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Abstract 

In a projective space PG(n, q) a quasi-quadric is a set of points that 
has the same intersection numbers with respect to hyperplanes as a non­
degenerate quadric in that space. Of course, non-degenerate quadrics 
themselves are examples of quasi-quadrics, but many other examples ex­
ist. In the case that n is odd, quasi-quadrics have two sizes of inter­
sections with hyperplanes and so are two-character sets. These sets are 
known to give rise to strongly regular graphs, two-weight codes, differ­
ence sets, SDP-designs, Reed-Muller codes and bent functions. When 
n is even, quasi-quadrics have three sizes of intersection with respect to 
hyperplanes. Certain of these may be used to construct antipodal dis­
tance regular covers of complete graphs. The aim of this paper is to draw 
together many of the known results about quasi-quadrics, as well as to 
provide some new geometric construction methods and theorems. 
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1 Introd uction and preliminaries 

In this section we briefly recall some definitions from graph theory, coding theory 
and design theory that will be used in later sections. 

A graph is a pair r = (V, E) where V is a non-empty set of vertices and E is 
a collection of 2-subsets of V, called edges. A path of length i joining two vertices 
"'1,8 E r is a sequence "'I = '/'0, "'11," ., '/'i 8 of vertices such that {'I'j, '/'j+1} is an 
edge for j = 0,1, ... ,i - 1. We will only be concerned with connected graphs, that 
is, graphs in which each pair of vertices is joined by a path. The distance db, 8) of 
two vertices ,/,,8 is the length of a shortest path joining them, and the diameter d of 
r is the maximal distance occurring between two vertices in r. For i = 1,2, ... ,d, 
the distance-i graph r i is the graph with vertex set V and with edges the pairs of 
vertices which are at distance i in r. 

The graph r is antipodal of diameter d > 1 if the distance-d graph r d is a disjoint 
union of cliques. In this case, we define a new graph f whose vertices are the maximal 
cliques of r d, and two vertices are adjacent if their union contains an edge of r. If 
each vertex '/' E r has the same valency as the vertex of f which is the maximal 
clique containing ,,(, then r is called an antipodal covering graph of f. If, in addition, 
all maximal cliques of r d have the same size r then r is an antipodal r-cover of f. 

The graph r is distance regular if there are integers bi - 1, Ci (for i = 1,2, ... , d) 
such that for any two vertices ,,(,8 E r at distance i = db, 8), there are precisely Ci 

neighbours of 8 at distance i-I from ,/" and precisely bi neighbours of 8 at distance 
i + 1 from '/'. In particular r is regular of valency k, and its intersection array is the 
sequence {bo,b1, ... ,bd-1;C1,C2,'" ,Cd}' 

The graph r is strongly regular with parameters (IV\, k, ,\, /-l) if it is regular with 
valency k and if the number of vertices joined to two given adjacent vertices is A 
and the number of vertices joined to two given non-adjacent vertices is /-l, i.e. it is a 
distance regular graph with intersection array {k, k - 1 - A; 1, p}. 

For a positive integer e, a perfect e-code in a graph r is a non-empty subset C of 
the vertex set with the property that any vertex lies at distance at most e from a 
unique vertex in C. 

Let X be a finite set. An association scheme with d classes ([3, 2.1]) is a pair 
(X, n) such that: 
(i) n = (Ro, R1, .•• , Rd ) is a partition of X x X; 
(ii) Ro = {(x, x): x E X}j 
(iii) if (x, y) E Ri then (y, x) E Ri for i = 0,1, ... , d; 
(iv) there are integers pfj such that for any pair (x, y) E Rk the number of z E X 
such that (x, z) E Ri and (y, z) E Rj equals pfj. 

An [n, k]-code Cover GF(q) is a k-dimensional subspace of GF(q)n. The weight 
wt(x) of a vector x E GF(q)n is the number of its non-zero entries, and C is a 
two-weight code if I{i: i =f. 0 and there exists a vector x E C with wt{x) = i}1 = 2. 

Let V be an m-dimensional vector space over GF(2). The First-order Reed­
Muller code n(l, m) is the subspace of the vector space of functions V --t GF(2) 
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that consists of all polynomial functions in monomials Xi, that is, 

'R(I, m) = (Xi: i = 1, ... , m) . 

Let G be an additively written group of order v. A k-subset D of G is a (v, k, A; n) 
difference set of order n = k - A if every non-zero element of G has exactly A 
representations as a difference d - d' for d, d' ED. The difference set is called 
elementary Abelian if G is elementary Abelian. 

Let A be a proper set of non-zero vectors in a vector space V over GF(q). Then 
A is a {AI, A2}-difference set over GF(q) if GF(q)* A = A and if for v E V \ {O}, the 
set {(x, y): x, yEA and X y = v} has cardinality Al if v E A and A2 if v rt A \ {O}. 

A symmetric (v, k, A)-design satisfies the symmetric difference property (see [11]) 
if for every three blocks B, 0, D then B 6. 0 6. D (where X 6. Y = (X u Y) \ (X n Y) 
is the symmetric difference of X and Y) is either a block or the complement of a 
block. Such a design is called an SDP-design. 

Let V be an m-dimensional vector space over GF(2) and let P(x) be a function 
from V to GF(2). Then P(x) is called a bent function if the Fourier coefficients of 
(_I)P(x) are alII [14]. 

