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Abstract

An in-tournament is an oriented graph such that the in-neighborhood
of every vertex induces a tournament. Recently, we have shown that
every arc of a strongly connected tournament of order n is contained in
a directed path of order [(n + 3)/2]. This is no longer valid for strongly
connected in-tournaments, because there exist examples containing an arc
with the property that the longest directed path through this arc consists
of three vertices. But in this paper we shall see that every strongly
connected in-tournament has at most one such arc. More general, we shall
prove that if a strongly connected in-tournament D of order n contains
m—2 < n— 3 arcs as,ay,...,a, such that the longest directed path
through ay consists of k vertices for 3 < k < m, then all other arcs of D
belong to directed paths of order at least m + 1. Furthermore, we shall
show that every arc of a strongly connected in-tournament is contained
in a directed path of order k + 2, when max{d*,6~} > k, where 6+ and
0~ is the minimum outdegree and the minimum indegree, respectively.

1. Terminology and introduction

The vertex set and the arc set of a digraph D are denoted by V(D) and E(D),
respectively. The number |V(D)] is the order of the digraph D. Throughout this
paper we will consider digraphs without multiple arcs, loops, or directed cycles of
length two. Such digraphs are called oriented graphs. If there is an arc from z to y
in D, then y is a positive neighbor of z and z is a negative neighbor of y, and we
also say that x dominates y, denoted by z — y. More generally, let 4 and B be two
disjoint subdigraphs of D or subsets of V(D). If z — y for every vertex z in 4 and
every vertex y in B, then we write A — B and say that A dominates B. Two vertices
¢ and y of a digraph are adjacent when z — y or y — z. The outset N*(z) of a
vertex z is the set of vertices dominated by z, and the inset N~ (z) is the set of ver-
tices dominating x. The numbers d*(z) = |N*(z)| and d=(z) = |[N~(z)] are called
outdegree and indegree, respectively. The minimum outdegree 6 and the minimum
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indegree 6~ of D are given by min{d*(z) |z € V(D)} and min{d~(z) |z € V(D)},
respectively. For A C V(D), we define D[A] as the subdigraph induced by A. By
a cycle (path) we mean a directed cycle (directed path). A cycle or a path of order
m is called an m-cycle or an m-path, respectively. A cycle (path) of a digraph D
is Hamiltonian if it includes all the vertices of D. We speak of a connected digraph
if the underlying graph is connected. A digraph D is said to be strongly connected
or just strong, if for every pair z,y of vertices of D, there is a path from z to y. A
strong component of D is a maximal induced strong subdigraph of D. A digraph D
is k-connected if for any set S of at most k — 1 vertices, the subdigraph D — S is
strong. A minimal separating set of a strong digraph D is a subset S C V(D) such
that D — S is not strong, but D — ' is strong for any S’ C 5. An in-tournament is
an oriented graph with the property that the inset of every vertex induces a tourna-
ment, i.e., every pair of distinct vertices that have a common positive neighbor are
adjacent. A local tournament is an oriented graph such that the inset as well as the
outset of every vertex induces a tournament. Throughout this paper all subscripts
are taken modulo the corresponding number.

Local tournaments were introduced by Bang-Jensen [1] in 1990 and there exists
extensive literature on this class of digraphs, e.g., the survey paper of Bang-Jensen
and Gutin [2]. In particular, the Ph. D. theses of Y. Guo [4] and J. Huang [5] have
been devoted to this subject. As a generalization of local tournaments, Bang-Jensen,
Huang, and Prisner [3] studied the family of in-tournaments. But in-tournaments
have, as yet, received little attention. Except for the above mentioned article of Bang-
Jensen, Huang, Prisner [3], these digraphs have only been investigated by Tewes (7],
[8], [9], and Tewes, Volkmann [10], [11]. It is the purpose of this paper to give more
information about the properties of in-tournaments.

Very recently, we have proved [12] that every arc of a strongly connected tourna-
ment of order n (even every arc of a strongly connected n-partite tournament) is
contained in a directed path of order [(n+ 3)/2]. The following example shows that
this is no longer valid for strongly connected in-tournaments.

