magic labeling with k = ~(5n + 9). 

If v is even, A is the magic labeling of Theorem 6, with A(Z) = !(v + 2). Define a 
labeling J-l by J.l(x) = A(X) + 1 whenever x is an element of the cycle, JL(Y) = 2v + 2) 
and J-l(Y, z) = 1. Then JL is a magic labeling with k = ~(5v + 10). 0 

9 Complete bipartite graphs 

A magic labeling of a complete bipartite graph can be specified by giving two sets 
Sl and S2 of vertex labels. 

Theorem 10 [10J The complete bipartite graph Km,n is magic for any m and n. 

Proof. The sets Sl = {n + 1, 2n + 2", " m(n + I)}, S2 = {I, 2" .. ,n}, define a 
magic labeling with k = (m + 2)(n + 1). 0 

9.1 Small cases 

A computer search has been carried out for magic labelings of K 2,3' The usual 
considerations show that 14 :::; k :::; 22, with cases k = 19,20,21,22 being the duals 
of cases k = 17,16,15,14. The solutions up to k = 18 are 
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k = 14, no solutions 
k = 15, 8 1 = {I, 2}, 82 = {3, 6, 9} 
k = 16, 8 1 = {I, 2}, 82 = {5, 8, 11} 

81 = {I, 3}, 82 = {5, 6, 11} 
8 1 = {4,6}, 82 = {1,2, 7} 
81 = {4, 8}, 82 = {I, 2, 3} 

k = 17, 81 = {I, 8}, 82 = {5, 6, 7} 
81 = {5, 6}, 82 = {I, 4, 9} 

k = 18, 8 1 = {I, 5}, 82 = {9, 10, 11} 
81 {7, 11}, 82 = {I, 2, 3}. 

(The last two are of course duals.) 
For K 3,3 one has 18 ~ k ~ 30, and k must be even. Cases k = 26,28,30 are dual 

to cases k = 22,20, 18. The solutions are 
k = 18, no solutions 
k = 20, 81 = {I, 2, 3}, 

81 = {I, 2, 9}, 
k = 22, 81 = {I, 2, 3}, 

81 = {I, 3, 5}, 
81 = {I, 5, 12}, 

k = 24, no solutions. 

9.2 Stars 

82 = {4, 8, 12} 
82 = {4,6,8} 
82 = {7, 11, 15} 
8 2 = {7, 8, 15} 
8 2 = {6, 7, 8} 

A star is also a caterpillar and the fact that caterpillars are magic was given in 
[10, 16]. Here we present an alternative magic labeling of the star K l ,n-

Lemma 11 In any magic labeling of a star, the center receives labell, n + 1 or 
2n + l. 

Proof. Suppose the center receives label x. Then 

kn = en
2+

2
) + {n - l)x. (9) 

Reducing (9) modulo n we find 

x == (n + 1) (2n + 1) == 1 

and the result follows. o 

Theorem 12 There are 3· 2n magic labelings of K l ,n, up to equivalence. 

Proof. Denote the center of a K l ,n by c, the peripheral vertices by VI, V2, •• " Vn and 
edge (c, Vi) by ei. From Lemma 11 and (9), the possible cases for a magic labeling 
are A(C) = 1, k = 2n + 4, A(C) = n + 1, k = 3n + 3 and A(C) = 2n + 1, k = 4n + 2. 
As the labeling is magic, the sums A(Vi) + A(ei) must all be equal to M = k - A(C) 
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(so M = 2n + 3, 2n + 2 or 2n + 1). Then in each case there is exactly one way to 
partition the 2n + 1 integers 1,2, ... ,2n + 1 into n + 1 sets 

where every ai + bi = M. For convenience, choose the labels so that ai < bi for 
every i and al < a2 < '" < an. Then up to isomorphism, one can assume that 
{A(Vi), A(ei)} = {ai, bi}. Each of these n equations provides two choices, according 
as A ( Vi) = ai or bi , so each of the three values of A (c) gives 2n magic labelings of 
Kl,n' 0 

10 Odds, ends and conjectures 

Trees 

It is conjectured ([10], also [16]) whether all trees are magic. Kotzig and Rosa [10] 
proved that all caterpillars are magic. (A caterpillar is a graph derived from a path 
by hanging any number of pendant vertices from the vertices of the path.) 

Enomoto et al [4] checked that all trees with less than 16 vertices are magic. 

The Petersen graph 

If the standard representation is used, with an ordinary cycle outside and a step-two 
cycle inside, the vertex labels 

outside vertices (around the cycle) 13694; 

inside vertices 105872 (1 adjacent to 10, 3 to 5, ... ). 

define a magic labeling. 

Wheels 

As was noted in Corollary 1.1, the n-spoke wheel Wn has no magic labeling when 
n == 3(mod 4). Enomoto et al [4] have checked all wheels up to n = 29 and found 
that the graph is magic if n ::f:- 3(mod4). It is conjectured that Wn is magic whenever 
n::f:- 3(mod 4). 

Disconnected graphs 

Kotzig and Rosa show tK4 is not magic for t odd, and the same is obviously true of 
the union of odd numbers of copies of Kn when n == 4(mod8). No results are known 
for even numbers of copies. 

The one-factor F2n , consisting of n independent edges, is magic if and only if n 
is odd [10]. 
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