2 A construction method 

In this section we begin by outlining a general construction method in projective 
geometries. Various instances of the method are then examined. In subsection 2.1 it 
is shown how the construction method gives rise to antipodal distance regular covers 
of complete graphs. Theorems are also proved about feasible parameters for the 
sets used to construct the covers, and an example is given that has "non-standard" 
parameters. In subsection 2.2 sets in projective spaces with two intersection numbers 
are examined. A very brief survey of results connecting these sets to strongly regular 
graphs, two-weight codes, difference sets, SDP-designs, Reed-Muller codes and bent 
functions is given. 

Let /C be a set of points in PG(n, q), and embed PG(n, q) as a hyperplane Eoo in 
PG(n + 1, q). Define a graph r(/C) as follows: the vertices are the points of the affine 
space AG(n + 1, q) = PG(n + 1, q) \ Eoo and two vertices are adjacent if the line of 
PG(n + 1, q) joining them meets Eoo in a point of /C. In fact it is true in general that 
r(/C) is the point graph of the geometry that is a linear representation of /C, where 
the geometry is constructed as follows: the points of the geometry are the points of 
the affine space AG(n + 1, q) = PG(n + 1, q) \ ~oo and the lines of the geometry are 
the lines of PG(n + 1, q) not in Eoo and which meet ~oo in a point of /C (see [5]). 

Example 1 (Thas [16], see also [3, Section 12.5.1]) 
Let Q be a non-singular (parabolic) quadric in PG(n, q) or an oval in PG(2, q), 
where nand q are both even. Then r( Q) is an antipodal distance-regular graph 
with intersection array {qn -1, qn - qn-l, 1; 1, qn-l, qn -I} and diameter 3. Further, 
a subset C of the vertex set of f(Q) is a perfect I-code if and only if 0 plus the 
nucleus form a line of PG(n + 1, q). 
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Example 2 (Ahrens and Szekeres [1], see also [13, Section 3.1.3]) 
Let 1-l be a hyperoval in PG(2, q), where q is even. Then r(ti) (often denoted 
r(T;(1-l))) is the point graph of the Ahrens-Szekeres generalized quadrangle T;(1-l), 
of order (q - 1, q + 1), the points of the generalized quadrangle being the points of 
AG(3, q) = PG(3, q) \ PG(2, q), and the lines of the generalized quadrangle being the 
lines of PG(3, q) not contained in PG(2, q) and meeting PG(2, q) in a point of 1-l. 

2.1 Equitable partition case 

In this section we introduce a general setting which includes example 1. 
Let S1 = (S1 I , S12 , ... , S1d ) be a partition of the set of points of PG(n, q). Then 

S1 induces an equivalence relation on the set of hyp.erplanes of PG(n, q), in which 
hyperplanes HI, H2 are equivalent if IHI n S1 i l = IH2 n S1i l for i = 1,2, ... , d. Let 
S1A be the partition induced by this equivalence relation on the set of hyperplanes of 
PG(n, q). It is known that S1A has at least as many parts as n (by [2]), and we say 
that n is equitable if S1A has the same number of parts as S1. 

We remark that Bridges and Mena proved that equitable partitions also give rise 
to association schemes. 

Theorem 1 ([2]) 
Let 2:00 be a hyperplane in PG(n + 1, q) and let S1 = (S1 I , ... , Od) be a partition of 
I;oo. Then n is an equitable partition ifand only if the graphs r(nd, ... , f(S1d) form 
an association scheme with d classes. 

As in example 1, let Q be a non-singular (parabolic) quadric in PG(n, q) or an 
oval in PG(2, q), where nand q are both even, and let N be the nucleus of Q. Since 
every hyperplane on N meets Q in the same number of points, and hyperplanes 
not on N meet Q in one of two possible numbers of points, it is straightforward 
to verify that the partition (Q, PG (n, q) \ (Q U {N}), N) is equitable. In fact this 
equitable partition has extra properties, and Godsil [8] has shown that such equitable 
partitions always give rise to antipodal distance-regular covers of complete graphs, 
as follows. 

Theorem 2 ([8, Theorem 6.1]) 
Let 2:00 be a hyperplane in PG(n + 1, q) and let (S1 I , S12 , S13 ) be an equitable parti­
tion of ~oo' Then r(S1 I ) is distance-regular with qn+1 vertices and is an antipodal 
qt+l-cover of a complete graph on qn-t vertices, if and only if: 

(1) S1 I is not a su bspace of 2:00 ; 
(2) S13 is a subspace of dimension t; 
(3) each (t + I)-dimensional subspace of 2:00 containing S13 meets S11 in 

exactly one point. 

In view of theorems 1 and 2, we wish to investigate equitable partitions of pro­
jective spaces which satisfy the conditions of theorem 2. Without loss of generality, 
we can fix in PG(n, q) a subspace N of dimension t and say that a disjoint set K of 
points is a pseudo-complement for N if: 
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(i) each (t + I)-dimensional subspace of PG(n, q) containing N meets IC in exactly 
one point; 

(ii) each hyperplane not containing N meets IC in either a or b points, where 
0::; a < b. 

The set IC will play the role of 0 1 and N will play the role of rho It is straight­
forward to verify that if IC is not a subspace then the partition (1C, PG(n, q) \ 
(IC U {N}), N) is equitable. We do not include the restriction that IC not be a 
subspace, for it is more convenient in the analysis and these examples can just be 
discarded later. 

We remark that IICI = (qn-t - 1)/(q 1). 

Example 3 
Let n = 2m and q be even. A parabolic quasi-quadric with nucleus the point N in 
PG (n, q) is a set IC of (qn -1) / (q-l) points such that each line on N contains a unique 
point of IC and each hyperplane not on N meets IC in either (qm + 1) (qm-l -1) / (q -1) 
or (qm - l)(qm-l + 1)/(q - I) points. A parabolic quasi-quadric with nucleus N is a 
pseudo-complement for N. An example of a parabolic quasi-quadric is a non-singular 
parabolic quadric Q with nucleus N, since each hyperplane not on N meets Q in a 
non-singular elliptic or hyperbolic quadric. Further examples will be constructed in 
section 3.1. 