Example 1.1 Let D consist of the cycle z1z,...2,2; together with the arcs zy7;
for 3 < i < n—1. Then it is straightforward to verify that D is a strongly connected
in-tournament of order n, and that the longest path through the arc 2,2, is only
of order three.

Definition 1.2 If the longest path through an arc uv consists of exactly m ver-
tices, then we call uv an m-path arc.

In this paper we shall see that every strongly connected in-tournament of order n > 4
has at most one 3-path arc. More general, we shall prove that if a strongly connected
in-tournament D of order n contains a k-path arc for every 3 <k <m < n -1,
then all other arcs of D belong to paths of order m + 1. Also strongly connected
in-tournaments without a 3-path arc but containing a 4-path arc, have only one
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4-path arc, when the order is at least six. Furthermore, if a strongly connected
in-tournament has a k-path arc for each £ = 3,4,...,m but no (m + 1)-path arc,
then it contains no (m + 2)-path arc. In addition, we shall prove that every arc
of a strongly connected in-tournament is contained in a path of order k + 2, when
max{§*,0~} > k. Different examples will show that these results are best possible.

2. Preliminary results
The following known results play an important role in our investigations.
Theorem 2.1 (Rédei [6] 1934) Each tournament contains a Hamiltonian path.

Theorem 2.2 (Bang-Jensen, Huang, Prisner [3] 1993) An in-tournament has a
Hamiltonian cycle if and only if it is strongly connected.

Theorem 2.3 (Bang-Jensen, Huang, Prisner [3] 1993) Let D be a strongly con-
nected in-tournament and let S be a minimal separating set. Then there exists a
unique order Dy, Dy, ..., D, of the strong components of D — S such that there are
no arcs from Dj to D; for j > 4, and for each ¢ = 1,2,...,p — 1 there exists a vertex
w; € V(D;) such that w; — Djyy. If in addition, zy is an arc from D; to D; for
1 < j, then z — (Di+1 UD,‘.‘_zU...UDj)‘

Theorem 2.4 (Bang-Jensen [1] 1990) Let D be a strongly connected local tour-
nament and let S be a minimal separating set. Then there exists a unique order
Dy, D,,. .., D, of the strong components of D — S such that there are no arcs from
Dj to D; for j > i, Dj = Dy for i =1,2,...,p—1, and D; is a tournament for
i=1,2,...,p.

The unique order Dy, Dy, ..., D, in Theorem 2.3 as well as in Theorem 2.4 is called
the strong decomposition of D — S.

3. General results

Observation 3.1 Let uv be an arbitrary arc of a strongly connected in-tournament
D. If D—wuor D — v is strong, then D contains a Hamiltonian path starting with
the arc uv or ending with the arc uv, respectively.

Proof. If D — u is strong, then by Theorem 2.2, the in-tournament D — u has a
Hamiltonian cycle v2,23 . .. #)v(p)-1v. Therefore, the arc uv is the initial arc of the
Hamiltonian path uvzos ... Ty (p)-1 of D. Considering D — v instead of D — u, we

obtain analogously a Hamiltonian path with the terminal arc uv. O

Theorem 3.2 Let u be a vertex of a strongly connected local tournament D such
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that D — u is not strong. If Dy, Ds,..., D, is the strong decomposition of D — u,
then the arcs from D; to D;yy for 1 <i<p-—1landthearcsin D;for2<i<p-1
are contained in a Hamiltonian path.

Proof. In view of Theorem 2.2, each strong component D; with at least three vertices
has a Hamiltonian cycle ziz} ...z} (p,yz} for 1 <4 < p. Since D is strong, there
exists a vertex, say =1, in D; such that v — z} and a vertex, say i, in D, such that
2% — u. By P; we denote a Hamiltonian path of D; for 1 < 4 < p. Theorem 2.4
implies D; = Dy for 2 =1,2,...,p— L. In the following we always use this fact.
Case 1: Let ziz}'" be an arc from DitoDjy for1 <i<p-1.

