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Abstract

Let k, t and n be three integers with t > 2, k > 2t and n > 3t. We
conjecture that if G is a graph of order n with minimum degree at least
k, then G contains ¢ vertex-disjoint cycles covering at least min(2k,n)
vertices of G. We will show the conjecture to be true for ¢t = 2.

1 Introduction

We discuss only finite simple graphs and use standard terminology and notation
from [1] except as indicated. Let k be an integer with k£ > 2. Let G be a graph of
order n > 3. P. Erdés and T. Gallai [5] showed that if G is 2-connected and every
vertex of G with at most one exception has degree at least &, then G contains a cycle
of length at least min(2k,n). We wonder if G contains at least two vertex-disjoint
cycles covering at least min(2k,n) vertices of G. This is certainly true if k > n/2
with & > 4 and n > 6. by El-Zahar’s result [4]. El-Zahar proved that if n = n; + n,
is an integer partition of n with n; > 3 and ny > 3 and the minimum degree of
G is at least [n,/2] + [ny/2], then G contains two vertex-disjoint cycles of lengths
n1 and ny, respectively. Corrddi and Hajnal [2] investigated the maximum number
of vertex-disjoint cycles in a graph. They proved that if G is a graph of order at
least 3¢ with minimum degree at least 2¢, then G contains ¢ vertex-disjoint cycles.
In particular, when the order of G is exactly 3¢, then G contains ¢ vertex-disjoint
triangles. Motivated by these results; we conjecture the following:

Conjecture A Let k, t and n be three integers with t > 2, k > 2t and n > 3t.
Suppose that G is a graph of order n with minimum degree at least k. Then G
contains t vertex-disjoint cycles covering at least min(2k,n) vertices of G.

Note that if this conjecture is true, then the condition on the degrees of @ is
sharp. This can be seen from the graph Kj_; k41 with n > 2(k —1). By observing
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K n—k, we also see that when n > 2k, G may not contain ¢ vertex-disjoint cycles
covering more than 2k vertices of G.

Erdds and Faudree [6] conjectured that if G is a graph of order 4¢ with minimum
degree at least 2t, then G contains t vertex-disjoint cycles of length 4. With respect
to this conjecture, we proved [10] that G contains t vertex-disjoint cycles such that
t — 1 of them are of length 4. It follows that G contains t vertex-disjoint cycles
covering all the vertices of G such that at least ¢ — 2 of them are of length 4. Thus
Conjecture A is true when n = 2k = 4¢. In this paper, we will prove the following
result.

Theorem B Let k and n be two integers with k > 4 and n > 6. Let G be a graph of
order n with minimum degree at least k. Then G contains two vertez-disjoint cycles
covering at least min(2k,n) vertices of G.

We shall use the following terminology and notation. Let G be a graph. For
a vertex u € V(G) and a subgraph H of G, N(u, H) is the set of neighbors of u
contained in H, i.e., N(u, H) = N(u) N V(H). We let d(u, H) = |[N(u, H)|. Thus
d(u, Q) is the degree of u in G. For a subset U of V(G), G[U] denotes the subgraph
of G induced by U. The length of a longest cycle of G is denoted by ¢(G). We define
¢:(G) to be the maximal number of vertices of G covered by a set of ¢ vertex-disjoint
cycles of G. Thus ¢;(G) = ¢(G).

2 Lemmas

Let G = (V;, E) be a given graph in the following. Lemma 2.1 is an easy observation.

Lemma 2.1 Let C be a cycle of length s in G. Let P be a path of length at least
|s/2] = 1 in G = V(C). Suppose that z and y are the two endvertices of P with
d(z,C) > 1 and d(y,C) > 1. Then either G[V(C U P)] contains a cycle longer than
C, or N(z,C) = N(y,C) = {u} for some u € V(C).

Lemma 2.2 Let C be a cycle of length s in G. Let P be a path of length ot least 2 in
G-V(C). Suppose that z and y are the two endvertices of P and d(z, C)+d(y,C) >
/2. Then G[V(C U P)] contains a cycle longer than C.