We now collect results and further study the pseudo-complements for subspaces 
in PG(n,q). 

Theorem 3 ([8, 7.1, Corollary]) 
If q is odd then any pseudo-complement for a t-dimensional subspace N ofPG(n, q) 
is an (n - t - 1}-dimensional subspace not through N. 

Theorem 4 
Let N be an (n - 2)-dimensional subspace ofPG(n, q), n ~ 2, and let IC be a pseudo­
complement for N. Then either 

(i) IC is a line; or 

(ii) n = 2, q is even and IC is an oval with nucleus N. 

Proof. First, if a > 0 then IC is a set of q + 1 points which is met by every 
hyperplane; so IC is a line [9, Section 3.5J. Next, suppose a = 0 and let tb denote 
the number of hyperplanes not on N meeting IC in b points. It is straightforward to 
verify that 

btb = (q + 1) --- - 1 (
qn 1 ) 
q-1 ( 

n-l 1) 
and b(b - 1)tb = (q + l)q q q _ ~ ; 

so b = 2 and ta =I- O. If n = 2 then IC is an oval with nucleus the point Nand q is 
even. Otherwise, suppose n ~ 3. Let L: be a hyperplane not on N and not meeting 
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K, and let Bn - 2 be a hyperplane of B meeting N in the (n - 3)-dimensional subspace 
~ n N. One hyperplane on ~n-2 contains N and hence meets /( in one point, and 
we suppose m hyperplanes on Bn - 2 meet K in two points. Then 1 + 2m = q + 1; so 
q is even. Now let ~n-2 be an (n - 2)-dimensional subspace of PG(n, q) meeting N 
in an (n - 4)-dimensional subspace, and let IBn - 2 n KI = m. Since no hyperplane on 
~n-2 meets K in one point, if m = 0 then 2 divides 1/(1 = q + 1, a contradiction. If 
m 2:: 1 then m + (q + 1)(2 - m) = q + 1, so m (q + 1)/q; also a contradiction. 0 

Theorem 5 
Let N be an (n 3)-dimensional subspace ofPG(n, q), n 2:: 3, and let K be a pseudo­
complement for N. Then either: 

(a) K is a plane not meeting N; 

(b) q = 2, n = 3 and }C U {N} is the complement for a plane in PG(3, 2); 

(c) q is an even square, a = q - Vii + 1 and b = q + Vii + 1. 

Proof. For ease of notation we write 7d = (qd - l)/(q 1), the number of points 
in a (d - I)-dimensional subspace of PG(n, q). In particular, 7d = q7d-l + 1. Let }C 

be a pseudo-complement for N, and let ta, tb denote the numbers of hyperplanes not 
on N meeting }C in a or b points, respectively. It easily follows from the definitions 
that 

Thus, 

ta + tb = 7n+l - 73 

ata + btb = 73 ( 7 n - 72) 

a(a l)ta + b(b - 1)tb = 73(73 1)(7n-l - 1). 

and 
t _ 73(7n - 72) - a(7n+1 - 73) 
b- b-a . 

(1 ) 

(2) 
(3) 

Since ta 2:: 0, it follows that b 2:: q + 2. Similarly, tb ;::: 0 implies that a ~ q + 1. 
Further, neither ofta, tb can be zero (else, for example, tb 0 implies a = 73/q, which 
is impossible). 

If we take ab(1) + (1 - a - b)(2) + (3) we obtain: 

0= ab(7n+l 73) + (1 - a - b)73(7n - 72) + 73(73 - 1)(7n-l - 1) 
o abq - (a + b) (q2 + q + 1) + (q2 + q + 1) (q + 2). ( 4) 

Now either a + b = q + 2 or q2 + q + 1 divides ab (as the greatest common divisor 
(q2 + q + 1, q) = 1). However if a + b = q + 2, then ab = 0 and q2 + q + 1 divides ab 
trivially. Thus we can suppose that q2 + q + 1 divides ab, and we let r ~ 0 be the 
integer such that ab = r(q2 + q + 1). 

On substituting ab = r(q2 + q + 1) into equation (4), we obtain a+ b = rq + q+ 2. 
It follows that a and b are the roots of the quadratic polynomial equation 

x2 - (rq + q + 2)x + r(q2 + q + 1) = 0 (5) 
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and so the discriminant of this polynomial must be a square. The discriminant is 

(rq + q + 2)2 - 4r(q2 + q + 1) = q2 (r - 1)2 + 4 (q + 1 - r). 

Now b :::; q2 + q + 1 and a :::; q + 1, so ab = r(q2 + q + 1) ::; (q + 1)(q2 + q + 1). 
Hence r :::; q + 1. If r = q + 1, then the discriminant is a square. Assume r :::; q, then 
q2 (r - 1)2 + 4 (q + 1 - r) is a square and must be at least (q(r - 1) + 1)2. If equality 
holds then it is easy to show that r is not an integer. Hence 

q2(r - 1)2 + 4(q + 1 - r) 2: (q(r - 1) + 2))2 

:::} 4 (q + 1 - r) 2: 4q (r - 1) + 4 

:::} r :::; 2q/(q + 1) 
:::}r:::;1. 