Subcase 1.1: Let p>3.Ifi> 2 then

1,1 1 ] ) 1041, 041 i+1 p,
U Ty Ty py P BT T - T30 Ty - Tk P Py,

and if i = 1, then
T3 Tggn- T TaTggy - zi_Ps...Pp_ 17528 .. . 2fu
is a Hamiltonian path of D through the arc ziz}™.
Subcase 1.2: Let p = 2. If u — x},,, then uxﬁlx}“, EITRTR L .- T3y 1S a desired
Hamiltonian path If u does not dominate . ,, then let s > 2 be the smallest 1nte er
_7+1 g
such that « — x},,. Then, because u and z} are negative neighbors of zt_ _, we
]+s j+s—1 & J+s
conclude that a:] +s—1 — u. But now z} mk is an arc of the Hamiltonian path

1 1 1 1 1..2,.2 2
"L‘j“f—lxj-f'? .o ..’Uj+s_1uxj+8 . ..'I:ja:k.’vk+1 . "Tk—].'

Case 2: Let ¢ xk be an arc of the component D; for 2 < i < p—1. By Theorem 2.4,
D;is a tournament and thus, D} = D; — {xj, 7} is also a tournament. According
to Theorem 2.1, D! has a Hamlltoman path P;. Hence, we deduce that z}z} is an
arc of the Harmltoman path

i i P Dy, mlol 1 /
x;‘xl@-Pi+113i+2 e Pp_lfl‘g.’l?;; e BIUT Xy - ‘$|V(D1)1P2P3 v s 131‘“11)1" a

Example 3.3 Let T5 be the tournament with the cycle zyx92324252; such that
x1 — {@3, 24}, 2 = {x4, 25}, and x5 — z3. Note that the arc z;z, is not contained
in a Hamiltonian path of T5. Now let T7 be the tournament consisting of 75 and the
two new vertices v and w such that Ts — w — u — z4 and {z,Z2, 23,25} — u.
Then, Ts corresponds to the first component Dy of T; — u, and it easy to see that
the arc z,14 is not contained in a Hamiltonian path of T5.

Using the same method, it is a simple matter to construct strongly connected tour-
naments T of arbitrarily large order such that the strong components D; and D, of
T — u have arcs which are not contained in a Hamiltonian path of 7'.

Remark 3.4 Example 3.3 shows that Theorem 3.2 is not valid for the arcs in D; or
Dy, even for tournaments, in general. But if u — D; or D, — u, then one can prove
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analogously to Case 2 that each arc in D; or D, is contained in a Hamiltonian path,
respectively.

Example 3.5 Let T, be the transitive tournament with the vertex set {z1, z,,...,2p}
such that z; = z; for 1 <4 < j < p. Now let D be the strongly connected local
tournament of order p + 1 consisting of T}, the new vertex u and the both arcs zpu
and uz;. Then, D — u = T, has the strong decomposition Dy, Dy, ..., D, such that
V(D;) = {z;} for 1 <1 < p, and we observe that no arc z;z; with j > ¢+ 2 is
contained in a Hamiltonian path.

In view of the Examples 3.3 and 3.5, we see that Theorem 3.2 is best possible.

Observation 3.6 Let uv be an arc of an in-tournament D. If d~(u) = m, then
D contains an (m + 2)-path with the terminal arc uv.

Proof. It follows from the definition of an in-tournament that the induced subdi-
graph D[N~(u)] is a tournament. Thus, according to Theorem 2.1, there exists a
Hamiltonian path z1z;... 2, of D[N~ (u)]. Consequently, 21Z3...z,uv is path of
order m + 2 in D with the terminal arc vv. O

Theorem 3.7 Let uv be an arc of a strong in-tournament D. If
max{d~(u),d*(v)} = m,

then the arc uv is contained in a path of order m + 2.

Proof. If d~(u) = m, then we are done by Observation 3.6. Now assume that
d*(v) = m and let |V(D)| = n. By Theorem 2.2, D has a Hamiltonian cycle,
and hence the in-tournament D — v contains a Hamiltonian path z1z9...Z,_1.
Let v = zp forsome 1 < k < n-1. Ifk > m+1, then 17...73v is a
path of order £ + 1 > m + 2 through the arc wv. If & < m, then, because of
d*(v) = m, the vertex v has at least m — (k — 1) positive neighbors in the vertex
set {41, T2, -+ >Tn-1}. If j > k + 1 is the smallest index such that v — z;, then
J £n—m+k— 1. Therefore, the path 2,25 ... 24V T 41 ... Zn_y through uv con-
sists of at least k+14+(n—1)—j+1 2> n+k+1—(n—m+k—1) = m+2 vertices. O

Corollary 3.8 Let D be a strongly connected in-tournament. If
max{6*,67} > m,

then every arc of D is contained in a path of order m + 2.