Proof. Let C = ujus...usu;. The subscripts of the u;’s will be reduced modulo s
in the following. Clearly, we have

8

Q(d(l‘, C) + d(y’ C)) = Z(d(m’ uiui+1) + d(y> ui+2ui+3)) > 8.
i=1
This implies that there exists ¢ € {1,2, ..., s} such that d(z, wjuis1) +d(y, Uipotiys) >
2. The lemma follows. 0

Lemma 2.3 [5] Let C = uwjusy...usx; be a cycle of G. Let 4,5 € {1,2,...,s} with
i # j. Suppose that d(u;, C) + d(u;,C) > s+ 1. Then for eache € {-1,1}, G has a
path P from uie to ujie such that V(P) = V(C), where the subscripts are reduced
modulo s.
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Lemma 2.4 [5] Let s > 2 be an integer. Suppose that G is 2-connected and every
vertex of G with at most one ezception has degree at least s. Then G contains a cycle
of length at least min(2s,n).

3 Proof of Theorem B

Let k and n be two integers with & > 4 and n > 6. Let G = (V, E) be a graph of order
n with §(G) > k. Suppose, for a contradiction, that G does not contain two vertex-
disjoint cycles covering at least min(2k,n) vertices of G, i.e., c(G) < min(2k,n).
By El-Zahar’s result, n > 2k. Hence ¢y(G) < 2k. Let Cj be a smallest cycle of G,
and subject to this, we choose Cy such that the length of a longest cycle of G-V (Cy)
is maximal. Let C; be a longest cycle of G — V(Cy). Subject to the choice of Cy and
C1, we choose Cp and Cj such that the length of a longest path of G — V(CyUC) is
maximal. Set H =G ~ V(Cp) and D = H — V(C}). Let P be a longest path in D
and set Dy = G[V(F,)]. We say that a block of H is an endblock if either the block
contains exactly one cut-vertex of H or the block is a component of H.

We claim that Cy is a triangle. If this is not true, then d(z,Cy) < 2 for all
z € V(H) for otherwise G contains a smaller cycle than Cy. Hence 6(H) > k — 2.
Let P = 119 ...Ym be a longest path in H. Then d(y;, P) > k — 2. As H does
not contain a triangle, there exists y; with ¢ > 2(k — 2) such that y;y; € E. Hence
c(H) > 2(k — 2) and therefore ¢;(G) > 2k, a contradiction. Hence Cj is a triangle.
Then it is easy to see that C exists.

Let Cy = ujuguzu;. We divide our proof into the following two cases: k = 4 or
k>5.

Case 1. k = 4.
In this case, c3(G) < 7. We break into the following two subcases according to
whether H is 2-connected.

Case 1.1. H is 2-connected.

Clearly, c(H) > 4 as [V(H)| = n—3 > 4. Thus ¢3(G) = 7 and C is of length
4. Let €1 = 117923747;. As H is 2-connected, for each z € V(D), there exist two
paths from z to two distinct vertices of C; such that z is the only common vertex
of the two paths. Then we see that for each 2 € V(D), either N(z,C;) = {1, 73}
or N(z,Cy) = {z2,z4} for otherwise ¢(H) > 5. Furthermore, D does not contain
any edges. Let zo € V(D). Then d(zg,Cp) > 2 and so Cy + zy is hamiltonian.
Consequently, c;(G) > 8, a contradiction.

Case 1.2. H is not 2-connected.

Let H; and H, be two endblocks. Moreover, we choose H, and H, such that if
H has a cut-vertex, then H; and H, are in the same component of H. For each
i € {1,2}, let z; € V(H;) be such that if H; contains a cut-vertex of H then it is ;.
We break into the following two situations.