Hence r is either 0, 1 or q + 1. We examine each of these cases. 
(a) r = q + 1. The solutions to (5), assuming a < b, are then a = q + 1 and 

b = q2 + q + 1. Every hyperplane of PG(n, q) (including those containing N) then 
meets JC in q + 1 or q2 + q + 1 points. If follows (see for example [9, Section 3.3.7]) 
that /C is the set of points of a plane. 

(b) r = O. Then a = a and b = q + 2. Let ~ be a hyperplane not containing N 
and not meeting /C. Then ~ meets N in a subspace ~n-4 of dimension n - 4 (for 
n = 3 this corresponds to ~ being disjoint from N). Choose a subspace ~n-2 of ~ 
containing ~n-4' We count the points of /C on hyperplanes containing ~n-2' The 
hyperplane given by the span (N, ~n-2) meets /C in q + 1 points. There are q other 
hyperplanes on ~n-2 each meeting /C in a or q + 2 points. Suppose m of them meet 
it in q + 2 points, then (q + 1) + m(q + 2) q2 + q + 1, giving m = q2/(q + 2). Hence 
q = 2 and m = 1. 

When n = 3, we are in PG(3, 2) and ~n-2 is a line £. disjoint from the point N. 
There are exactly three planes on e. One is given by the span of Nand £. It meets 
/C in three points not on f, that is, exactly the three points of the plane not equal to 
N and not on f. Another plane meets /C in the four points not on f. The last plane 
is disjoint from /C. It follows that /C is the complement for a plane not on N. 

For n > 3, consider a subspace ~n-2 meeting N in a subspace of dimension n - 5 
(for n = 4 it is disjoint). Note that the span of ~n-2 and N is the whole space, and so 
no hyperplane of PG(n, 2) on ~n-2 contains N. Hence each of the three hyperplanes 
on ~n-2 meets /C in either a or 4 points. Let m be the size of the intersection of ~n-2 
with IC. If m = a we obtain a contradiction since 4 does not divide IICI. If m =1= a each 
of the three hyperplanes meets IC in 4 - m points, and we obtain m + 3(4 - m) = 7, 
i.e. 2m = 5. Hence such sets do not exist for n > 3. 

(c) r = 1. The solutions to (5) are a = q - ..;q + 1 and b = q + ..;q + 1. By 
theorem 3, q must be even. 0 

The next example shows that the possibility in (c) can occur. 

Example 4 
Consider the action of a cyclic subgroup G of order 7 of PGL(4, 4) (such a group is 
unique up to conjugacy). Let N be the unique point fixed by G and let ~ be the 
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unique plane fixed by G. The point orbits of G in r; are three Fano planes which we 
denote 1fl' 1f2, 1f3' For i = 1,2 and 3, G also fixes the cone with vertex N and base 
1fi; the point orbits of G on the cone are N, 1fi and three 7-caps Gi,j for j = 1,2,3. 
Without loss of generality, let J( = 1fl UG2,jUG3,k for some j, k E {1, 2, 3}. Then J( is 
a pseudo-complement for N with a = 3 and b = 7; in fact all the pseudo-complements 
J( for N constructed in this way are equivalent under the action of PGL(4, 4). 

Theorem 6 
Let lC be a pseudo-complement for a point N in PG(n, q), with hyperplane in­
tersection sizes equal to a or b. Then ab = rTn where either r = Tn-lor r :::; 
2(Tn-l 1)/(q + 1), with Td = (qd - 1)/(q - 1). 

Proof. The arguments are analogous to those used in the proof of theorem 5. With 
the same notation, the basic equations are: 

ta + tb = qn 
ata + btb qn-l Tn 

a(a - 1)ta + b(b - 1)tb = qn-2Tn(Tn - 1). 

(6) 
(7) 
(8) 

Later in the argument we find that q2 (r - Tn_2)2 + 4 (Tn-I - r) must be a square. We 
know that a :::; Tn-I, and that b :::; Tn, hence ab :::; Tn-ITn so that r :::; Tn-I' Suppose 
that Tn-l - r ~ 1. Then q2(r - Tn_2)2 + 4(Tn-l - r) is a square, so must be at least 
(q(r - Tn-2) + 2)2, Hence 

q2(r - Tn_2)2 + 4(Tn-l - r) ~ (q(r Tn-2) + 2)2 

==?- Tn-l - r ~ 1 - qTn-2 + rq 

==?- Tn-l 1 + qTn-2 ~ r + rq 
2(Tn -1 - 1) 

==?-r:::; (q+1) . 

It follows that if r =f. Tn-l then r ::; 2(Tn-l - 1)/(q + 1), as required. 

2.2 Two-character set case 

o 

A set J( of points in PG(n, q) is a two-character set, with characters hi, h2' if every 
hyperplane meets J( in either hi or h2 points. 

Theorem 7 (Delsatte, see [4]) 
Let K = {Pi: i = 1,2, ... , IKI}, where each Pi is an element of GF(q)n+l, be a 
two-character set in PG(n, q), with characters hi, h2. Then 

1. the graph f(K) is a strongly regular graph; 

2. the code {(x. PI, X • P2, ... ,x . PI/q) : x E GF(q)n+l} is a linear two-weight 
[lKI. n + I)-code with weights IKI - hi, \K\ - h2; 

3. the set V = {v E GF(q)n+1 : (v) E lC} is a {>q, A2}-difference set over GF(q), 
for some {AI, A2}' 
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In view of this theorem we are interested in investigating two-character sets in 
PG(n, q). See [4] for a comprehensive survey of two-character sets, two-weight codes 
and {,\ 1, '\2 }-difference sets. 