The next example will demonstrate that Theorem 3.7 is best possible, even for the
family of local tournaments.

Example 3.9 Let T; be a strong tournament and let 7;,,,; be a transitive tour-
nament with the vertex set {v,21,2s,...,2n} such that z; » z; for 1 <i<j<m
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and v — {1, %2, ..., %m}. If the digraph D consists of the tournaments Ty and Tppet
and the vertex u such that u — (V(Tx) U {v}), {z1,%2,...2m} = u, and T — v,
then it is a simple matter to verify that D is a strongly connected local tournament
with d*(v) = d~(u) = m containing the (m + 2)-path arc uv.

4. Strong in-tournaments containing a 3-path arc

First, we present a structure result of strongly connected in-tournaments containing
a 3-path arc, which implies that only one such arc exists.

Theorem 4.1 Let D be a strongly connected in-tournament of order n > 4 con-
taining a 3-path arc wv. Then, D has no further 3-path arc, D — u is not strong,
and the strong decomposition Dy, D, ..., D, of D — u has the following properties.
The strong component D, consists of a single vertex, say wy, such that w, — u,
V(D,-,) = {v}, N~ (wp) = {v}, and u = (D1 U D2 U...U Dy_1).

Proof. From Observation 3.1 it follows that D —u is not strong. If Dy, Dy, ..., D, are
the strong components of D —u, then in view of Theorem 2.3, there are no arcs from
Dj to D; for j > i, and for each i = 1,2,...,p—1 there exists a vertex w; € V(D;)
such that w; — D;4;. Since D is strong, there is a vertex w, € V(Dp) with w, — u.
First, we show that v € V(D;) implies V(D;) = {v}. Because otherwise, the strong
component D; consists of at least three vertices, and according to Theorem 2.2, D;
has a Hamiltonian cycle, say vzixs...zv with ¢ > 2. Then the arc uv belongs to
the 4-path uvz,2, a contradiction to the hypothesis that uv is a 3-path arc.

Since w, € V(D,) with w, — u, we conclude that j # p. Analogously, we can show
that V(D,) = {w,}. Furthermore, if we assume that j < p—2, then v = w; = Dj4,,
and hence, uvw;1wj42 i a 4-path containing the arc uv, a contradiction. Conse-
quently, j = p— 1, and therefore V(D,_) = {v}.

Next we note that there are no arcs zu and zw, such that z is a vertex of D; U
DyU...UD,_,, because otherwise, zuvw, and zw,uv would be a 4-path through uv,
respectively. This implies, in particular that N~ (w,) = {v}. The vertices u and w,_»
are negative neighbors of v, and thus they are adjacent. Since there is no arc from
wy—2 to u, we deduce that u — wy_g. If D,_5 consists only of the single vertex w,_s,
then u — D,_5. In the other case we use the facts that D,_; has a Hamiltonian cycle,
that there is no arc from D,_; to u, and u — w,_3, to verify that u — V(Dp-2). If
we continue this process, we finally arrive at u — (D; UDyU...U Dp_1). We notice
that all other arcs of D do not influence the property that uv is a 3-path arc.
Finally, we show that all arcs different from uv are contained in a 4-path. If uz; is
an arc with z; € V(D;) for 1 < 1 < p — 2, then vwpuz; is a 4-path through uz; as
well as through vw, and wyu. Each arc z;y; of D; for 1 <4 < p— 2 belongs to the
4-path wpuz;y;. In the case that x;y; is an arc from D;to Djfor1 <i<j<p-—1,
we see that z;z; is an arc of the 4-path wyuz,y;. Since we have discussed all possible
arcs, the proof is complete. O
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Theorem 4.2 Let D be a strongly connected in-tournament of order n > 5 contain-
ing a 3-path arc but no 4-path arc. Then n > 6 and D contains no 5-path arc.