Case 1.2(a). There exists y; € V(H; — z1) such that d(y;, Cp) > 2. Then Cy + 1, is
hamiltonian. Hence ¢(H,) < 3. This implies that H, — x5 contains a vertex z; such
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that d(z,Co) > 2. Therefore ¢(H;) < 3. It follows that H; = K; or Kj for each
1€ {1,2}.

First, suppose that either H; & K, or Hy & K. Say w.l.o.g. that H; = K.
Then d(y;,Cy) = 3. Assume that H has a third endblock Hz. Then we also have
that Hy & K, or Ks. Let w; € V(H;) be such that w; is not a cut-vertex of H.
Thus d(w;,Cp) > 2 and Cp + y1 + wi is hamiltonian. Therefore any block of H
other than H, and Hj is of order 2. In particular, Hy & K,. Similarly, we can
readily show that Hy & K,. If H; and Hy are not in the same component of H,
then by the choice of H; and H,, H must consist of independent edges only, and
we see that cy(G) > 9 as e(Co, Hy U Ho U H3) = 18, a contradiction. Therefore H;
and H, are in the same component of H. Notice that d(wi,Co) = d(z1,Co) = 3
where Hy = 792z;. As Cp —uy +w;p is a triangle in G, it follows that z; = z, for
otherwise ¢(H — w; +u;) > 5. If Hs is in a component D' of H which does not
contain H;, then we see that either D' = Hy and so G|V (Hz) U {up, us}] = Ky, or
G|V (D' + ug)] contains a cycle of length at least 4 by applying the above argument
to Hy and Hy where H, is another endblock of D', Thus ¢;(G) > 8, a contradiction.
This argument allows us to see that H is connected and conclude that H = Kin-s
with d(z1, H) = n — 4. It follows that d(z,Co) = 3 for all z-€ V(H) — {z:}, and
consequently, we readily see that c;(G) > 8. Therefore H does not have a third
endblock. Then it is easy to see that H is a path and ¢;(G) > 8.

Therefore H; = K. Similarly, Hy & K. Let H; = 11y1y221. Then we see that
Cy + y1 + ¥ is hamiltonian and so ¢;(G) > 8, a contradiction.

Case 1.2(b). For each y € V(H; — z1), d(y,Co) < 1.

Similarly, we must have that d(z,Cq) < 1 for all z € V(Hp — x5). Thus for each
i € {1,2}, d(v, H;) > 3 for all v € V(H; — z;). Clearly, c(H;) > 4 and ¢(Hz) > 4. On
the other hand, we must have ¢(H) < 4 and so ¢(H1) = c(H;) = 4. Thus 2; = x,. Let
P = 00, . ..Um be a longest path of H; with v; # 1. Then N(vy, Hy) = {v2, v3, v4}
and d(v;,Cy) = 1. It is easy to see that H; = K, for otherwise we readily see that
either ¢(Hy) > 5 or H; has a path longer than P. Similarly, H, = K. Clearly,
G[V(Cy U Hy — z1)] contains a cycle of length at least 4. We obtain that c2(G) > 8,
a contradiction. :

Case 2. k > 5.
Let C; = 2122 ...2,x1. Then s < 2k — 4. We break into the following two cases:
s>2k—6ors<2k-T.

Case 2.1. s > 2k — 6.
Thus s € {2k — 6,2k — 5,2k — 4}. Let Py = y192...%. As s = c(H), we clearly
have

d(y,C1) < |s/2] for all y € V(D). 1)

We claim
r>4. (2)
Proof of (2). On the contrary, suppose r < 3. First, assume r = 1. Then by (1),
d(y,Cy) > 2 for ally € V(D). Thus Cp + ¥ is hamiltonian and so s < 2k — 5. Then
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by (1) again, d(y,Co) > 3 for all y € V(D). Clearly, adding any three vertices of
D to Cp will result in a hamiltonian subgraph of G. Consequently, c2(G) > 2k, a
contradiction.