Example 5 
Let n = 2m + 1 be odd. 
(qm_l)(qm+l+l) points such 

(q-l) 

An elliptic quasi-quadric in PG(n, q) is a set K, of 

that each hyperplane meets it in either q2m-
1

1 or 
q-

q(qm+l)(qm-l_l) + 1 points. A hyperbolic quasi-quadric in 
q-l PG(n, q) is a set K of 

(qm+l)(qm+l_l) points such that each hyperplane meets it in either q2m_l or 
(q-l) q-l 

q(qm-l:~i(qm-l) + 1 points. We denote an elliptic quasi-quadric by K- and a hyperbolic 

quasi-quadric by K+. A non-degenerate elliptic quadric is an elliptic quasi-quadric 
and a non-degenerate hyperbolic quadric is a hyperbolic quasi-quadric. Further ex­
amples will be constructed in section 3.2 below. 

In addition to the structures mentioned above, in the case of q = 2 two-character 
sets also give rise to certain symmetric SDP-designs, Reed-Muller codes and bent 
functions, as follows. 

Theorem 8 ([12]) 
Let KE be an elliptic or hyperbolic quasi-quadric in PG(n, 2), where n = 2m + 1 and 
f E {-, +}. Embed PG(n, 2) as a hyperplane Eoo in PG(n + 1,2). The symmetric 
differences of the hyperplanes of Eoo with K,E are then of two types, those of size 
IKE!, and those of size 2n+1 - IKEI. Define a design with points the points of the 
affine space AG(n + 1, 2) = PG(n + 1,2) \ Eoo and blocks the affine cones projecting 
the symmetric differences of the first type. This gives a symmetric SDP-design with 
parameters 

(v, k, ,\) = (2n+l, 2n + f2(n-l)/2, 2n - 1 + f2n). 

Note that the SDP-designs constructed from elliptic and hyperbolic quasi-quadrics 
are complementary to one another and that the number of SDP-designs grows expo­
nentially with n [12]. 

Theorem 9 ([7], see [18, Section V.1.90]) 
The rows of the incidence matrix of any symmetric SDP-design are the minimum 
weight codewords in a binary linear code spanned by the first order Reed-Muller code 
RM(l, 2m) and the characteristic function of an elementary Abelian difference set in 
AG(2m,2) (or, equivalently, the vector of values of a bent function on 2m variables). 

3 Constructing quasi-quadrics 

In this section we construct new quasi-quadrics from quadrics in projective spaces. 
In subsection 3.1, a geometric method of "pivotting" parabolic quadrics to construct 
new parabolic quasi-quadrics is provided, hence by the results of the previous sec­
tion giving antipodal distance regular covers of complete graphs. In subsection 3.2, 
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several geometric constructions of elliptic and hyperbolic quasi-quadrics are given, 
so yielding strongly regular graphs, SDP-designs and so forth. 

For a good introduction to quadrics and their properties, see [10]. 

3.1 Constructing parabolic quasi-quadrics 

Let Q(2m, q) be a non-degenerate parabolic quadric in PG(2m, q), q even, m > 1. 
Let Ek be a subspace of dimension k contained in Q(2m, q), k < m - 1. The polar 
space Et of L:k with respect to the quadratic form for Q(2m, q) is then of dimension 
2m k - 1. The radical of the quadratic form of Q(2m, q) restricted to Et is then 
just Ek. Further, the factor space L:t /L:k has (even) dimension 2m - 2k - 2. It 
follows that Et n Q(2m, q) is the cone EkQ(2m - 2k - 2, q) with vertex Ek and base 
a non-degenerate parabolic quadric Q(2m - 2k - 2, q) in some subspace E2m-2k-2 of 
dimension 2m - 2k - 2 disjoint from Ek • 

Suppose that Q(2m - 2k - 2, q) has nucleus N'. Let Q' be a parabolic quasi­
quadric in L:2m-2k-2 with the same parameters as Q(2m - 2k - 2, q) and with the 
same nucleus N'. We then call the set Q(2m, q) - EkQ(2m - 2k - 2, q) U EkQ' a 
pivotted set of Q(2m, q) with respect to Ek. Note that the size of a pivotted set is 
the same as the size of Q(2m, q). 

Theorem 10 
Every pivotted set of Q(2m, q), q even, is a parabolic quasi-quadric with the same 
intersection numbers as those of Q(2m, q). 

Proof. Using the notation of the previous two paragraphs, we show that every 
hyperplane of PG(2m, q) not on the nucleus N of Q(2m, q) meets the pivotted set in 
either IQ-(2m - 1, q)1 or IQ+(2m - 1, q)1 points. 

Let E2m- 1 be a hyperplane of PG(2m, q) that does not contain N. Then E2m- 1 

meets Et in a hyperplane E2m- k- 2 of L,t. There are two cases to consider. 
(i) Assume L,k 1- E2m-k-2. Then Ek n L,2m-k-2 is a hyperplane L:k- 1 of Ek. Dimen­
sional arguments then show that E2m- k- 2 n EkQ(2m - 2k 2, q) = Ek _ 1Q(2m 
2k - 2, q). Similarly, it follows that E2m- k- 2 n EkQ' = Ek - 1 Q'. Since Q' and 
Q(2m - 2k - 2, q) have the same size it follows that E2m- 1 meets Q(2m, q) and 
the pivot ted set in the same number of points. 
(ii) Assume Ek < E2m- k- 2. Note that the nucleus N of Q(2m, q) is contained in the 
subspace (N', L,k). Hence L,2m-k-2 meets E2m-2k-2 in a hyperplane of L,2m-2k-2 not 
on N'. It follows that L,2m-k-2 n Q(2m - 2k - 2, q) is either a Q- (2m - 2k - 3, q) or 
a Q+(2m - 2k - 3, q). Hence we have two cases to consider. 
(a) Assume L,2m-k-2 n L,t = L,kQ-(2m - 2k - 3, q). Now L,2m-l meets Q(2m, q) in 
either a Q-(2m -l,q) or a Q+(2m -l,q). But Q+(2m -l,q) does not contain a 
surface isomorphic to L,kQ-(2m - 2k - 3) [10, Corollary 2 to Theorem 22.8.3]. So in 
this case it must be that E2m- 1 n Q(2m, q) is isomorphic to a Q- (2m - 1, q). 