Proof. Let uv be the 3-path arc of D, and let Dy, Dy, ..., D, be the strong decompo-
sition of D —u. Then, Theorem 4.1 implies V(D,) = {wp}, wp = u, V(Dyp_y) = {v},
N~(w,) = {v}, and v = (D; UD,U...UD,_;). Since D contains no 4-path arc,
we deduce that |V{(Dpy_s)] > 3 and thus, n > 6. By Theorem 2.2, there exists a
Hamiltonian cycle byby...bby of Dp_o with £ > 3, and in view of Theorem 2.3, we
assume without loss of generality that wy_o = by — v.

First, we show that all arcs, different from uv, of the subdigraph induced by the
vertices u, v, wp, by, by, ..., by are contained in a 6-path. The path vw,ub;bi; ... 01
for 1 < ¢ < t shows that the arcs ub;, vw,, and wyu are contained in a path of
order at least 6. If by — v for any 1 < ¢ < t, then bv is an arc of the path
bivwpubiy1biya . .. bi—y which is of order at least 6. Each arc b;b; with 4,5 # 1 be-
longs to the 6-path bjvw,ubb;. An arc b;b, with 7 > 3 is contained in the 6-path
bibivwpub,, and an arc byb; with ¢ # ¢ is contained in the 6-path vw,ubyb;bi;.
Using in particular the fact that u — (DU D2 U...UD,_;), we now prove that the
other arcs are also contained in a 6-path, when p > 4. Each arc uz; with z; € V(D;)
for 1 < i < p — 3 belongs to the 6-path bbyvwyuz;. If z;y; is an arc of D; for
1 < ¢ < p—3, then it is contained in the 6-path byvwpuz;y;. Finally, let z,y; be an
arc from D; to D; for 1 <i <p-3andi< j<p-1. Ifj < p-3, then bvwyuz;y; is
a 6-path through the arc x;y;. In the case j = p — 2, we observe that y; = b, for any
1 < s < t, and obviously, vw,uz;b,bs4; is such a desired 6-path. In the remaining
case j = p — 1, we have y; = v. Since i < p — 3, we observe that z;vwyubib; is a
6-path with the initial arc z;y;. Consequently, D contains no 5-path arc, and the
proof is complete. O

Next we will show that Theorem 4.2 is sharp in the sense that there exist in-
tournaments containing a 3-path arc, without 4 or 5-path arcs, however with 6-path
arcs.

Example 4.3 Let D be consists of the cycle C = byby...b,b;, the arcs byb; for
3 <i < n-1, and the vertices u,v and ws such that by - v — w3 = u —
(V(C) U {v}). Then, it is straightforward to verify that D is a strongly connected
in-tournament of order n + 3 with the 3-path arc wv, without a 4 or a 5-path arc,
but D contains the 6-path arc bib,_;.

Example 4.4 Let D be consists of the cycle C = bybybsb;, the vertices u,v,w;
and wy such that w; = C and by = v — wy — v — (V(C)U{v,w;}). Then, Dis a
strongly connected in-tournament of order 7 containing the 3-path arc uv, without
a 4 or a 5-path arc, but with the two 6-path arcs ub; and ub;.

Example 4.5 Let D be consists of the cycle C' = b;bybsby, the vertices u, v, wy, and

an arbitrary tournament 77 such that b — v = wy = v — (V(C) UV (Ty) U {v})
and 7y — C. Then, D is a strongly connected in-tournament with the 3-path arc
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uv, without a 4 or a 5-path arc, but D contains the 6-path arc ub;.

Theorem 4.6 Let D be a strongly connected in-tournament of order n > 5 contain-
ing the 3-path arc wv. If Dy, Dy, ..., D, is the strong decomposition of D —u, and if
D contains an k-path arc for each 4 < k < m < n -1, then V(Dpya-k) = {wWpsa-+},
N~ (wpya-k) = {U, Wpy2—x}, and uwyio 4 is the unique k-path arc fora <k <m.

Proof. We proceed by induction on m, using the structure of D, described in Theo-
rem 4.1 and parts of the proof of Theorem 4.2.