Next, assume 7 = 2. If d(y;, Co)+d(y2, Co) < 2, then d(y1, C1)+d(y2, C1) > 2k—4.
By (1), we must have that d(y;,Ci) = d(y2,C1) = k — 2. It is easy to see that
Ci + y1 + yo contains a cycle of length s + 1 or s + 2, a contradiction. Hence
d(y1, Co) + d(y2,Co) > 3. Thus Cp + y1 + y2 contains a cycle of length at least 4,
and so s < 2k — 5. If d(yy, Cy) + d(ya, Co) = 3, then d(y1, C1) + d(ys, C1) > 2k - 5,
and consequently, either d(y, C1) > k —2 or d(ys,C1) > k — 2, contradicting (1). So
d(y1, Co) + d(ya2, Co) > 4. Thus Cp + y; + ¥ is hamiltonian, and so s = 2k — 6. If
d(y1, Co) + d(ya, Co) = 4, then we have, by (1), that d(y;,C1) = d(,C1) =k — 3.
Again, we readily see that C;+y;+y» contains a cycle longer than C, a contradiction.
Hence d(y;, Co) + d(y2,Co) > 5. Let ¢’ be a third vertex of D. Then d(y', D) <1 as
r = 2. Thus d(y', Cy) > 2 by (1), and consequently, Cy + y1 + 2 + ¥’ is hamiltonian.
It follows that co{G) > 2k.

Finally, we assume that » = 3. By Lemma 2.2, d(y1,C1) + d(y3,C1) < |s/2].
We must have that d{y;,Co) + d{ys,Co) < 3 for otherwise Co + 11 + yo + y3 is
hamiltonian. This implies that d(y;) + d(ys) < |s/2] + 3 + 4. Furthermore, if
d(y1, Co) + d(ys, Co) = 3, then Cy + 31 + y3 contains a cycle of length at least 4, and
so we must have that s < 2k — 5. It follows that d(y,) + d(ys) < 2k, a contradiction.
So (2) holds. o

By (2) and Lemma 2.2, we obtain
d(y1, Co) + d(yr, Co) < 3 and d(yy,C1) + d(yr, C1) < [5/2]. (3)

Note that if maz(d(y;, Co), d(yr, Co)) = 2, then Cy + y1 + y, contains a cycle of
length at least 4 and so s < 2k — 5. Together with (3), we obtain

d(yl, P()) + d(yr, P()) 2 k. (4

—t

By (4), we see that either d(y;, Py) > [k/2] or d(yr, Py) > [k/2], and so ¢(Dy) >
[k/2] + 1. As co(H) < 2k, 4 < [k/2] +1 < 5. It follows

k € {5,6,7,8} and s € {2k — 6,2k — 5}. (

(5]
~

We now break into the following two situations.

Case 2.1(a). s =2k — 5. )

Then ¢(G — V(Cy)) < 4. W.lo.g, say d(yi, Po) > d(yr, Py). Then we must
have that k € {5,6} and N(y1, o) = {y2,¥3, ya}. Then Dy has a hamiltonian path
from y; to y, for each i € {1,2,3}. By Lemma 2.2, d(y:,C1) + d(ys, C1) < k — 3.
First, suppose that d(y.,Cy) > 1. Then we must have that d(y;, Cy) = 0 for each
i € {1,2,3}. Consequently, d(y;, Py) + d(ys, Po) > k + 3. It follows that ¢(Dg) > 5,
a contradiction. Therefore, we must have that d(y,,Cy) = 0. By (1), d(y,,Cy) <
k — 3 and so d(y,, Py) = 3, too. Similarly, we can readily show that d(y;,Cp) = 0,
d(y1, Py) + d(yr, Po) = k + 3 and ¢(Dp) > 5, a contradiction.
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Case 2.1(b). s =2k — 6.