Since the intersection sizes with respect to hyperplanes not on the nucleus are 
the same for Q(2m - 2k - 2, q) and Q' it follows that 1L:2m- 1 n Q'\ is equal to either 
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or 
IQ-(2m -l,q)1 IE k Q-(2m - 2k - 3,q)l + IEk Q+(2m - 2k - 3,q)1 

which, with some algebra, is easily shown to be either IQ-(2m - 1, q)1 or 
IQ+(2m - 1, q)l. 
(b) Assume E2m- k- 2 nEt = EkQ+(2m-2k-3,q). As before E2m- 1 meets Q(2m,q) 
in either a Q- (2m - 1, q) or a Q+(2m - 1, q). But Q-(2m - 1, q) does not contain 
a surface isomorphic to Ek Q+(2m - 2k - 3) [10, Corollary 2 to Theorem 22.8.3]. So 
in this case it must be that E2m- 1 n Q(2m, q) is isomorphic to a Q+(2m - 1, q). 

Similarly to case (a), IE2m- 1 n Q'I is given by 

or 
IQ+(2m - 1, q)I-IEkQ+(2m - 2k - 3, q)1 + IEkQ+(2m - 2k - 3, q)l 

which can be shown to be either IQ-(2m - 1, q)1 or IQ+(2m - 1, q)l. 

3.2 Constructing elliptic and hyperbolic quasi-quadrics 

o 

We begin this section by defining pivotting for elliptic and hyperbolic quadrics in 
a similar way to that of parabolic quadrics. For a related method that constructs 
quasi-quadrics from quadrics see [6]. In that paper, De Clerck and Delanote show 
that their method, in case q = 2, corresponds to Seidel switching in the associated 
strongly regular graphs. 

Let Q- (2m + 1, q) be a non-degenerate eHi ptic quadric in PG (2m + 1, q), m > l. 
Let X be a point of Q-(2m+ 1, q). The tangent (polar) space X 1. of X with respect to 
the quadratic form for Q- (2m+ 1, q) is then of dimension 2m, and X 1.nQ- (2m+ 1, q) 
is the cone XQ-(2m-1, q) with vertex X and base a non-degenerate elliptic quadric 
Q- (2m - 1, q) in some subspace E2m- 1 of X 1. of dimension 2m - 1 disjoint from X. 

Let Q' be an elliptic quasi-quadric in E2m- 1 with the same parameters as 
Q-(2m - 1, q). We then call the set Q-(2m + 1, q) - XQ-(2m - 1, q) U XQ' a 
pivotted set of Q- (2m + 1, q) with respect to X. Note that the size of a pivotted set 
is the same as the size of Q-(2m + 1, q). 

Theorem 11 
Every pivotted set with respect to a point ofQ- (2m+ 1, q) is an elliptic quasi-quadric 
wi th the same intersection numbers as those arising from Q- (2m + 1, q). 

Proof. Let Q" = Q-(2m + 1, q) - XQ-(2m - 1, q) U XQ' be a pivotted set with 
respect to X as above, with Q-(2m - 1, q) and Q' contained in a hyperplane E 2m- 1 

(not on X) of X 1.. Then clearly any hyperplane H =1= X 1. not on X meets Q" in a 
set of size IQ(2m, q)1 or IYQ- (2m - 1, q)l. 

Suppose H contains X, then H n E2m- 1 is a hyperplane of E2m- 1 , and so H n 
Q-(2m-1, q) is either of type Q(2m-2, q) or is a cone ZQ-(2m- 3, q). We consider 
these two cases. 
(i) Assume H meets Q- (2m-1, q) in a cone ZQ- (2m-3, q). Now a parabolic quadric 
Q(2m, q) does not contain a surface isomorphic to X ZQ-(2m - 3, q) [10, Lemma 
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22.8.3], and so H must meet Q-(2m + 1, q) in a cone with some point as vertex and 
a Q-(2m -1,q) as base. It follows that H meets Q" in either IXQ-(2m -l,q)1 or 

IXQ-(2m 1,q)I-IXZQ-(2m - 3,q)1 + IXQ(2m - 2,q)1 = IQ(2m,q)1 

points. 
(ii) Assume H meets Q-(2m - 1, q) in a parabolic quadric Q(2m - 2, q). Then H 
meets XJ..nQ-(2m+l,q) in the cone XQ(2m-2,q). There are q+l hyperplanes of 
PG(2m + 1, q) on the subspace containing XQ(2m - 2, q) each of which either meets 
Q-(2m + 1, q) in a parabolic quadric or a cone with base an elliptic quadric in some 
(2m - I)-dimensional subspace. The union of the points of Q-(2m + 1, q) in these 
hyperplanes is all of the points of Q- (2m + 1, q). Counting the points of this in each 
of the q + 1 hyperplanes on X Q (2m 2, q) shows that exactly one of the hyperplanes 
contains a cone on an elliptic quadric in some (2m-I)-dimensional subspace, and the 
other q all contain non-degenerate parabolic quadrics in 2m-dimensional subspaces. 
Hence, apart from X1., every other hyperplane on XQ(2m-2, q) meets Q-(2m+l,q) 
in a non-degenerate parabolic quadric. It follows that H meets Q" in either IQ(2m, q)1 
or 

