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Abstract 

We prove a q-analogue of the formula 

by inverting a formula due to Dilcher. 

1 The identities 

Hernandez in [6] proved the following identity: 

(1) 

However this identity does not really require a proof, since we will show that it is 
just an inverted form of an identity of Dilcher [2]; 

(2) 

For k 2: 1, define 

and 
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then the identities are 

(3) 

These are inverse relations, as can be seen by introducing ordinary generating func­
tions A(z) = L: anzn and B(z) ~ L: bnzn. Then (3) gives immediately 

A(_Z ) = B(z), 
z-1 

B(_Z ) = A(z). 
z-1 

However 

z w 
w = -- f---t z = --, 

z-1 w-l 
and the proof is finished. An alternative argument that will be useful in the sequel 
when we do the q-analogue, is as follows. We take differences in (3) of the lines 
indexed with n resp. n - 1; then we have to prove that 

'" (n -1) k bn = L....J k _ 1 ( -1) ak 

l$k::;n 

'" (n -1) k an = L....J k _ (-1) bk • 

l$k$n 1 

Now in this form this is a traditional inverse relation; see e. g. [7]. An explicit 
argument will follow in the next section for the q-instance. 
We note that Dilcher's sum appears also in disguised form in [3]. 

2 A q-analogue 

Dilcher's formula (2) is a corollary of his elegant q-version; 

Here, [~J q denotes the Gaussian polynomial 

(q; qh(q; q)n-k 
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with 

(x;q)n:= (1- x)(l- xq) ... (1- xqn-l). 

Apart from Dilcher's paper [2], the article [1] is also of some relevance in this context. 
Therefore it is a natural question to find a q-analogue of Hernandez' formula, or, what 
amounts to the same, to find the appropriate inverse relations for the q-analogues. 
We state them in the following lemma. 

Lemma 1. 

L b. = L [~l (-Wq(:)a., 
l~k~n l~k~n q 

L q-'a. = L [~] (-l)'q-kn+mbk. 
l~k~n l~k~n q 

(4) 

Proof. Again, taking differences in (4), we have to prove that 

<==> an = L[~ = ~l (_l)'q-(n-llk+(:)b. 
l:5k~n q 

(5) 

However, after trivial modifications, this is the inverse pair reported in [5J, exercise 
(2.6.6 (b)). Credits for it are given to Carlitz, Szego, and Rogers; compare the 
references in [5]. 
After a first version of this note was circulated, O. Warnaar kindly informed me that 
this lemma would also follow from results in [4J. 0 

We would like to remark that an alternative formulation can be given in terms of 
matrices of connection coefficients. 
This can be done in terms of the original formulre (4), but looks much nicer when 
referring to (5): 
Define matrices 

U := [[~ =~] (-1)'q-(n-llk+m] , 
q n~ 

then 

TU=I. 
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