Note that 4 < s < 10 by (5). First, suppose that d(y1,Co) > 1 and d(y,, Co) > 1.
Then we must have that N(yi, Co) = N(yr,Co) = {u;} for some i € {1,2,3} and
r = 4 for otherwise c(G[V(C’OUPO)]) > 6. Ifd(y1,C1) =0, then d(y;, Pp) > k-1 >4
and so r > 5, a contradiction. Hence d(y;,C1) > 1, and similarly, d(y.,C1) > 1.
Then we see that ¢(H) > 5 and so k > 6 by the maximality of s. It is easy to see
that if either maz(d(y1, C1), d(yr, C1)) > 2 or N(y1,C1) # N(y-,C1), then k = 8
and maz(d(y1, C1),d(yr, C1)) < 2 for otherwise c¢(H) > s. Hence d(y1,C1) = 1
for otherwise d(y1, P) > 5 and so ¢(Dg) > 6, a contradiction. It follows that
d(y1, Py) > k—2 >4 and so r > 5, a contradiction.

Therefore we may assume w.l.o.g. that d(y,,Co) = 0. Then d(y,,C1) > 1 for
otherwise we readily see that ¢(Dg) > 6. We claim that d(y;,C1) = 0. If this is not
true, then ¢(H) > 5 and so k > 6. As ¢(Do) < 5, d(yr, Po) < 4 and so d(y,,C1) 2 2.
Then again, we must have that k = 8 and d(y,, C1) = 2 for otherwise c(H) > s.
Hence d(y,, Py) > 6 and so ¢(Dg) > 7, a contradiction. So d(y;,Cy) = 0. Hence
d(y1,Co) > 1 for otherwise c(Dg) > 6.

As k > 5 and d(y1,C1) = 0, d(y1, Po) > 2. Let j + 1 be the greatest integer in
{2,3,...,r} such that y1y;4+1 € E. Then Dy has a hamiltonian path from y; to .
Similarly, we must have that d(y;,C1) = 0 and d(y;,Co) > 1. As 41119, is a path
of G, we see that d(y;,Co) = d(y;,Co) = 1 for otherwise c(G[V (CoU Dy)]) > 6. This
yields that d(y1, Py) + d(yj, Po) > 2k — 2, and consequently, ¢(Dg) > k. It follows
that k = 5. But then s = 4, contradicting the maximality of s.

Case 2.2. s <2k-—1T.

Clearly, we have that 6(H) > k — 3. If H is 2-connected, then ¢(H) > 2k — 6
by Lemma 2.4, a contradiction. Hence H is not 2-connected. Let H; and H, be two
arbitrary endblocks of H. Set n; = |V(H,)| and ny = |V(H,)|. As 6(H) > k~3 and
by Lemma 2.4, we must have

k—2<m <2%—-Tandk—2<n, <2%—7. (6)

By Lemma 2.4, both H; and Hj are hamiltonian. Let Q1 = 2125... 2,21 and
Q2 = Y192 - . . Yn,¥1 be two hamiltonian cycles of H; and Hj, respectively such that
every v € V(H, U Hy) — {z1, 91} is not a cut-vertex of H.

First, suppose that for each ¢ € {1,2}, G does not have two independent edges
between Cy and H;. As 6(G) > k, this implies that n; > k and ny > k. Therefore
we must have that z; = y; for otherwise co(H) > 2k. As 2k —7 > ny > k,
k> 7. Asé(H) >k~ 3, we have that §(H; — z1) > k—4 > (n; — 1)/2 for each
i € {1,2}. Therefore both H; — 2 and H, — z; are hamiltonian. Hence we must
have that n, = ny = k for otherwise cy(H) > 2k. Therefore d(z;,Co) > 1 for all
i € {2,3,...,k}. As there exist no two independent edges between Cy and H;, we
obtain that d(z;, Co) = 1 and d(2;, H;) = k—1for alli € {2,3,...,k}. Consequently,
H, = Ky, and we readily see that ¢(G[V(Co U Hy — 21)]) 2 k, and so ¢3(G) > 2k, a
contradiction.