IQ(2m,q)1 + IXZQ-(2m - 3,q)l-IXQ(2m - 2,q)1 = IXQ-(2m -1,q)1 

points. 0 

We now obtain a similar result for hyperbolic quadrics. Let Q+(2m + 1, q) be a 
non-degenerate hyperbolic quadric in PG(2m + 1, q), m > 1. Let X be a point of 
Q+(2m + 1, q). Then X 1. n Q+(2m + 1, q) is the cone XQ+(2m - 1, q) with vertex 
X and base a non-degenerate hyperbolic quadric Q+(2m - 1, q) in some subspace 
L:2m- 1 of dimension 2m - 1 disjoint from X. 

Let Q' be a hyperbolic quasi-quadric in L:2m- 1 with the same parameters as 
Q+(2m - 1, q). We then call the set Q+(2m + 1, q) - XQ+(2m - 1, q) U XQ' a 
pivotted set of Q+(2m + 1, q) with respect to X. 

Theorem 12 
Every pivotted set with respect to a point of Q+(2m + 1, q) is a hyperbolic quasi­
quadric with the same intersection numbers as those arising from Q+(2m + 1, q). 

The proof is essentially the same as for the previous theorem. 

There is more we can say in the case q = 2. 

Theorem 13 
Let Q-(2m + 1,2) be a non-singular elliptic quadric in PG(2m + 1,2), and let L:2m 

be a hyperplane of PG (2m + 1, 2) meeting Q- (2m + 1, 2) in a non-singular parabolic 
quadric Q with nucleus N. Let Q' be any parabolic quasi-quadric in ~2m with nucleus 
N. Then the set of points ofQ" = (Q- (2m+ 1,2) -Q)UQ' is an elliptic quasi-quadric 
in PG(2m + 1,2). 

Proof. Let L:~m be any hyperplane of PG(2m + 1,2). Note that E~m meets 
Q- (2m + 1, 2) in either a non-singular parabolic quadric Q (2m, 2) or in a cone 
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XQ-(2m - 1,2) with vertex some point X and base a non-singular elliptic quadric. 
We show that L;~m meets Q" in either IQ(2m, 2)1 = 22m 1 or IXQ-(2m - 1,2)1 = 
22m - 2m - 1 points. 

If L;~m = L;2m, then clearly 1L;~m n Q"I = IQ{2m, 2)1· 
Assume I:~m '# L;2m, then L;~m n L;2m is hyperplane L;2m-l of L;2m. If N E L;2m-l 

then, since Q and QI are parabolic quasi-quadrics, L;2m-l meets both Q and QI in 
22m- 1 1 points. So 1L;~m n QIII = 1L;~m n Q- (2m + 1,2)\ and the intersection size of 
L:~m with QII is one of the required sizes. 

Assume N t/:. L;2m-l' Then L;2m-l n Q is either a non-degenerate hyperbolic 
quadric Qim-l or a non-degenerate elliptic quadric Q2m-l' We consider these two 
cases. 
(i) Assume L:2m- 1 n Q = Qim-I' Since a cone XQ-(2m - 1,2) contains no 
Q+(2m 1,2) it must be that L;~m n Q-(2m + 1, 2) is a parabolic quadric Q(2m, 2). 
Now QI is a parabolic quasi-quadric and so L:2m- 1 nQI is either of size \Q+(2m-1, 2)\ 
or IQ-(2m -1,2)\. Hence 

1L;~m n QIII = IQ(2m, 2)1-IQim-11 + IQ+(2m - 1,2)1 

or 
1L;~m n QIII = IQ(2m, 2)1-IQim-ll + IQ-(2m - 1,2)1 

which are easily shown to be of the required sizes. 
(ii) Assume L:2m- 1 n Q = Q2m-I' Now every hyperplane of PG(2m + 1,2) on L:2m- 1 

is either of type Q(2m, 2) or XQ-(2m - 1,2). A simple counting of points shows 
that there is a unique Q(2m,2) contained in Q-(2m + 1,2) and containing Q2m-ll 
i.e. Q. Hence \L;~m n Q-(2m + 1,2)1 must be of type XQ-(2m - 1,2). Thus 

1L:~m n QIII = IXQ-(2m -1, 2)1-IQ2m-11 + IQ-(2m - 1,2)1 

or 
\L:~m n QIII IXQ-(2m - 1,2)1 IQ2m-11 + IQ+(2m - 1,2)1 

which are easily shown to be of the required sizes. o 

Theorem 14 
Let Q+(2m + 1,2) be a non-singular hyperbolic quadric in PG(2m + 1,2), and L:2m 
be a hyperplane ofPG(2m + 1, 2) meeting Q+(2m + 1, 2) in a non-singular parabolic 
quadric Q with nucleus N. Let QI be any parabolic quasi-quadric in L:2m with 
nucleus N. Then the set of points of Q'I = (Q+ (2m + 1,2) - Q) U QI is a hyperbolic 
quasi-quadric in PG(2m + 1,2). 

The proof is essentially the same as in the previous theorem. 