Let m = 4. Suppose first that [V (D,-2)| > 3. Then, by the proof of Theorem 4.2, we
see that all arcs different from wv of the subdigraph induced by the vertices u, v, w,
and the vertex set V(D,_,) are contained in a 6-path. But since D contains 4-path
arc, we deduce that p > 4.

Next we prove that all arcs different from wv and uz with x € V(D,_2) belong to a
5-path of D, independently from the order of D,_s. Every arc uz; with z; € V/(D;) is
contained in the path w,_vw,uz; for 1 < i < p—3. Thus, vw, and wpu are also arcs
of a 5-path. Every arc z;y; of D; is contained in the path vwyuz;y; for 1 <¢ < p-—2.
Now let z;z; be an arc from D; to D; for1<i<j<p-1 Ifj <p-—2, then
the 5-path vw,uz;z; has the terminal arc z;z;. If j = p— 1, then z; = v, and z;v
belongs to the 5-path z;vwyuz, with s # i,p — 1,p and z, € V(D;).

All together we see there exists at most a 4-path arc in D, if p > 4 and if D,_» con-
sists of the single vertex w,_,. But in this case, certainly, uwj,_, is the only 4-path
arc of D, when N~ (v) = N~ (wp-1) = {u, wp-2}.

Now let 5 < m < n—1 and assume that D contains a k-path arc for each 4 < k < m.
Then, D contains a k-path arc for each 4 < k < m — 1, and by the induction hy-
pothesis V(Dpiz—x) = {Wpra—i}, N (wpt3—k) = {% Wpr2-}, and uwpyo—i is the
unique k-path arc for 4 < k < m — 1. Analogously to the case m = 4, one can prove
that |V (Dpt2-m)| > 3 is not possible, and thus p > m, and that all arcs different
from wv, uwpio—k for 4 <k < m —1and uz with z € V(Dp42-m) are contained in
an (m + 1)-path, independently from the order of Dyi3 . Consequently, Dpio-m
consists of the single vertex wyya_m. In addition, from the hypothesis that D has an
m-path arc, it follows that N~ (wpi3-m) = {, Wpr2-m} and this implies that uw,_,
is the only m-path arc of D. O

Using Theorem 4.6, it is no problem to obtain the next result, analogously to Theo-
rem 4.2.

Theorem 4.7 Let D be a strongly connected in-tournament of order n > m + 2
containing a k-path arc for each k = 3,4,...,m but no (m + 1)-path arc. Then
n>m+3 and D contains no (m + 2)-path arc.

Theorem 4.8 Let D be a strongly connected local tournament of order n > 4

with the 3-path arc uv. Then all arcs of D which are not incident with u are con-
tained in a Hamiltonian path.
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Proof. By Observation 3.1, we assume without loss of generality that D — v is
not strong. If Dy, D, ..., D, is the strong decomposition of D — u, then by Theorem
4.1, V(D,) = {wp}, wp = u, V(Dp-y) = {v}, N~ (w,) = {v}, and u — (D, U Dy U

.UD,_1). Furthermore, Theorem 2.4 implies D; — D;y; fori =1,2,...,p~1. In
the following let zizh ... Tly(p,) %1 be a Hamiltonian cycle of the strong component
D;for 1 <¢ < p—2, when |V(D;)| > 3, and define by P; a Hamiltonian path of D;.
By Theorem 3.2 and Remark 3.4, every arc from D; to Dy for 1 <i<p—1, and
each arc of the component D; for 1 < ¢ < p —~ 2 is contained in a Hamiltonian path
of D. Now, let x;a:}c be an arc from D; to Dy for 1 <i<p—2andi+2<t<p—1.
Then, because of D; — D;4; fori =1,2,...,p — 1, we deduce that

it t
P P,... Pz} +1:17“2 ST T g T P o vwpu Py L Py

is a Hamiltonian path through zjxfc, and this completes the proof. O

Obviously, in Theorem 4.8, the arc w,u and all arcs from u to D; are also con-
tained in a Hamiltonian path, even in a Hamiltonian cycle. Example 4.3 shows that
Theorem 4.8 is no longer valid for in-tournaments in general.