Therefore we may assume w.l.0.g. that there exist two independent edges between
Co and H,. Say {uzi,us2;} C E for some 1 < i < j < my. If {z,2} = {29, 20, }
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then ¢(G[V(Co U H; — 21)]) > k. Then ny < k — 1 for otherwise c;(G) > 2k. Hence
d(yi, Co) > 2 for all i € {2,3,...,n,}. As 6(H) > k — 3 and ny < 2k — 7, it is easy
to prove that H, contains a triangle. Therefore 2k — 7 > k by the maximality of s,
and so k > 7. It follows that there are two independent edges between C; and H,
which are not incident with any of y, and Yn,- Therefore by abusing notation, we
may assume in the first place that {2;, 2;} # {22, 2, }. Then either z; & {2i_1,2;-1}
or z1 & {241, 2j41} where the subscripts are taken modulo n;. We show k > 7 as
follows. As §(H) > k — 3, n; < 2k — 7 and by Lemma 2.3, H; has a hamiltonian
path from z; to z; and so ¢(G[V (Co U Hy)]) > k+1. As before, we readily see that if
Hy — 3, contains a triangle, then k > 8. If H, —y; does not contain a triangle, then
we must have that d(y;, Co) = d(ys,Cp) = 3 and therefore usyaysus is a triangle.
Clearly, c(Hy +u1 4 ug) > k. Then we obtain k > 7 as 2k — 7 > k by the maximality
of s.

Suppose 21 # ;. Then we must have n, = k-2 by (6) for otherwise c3(G) > 2k.
Consequently, we see that Hy & Kj_; and d(y;,Co) = 3 for each ¢ € {2,3,...,k—2}.
Similarly, we must have that H; & Kj_, and d(z;,Cp) = 3for alli € {2,3,...,k—2}.
Then we see that H does not have a path of length at least 2 from 2; to y; for
otherwise ¢;(G) > 2k. Thus H must have a third endblock H;. Then we may
assume that H; N Hs = () and repeat the above argument with Hj replacing the role
of H,. Clearly, we see that c;(G) > 3(k — 2) + 2 > 2k, a contradiction.

Therefore z; = y;. Asn > 2k, H has a third endblock Hj, too. Set n3 = |V (Hs)|.
Similarly, we can show that z; € V(Hj;), k—2 < ng < k—1 and H;—z; is hamiltonian.
Clearly, d(ys, Ca) > 2. As before, using Lemma 2.3, we see that H; has a hamiltonian
path from 2 to each z € V(Hy) — {z}. In particular, H; has a hamiltonian path
from z; to a vertex 2’ € {2, 2;}. Then we see that G[V(CoUHy U H,)] is hamiltonian.
Hence ¢;(G) > 3k — 5 > 2k, a contradiction. This proves the theorem.

4 References

(1] B. Bollobds, Extremal Graph Theory, Academic Press, London(1978).

[2] K. Corradi and A. Hajnal, On the maximal number of independent circuits in a
graph, Acta Math. Acad. Sci. Hungar. 14(1963), 423-439.

[3] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc.
2(1952), 69-81.

[4] M.H. El-Zahar, On circuits in graphs, Discrete Math. 50(1984), 227-230.

[5] P. Erdés and T. Gallai, On maximal paths and circuits of graphs, Acta Math.
Acad. Sci. Hungar. 10(1959), 337-356.

[6] P. Erd6s, Some recent combinatorial problems, Technical Report, University of
Bielefeld, Nov. 1990.

[7] H. Wang, Partition of a bipartite graph into cycles, Discrete Mathematics, 117
(1993), 287-291.

[8] H. Wang, Covering a graph with cycles, Journal of Graph Theory, Vol. 20, No.2
(1995), 203-211.

185




[9] H. Wang, Two vertex-disjoint cycles in a graph, Graphs and Combinatorics,
11(1995), 389-396.
[10] H. Wang, On quadrilaterals in a graph, manuscript.

(Received 4/5/99)

186