Theorem 15 
Let Q+(2m+ 1,2) be a non-singular hyperbolic quadric in PG(2m+ 1,2), and let L;2m 
be a hyperplane ofPG(2m + 1,2) meeting Q+(2m + 1,2) in a non-singular parabolic 
quadric Q with nucleus N. Let Em - 1 be a generator of Q. Then the set of points 
of QII (Q+(2m + 1,2) - Q) U (E2m - (Q U (N, I:m- I))) U I:m- 1 is a hyperbolic 
quasi-quadric in PG(2m + 1,2). 
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Proof. First note that every hyperplane of PG(2m + 1,2) meets Q+(2m + 1,2) in 
either a quadric of type Q(2m,2) or XQ+(2m - 1,2), and these have sizes 22m 

- 1 
and 22m 1 + 2m , respectively. One easily checks that IQ"I 22m+1 + 2m - 1 and 
that that IE2m n Q"I = 22m 

- 1, which is one of the required intersection sizes. 
Let H be any hyperplane different from E2m and denote H n E2m by E2m- 1. 

Suppose N E E2m- 1. Then E2m- 1 meets Q in a cone XQ(2m - 2,2) with vertex 
some point X and base Q(2m - 2,2). Such a cone contains 22m- 1 - 1 points. We 
consider two cases. 
(i) Assume Em- 1 < E2m- l . Then (N, Em-I) is a subspace of 2:2m- 1 and contains 
2m+1 1 points. Also XQ(2m - 2,2) - Em- 1 contains 22m- 1 

- 2m points. Hence 

IE2m- 1 n Q"I 22m - 1 - (2m+ 1 
- 1) - (22m- 1 

- 2m) + (2m - 1) 
= 22m- 1 

- 1 

= IXQ(2m - 2,2)1· 

Since E2m- 1 meets Q+(2m + 1,2) in XQ(2m - 2,2) it follows that IH n Q"I 
IH n Q+(2m + 1,2)1 and the intersection is one of the required sizes. 
(ii) Assume Em- 1 I- E2m- 1 . Then (N, Em-I) n E2m- 1 is a subspace of dimension 
m - 1 of E2m- 1 and contains 2m - 1 points. Also, Em- 1 n E2m- 1 is a subspace of 
dimension m 2 and contains 2m - 1 - 1 points. Thus X Q(2m - 2, 2) - Em- I contains 
22m- 1 2m - 1 points. Hence 

IE2m- 1 n Q"I = 22m 1 (2m - 1) - (22m- 1 - 2m- I) + (2m- 1 -1) 
= 22m- 1 - 1 

= IXQ(2m - 2,2)1· 

Again it follows that IHnQ"1 = IHnQ+(2m+ 1, 2)1 and the intersection has one of 
the required sizes. 

For the remainder of the proof suppose N rJ. E 2m- l . There are again two cases 
to consider. 
(i) Assume E2m- 1 n Q is a non-degenerate hyperbolic quadric Q+(2m 1,2) which 
has 22m- 1 1 + 2m - 1 points. 

Suppose that Em - l < E2m- 1 then a counting as in the previous paragraphs shows 
that IE2m n Q"I = IE2m n Q+(2m + 1,2)1. 

So suppose Em- l I- E2m- l . Then, as before, (N, Em-I) n 2:2m- 1 is a subspace of 
dimension m -1 of E2m- 1 and contains 2m -1 points. As l2:m- 1 n E2m- 11 = 2m- 1 -1, 
it follows that (E2m- 1 n Q) \ 2:m- 1 contains 22m- 1 points. Hence 

IE2m- 1 n Q"I = 22m - 1 - (2m - 1) - (22m- I
) + (2m - 1 - 1) 

= 22m- 1 _ 1 _ 2m-I. 

Thus in 2:2m- 1 we have replaced a set of points of size 22m- 1 - 1 + 2m- 1 by a set of 
size 22m- 1 1 _ 2m-I. 

As in the proof of theorem 14, since H =I- 2:2m , the intersection HnQ+(2m+ 1,2) 
is a cone XQ+(2m 1,2). Hence 

IH n Q"I = 22m 1 + 2m - (22m- 1 - 1 + 2m- I ) + (22m- 1 - 1 _ 2m- I) 
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= 22m _1 

IQ(2m,2)1· 

(ii) Assume 2:2m- 1 n Q is a non-degenerate elliptic quadric Q-(2m - 1,2) which has 
22m- 1 - 1 - 2m- 1 points. 

The maximal subspaces of Q- (2m -1,2) have dimension m - 2 hence ~m-l f.. H. 
Also note that a hyperplane section of Q+(2m + 1,2) of the form XQ+(2m - 1,2) 
contains no Q-(2m-l, 2). It follows that H meets Q+(2m+l, 2) in a non-degenerate 
parabolic quadric Q(2m, 2). Using this information and counting as in the previous 
paragraphs gives 

IH n Q"I = 22m - 1 + 2m = IXQ+(2m - 1,2)1· 

o 

Theorem 16 
Let Q-(2m + 1,2) be a non-singular elliptic quadric in PG(2m + 1,2), and let ~2m 
be a hyperplane of PG (2m + 1, 2) meeting Q- (2m + 1, 2) in a non-singular parabolic 
quadric Q with nucleus N. Let ~m-l be a generator of Q. Then the set of points of 
Q" = (Q-(2m+l, 2)-Q)U(~2m -(QU(N, ~m-l)))U~m-l is an elliptic quasi-quadric 
in PG(2m + 1,2). 

The proof is essentially the same as that of the previous theorem. 

Remark 

A quasi-quadric in PG(3,2) is a quadric. In PG(5,2) there are five projectively 
inequivalent quasi-quadrics of elliptic type and seven of hyperbolic type, see [17] for 
more details and [15] for a geometric treatise on some of these quasi-quadrics. 
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