5. Strong in-tournaments without a 3-path arc

Next we describe the structure of strongly connected in-tournaments containing a
4-path arc but no 3-path arc. We shall see that such in-tournaments have only one
4-path arc, when the order is at least six.

Theorem 5.1 Let D be a strongly connected in-tournament of order n > 6 contain-
ing a 4-path arc uv but no 3-path arc. If Dy, D,, . .., D, is the strong decomposition
of D — u, then p > 4, D, consists of a single vertex say wp such that w, — u,
V(Dpo1) = {wp—1}, u — (D1 UD,U...UD, 9),v € V(Dp-1)UV(D,_y), and D has
no further 4-path arc. In addition:

If v € V(Dp-1), then V(Dpoy) = {v}, V(D1) = {wr}, and N~ (w,) = {wy,v}.

If v € V(Dp-2), then V(Dp_3) = {v} and there are no arcs from D; to the vertices
Wp—1 OF Wy, for 1 < j < p— 3. Furthermore, if u — w,_1, then v — Wh.

Proof. From Observation 3.1 it follows that D — u is not strong. Since D is strong,
there exists a vertex w, € V(D,) with w, — u.

Suppose first that v € V(D,). Since the vertex w, # v is also in D,, the strong
component D, consists of at least three vertices, and according to Theorem 2.2, D,
has a Hamxltoman cycle, say vr1Zy... 2w, with ¢ > 2. If ¢t > 3, then wvz 973 is
5-path through v, a contradiction. Thus, t = 2. The vertices u and z, are adjacent,
since they are negative neighbors of v. If zo — u, then w,_17;7ouv is a 5-path, a
contradiction. Consequently, v — z; and w, = z; — u. But now it follows easily
from the hypothesis n > 6 that uv is not a 4-path arc, a contradiction.

Second, let v € Dy_y. If [V(D,_;)| > 3, then there exists a Hamiltonian cycle
VZ1%g . .. 7w of Dy_1, and wyuvz125 is a 5-path through wv, a contradiction. This
implies V(D,-1) = {v}, and similarly we find that V(D,) = {w,}. Since uv is a
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4-path arc, there exist an arc wu or ww, with w € V(D;) for 1 < j < p—2. In both
cases we deduce that w € V(D;) and |V(D1)| = 1. This is a contradiction if wu is
an arc of D, because there is also an arc from u to D;. In the other case we see that
w = wy, N~ (w,) = {wy, v}, and p > 4. Analogously to the proof of Theorem 4.1, we
obtain u — (Dy U Dy U ... U D,_,), and this implies that D has no further 4-path
arc.

Suppose third that v € V/(D;) for any j < p— 2. The cases j <p—-3orj=p—2
and |V(Dp-2)| > 3 lead to a contradiction, and thus, V(Dp—2) = {v}. This implies
immediately V(D,) = {w,}, V(Dp-1) = {wp_1}, and p > 4. Next we note that there
are no arcs TiWp— OI Tyw, With z; € V{(D;) for 1 < i < p — 3, because otherwise
TiWp— 1 WpUY OF T;wpuvwp_; would be 5-paths through wv. Obviously, there is no arc
from D; to u for j < p — 3, and hence, analogously to the proof of Theorem 4.1,
we obtain u — (D; U Dy U ... U Dyg). If u = w,_1, then it follows that v — w,
because otherwise uw,_; would be a 3-path arc. With help of the hypothesis n > 6,
it is straightforward to verify that there is no further 4-path arc in D. O

Remark 5.2 For n = 5 there exist exactly three non isomorphic strongly connected
in-tournaments containing a 4-path arc but no 3-path arc. Let C = uwwawzwsu be
a b-cycle.

If Ty is the tournament consisting of C such that u — {ws, w3}, wy — {ws, ws}, and
w4 — Wy, then Ty contains the the unique 4-path arc uw;.

If Ds is the in-tournament consisting of C' such that u — wy and w3 — u, then Ds
has even the two 4-path arcs uw, and wau. If we add in Dy the arc wowy, then we
obtain an in-tournament with the unique 4-path arc uws,.

With help of Theorem 3.2 and Theorem 5.1, one can prove the next result, anal-
ogously to Theorem 4.8.

Theorem 5.3 Let D be a strongly connected local tournament of order n > 6
with the 4-path arc wv but without a 3-path arc. Then all arcs of D which are not
incident with u are contained in a Hamiltonian path, with exception of the arc vwy,
when v = w,_ and u and w,_1 are not adjacent. But in this situation the arc vw,
is contained in an {n — 1)-path.

Our next example shows that Theorem 5.3 is not valid for strong in-tournaments
in general.

Example 5.4 Let D be consists of the cycle C = byby...byby, the arcs byb; for
3 < i<n-1,and the vertices u,v,ws and w3 such that by > v —= wy = wg — u —
(V(C)U {v}) and v — ws. Then, D is a strongly connected in-tournament of order
n+ 4 without a 3-path arc containing the 4-path arc uv. We observe that D has the
(n + 3)-path arc vws and the 7-path arc bibn_1, S0 that byb,_; is not contained in a
Hamiltonian path, when n > 4.

We also have a corresponding result to the Theorems 4.1 and 5.1, when wv is a
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5-path arc and D contains neither a 3-path arc nor a 4-path arc. Since the descrip-
tion of such in-tournaments is long and not very transparent, we omit it here. But
especially, we have found the following uniquenes theorem.

Theorem 5.5 Let D be a strong in-tournament of order n > 8 containing a 5-
path arc but neither a 3-path arc nor a 4-path arc. Then, D has exactly one 5-path
arc.

Next we present an example that demonstrates that the condition n > 8 in The-
orem 5.5 is necessary.

Example 5.6 Let m > 5 be an integer, and let the strongly connected in-tournament
D consists of the cycle 173 . . . Tm—2Zm-1Y1Y2 - - - YUm—2Z1 such that zy = {x3,24,...,
Tm-1} and Tmo; = {Y2, Y3, .-, Ym—2}. Then, D is of order 2m — 3 with the two
m-path arcs £1Z,—1 and Ty—1Ym—2-

Theorems 4.1, 5.1, 5.5, and Example 5.6 leads us to the following conjecture.

Conjecture 5.7 Let m > 6 be an integer, and let D be a strongly connected
in-tournament of order n > 2m — 2. If D has an m-path arc but no k-path arc for
3 < k < m —1, then there exists exactly one m-path arc.

Example 5.6 shows that the condition n > 2m — 2 in Conjecture 5.7 would be
best possible.

References

[1] J. Bang-Jensen, Locally semicomplete digraphs: a generalization of tourna-
ments, J. Graph Theory 14 (1990), 371-390.

[2] J. Bang-Jensen and G. Gutin, Generalizations of tournaments: a survey, J.
Graph Theory 28 (1998), 171-202.

[3] J. Bang-Jensen, J. Huang, and E. Prisner, In-tournament digraphs, J. Combin.
Theory Ser. B 59 (1993), 267-287.

[4] Y. Guo, Locally Semicomplete Digraphs, Ph.D. thesis, RWTH Aachen, Ger-
many, Aachener Beitrige zur Mathematik 13 (1995), 92 p.

[6] J. Huang, Tournament-like Oriented Graphs, Ph.D. thesis, Simon Fraser Uni-
versity (1992).

[6] L. Rédei, Ein kombinatorischer Satz, Acta Litt. Sci. Szeged 7 (1934), 39-43.

[7] M. Tewes, In-Tournaments and Semicomplete Multipartite Digraphs, Ph.D.
thesis, RWTH Aachen, Germany, Aachener Beitrage zur Mathematik 25
(1999), 114 p.

105




[8] M. Tewes, Pancyclic in-tournaments, Discrete Appl. Math., to appear.
[9] M. Tewes, Pancyclic orderings of in-tournaments, submitted.

[10] M. Tewes and L. Volkmann, On the cycle structure of in-tournaments, Aus-
tralas. J. Combin. 18 (1998), 293-301.

[11] M. Tewes and L. Volkmann, Vertex pancyclic in-tournaments, submitted.

[12] L. Volkmann, Longest paths through an arc in strong semicomplete multipar-
tite digraphs, submitted.

(Received 10/3/99)

106




