On the maximal number of vertices covered by disjoint cycles

Hong Wang*
Department of Mathematics
The University of Idaho
Moscow, Idaho 83844, USA

Abstract

Let k, t and n be three integers with $t \geq 2, k \geq 2 t$ and $n \geq 3 t$. We conjecture that if G is a graph of order n with minimum degree at least k, then G contains t vertex-disjoint cycles covering at least $\min (2 k, n)$ vertices of G. We will show the conjecture to be true for $t=2$.

1 Introduction

We discuss only finite simple graphs and use standard terminology and notation from [1] except as indicated. Let k be an integer with $k \geq 2$. Let G be a graph of order $n \geq 3$. P. Erdős and T. Gallai [5] showed that if G is 2 -connected and every vertex of G with at most one exception has degree at least k, then G contains a cycle of length at least $\min (2 k, n)$. We wonder if G contains at least two vertex-disjoint cycles covering at least $\min (2 k, n)$ vertices of G. This is certainly true if $k \geq n / 2$ with $k \geq 4$ and $n \geq 6$. by El-Zahar's result [4]. El-Zahar proved that if $n=n_{1}+n_{2}$ is an integer partition of n with $n_{1} \geq 3$ and $n_{2} \geq 3$ and the minimum degree of G is at least $\left\lceil n_{1} / 2\right\rceil+\left\lceil n_{2} / 2\right\rceil$, then G contains two vertex-disjoint cycles of lengths n_{1} and n_{2}, respectively. Corrádi and Hajnal [2] investigated the maximum number of vertex-disjoint cycles in a graph. They proved that if G is a graph of order at least $3 t$ with minimum degree at least $2 t$, then G contains t vertex-disjoint cycles. In particular, when the order of G is exactly $3 t$, then G contains t vertex-disjoint triangles. Motivated by these results; we conjecture the following:

Conjecture A Let k, t and n be three integers with $t \geq 2, k \geq 2 t$ and $n \geq 3 t$. Suppose that G is a graph of order n with minimum degree at least k. Then G contains t vertex-disjoint cycles covering at least $\min (2 k, n)$ vertices of G.

Note that if this conjecture is true, then the condition on the degrees of G is sharp. This can be seen from the graph $K_{k-1, n-k+1}$ with $n>2(k-1)$. By observing

[^0]$K_{k, n-k}$, we also see that when $n \geq 2 k, G$ may not contain t vertex-disjoint cycles covering more than $2 k$ vertices of G.

Erdős and Faudree [6] conjectured that if G is a graph of order $4 t$ with minimum degree at least $2 t$, then G contains t vertex-disjoint cycles of length 4 . With respect to this conjecture, we proved [10] that G contains t vertex-disjoint cycles such that $t-1$ of them are of length 4 . It follows that G contains t vertex-disjoint cycles covering all the vertices of G such that at least $t-2$ of them are of length 4 . Thus Conjecture A is true when $n=2 k=4 t$. In this paper, we will prove the following result.
Theorem B Let k and n be two integers with $k \geq 4$ and $n \geq 6$. Let G be a graph of order n with minimum degree at least k. Then G contains two vertex-disjoint cycles covering at least $\min (2 k, n)$ vertices of G.

We shall use the following terminology and notation. Let G be a graph. For a vertex $u \in V(G)$ and a subgraph H of $G, N(u, H)$ is the set of neighbors of u contained in H, i.e., $N(u, H)=N(u) \cap V(H)$. We let $d(u, H)=|N(u, H)|$. Thus $d(u, G)$ is the degree of u in G. For a subset U of $V(G), G[U]$ denotes the subgraph of G induced by U. The length of a longest cycle of G is denoted by $c(G)$. We define $c_{t}(G)$ to be the maximal number of vertices of G covered by a set of t vertex-disjoint cycles of G. Thus $c_{1}(G)=c(G)$.

2 Lemmas

Let $G=(V, E)$ be a given graph in the following. Lemma 2.1 is an easy observation.
Lemma 2.1 Let C be a cycle of length s in G. Let P be a path of length at least $\lfloor s / 2\rfloor-1$ in $G-V(C)$. Suppose that x and y are the two endvertices of P with $d(x, C) \geq 1$ and $d(y, C) \geq 1$. Then either $G[V(C \cup P)]$ contains a cycle longer than C, or $N(x, C)=N(y, C)=\{u\}$ for some $u \in V(C)$.

Lemma 2.2 Let C be a cycle of length s in G. Let P be a path of length at least 2 in $G-V(C)$. Suppose that x and y are the two endvertices of P and $d(x, C)+d(y, C)>$ $s / 2$. Then $G[V(C \cup P)]$ contains a cycle longer than C.

Proof. Let $C=u_{1} u_{2} \ldots u_{s} u_{1}$. The subscripts of the u_{i} 's will be reduced modulo s in the following. Clearly, we have

$$
2(d(x, C)+d(y, C))=\sum_{i=1}^{s}\left(d\left(x, u_{i} u_{i+1}\right)+d\left(y, u_{i+2} u_{i+3}\right)\right)>s
$$

This implies that there exists $i \in\{1,2, \ldots, s\}$ such that $d\left(x, u_{i} u_{i+1}\right)+d\left(y, u_{i+2} u_{i+3}\right) \geq$ 2. The lemma follows.

Lemma 2.3 [5] Let $C=u_{1} u_{2} \ldots u_{s} x_{1}$ be a cycle of G. Let $i, j \in\{1,2, \ldots, s\}$ with $i \neq j$. Suppose that $d\left(u_{i}, C\right)+d\left(u_{j}, C\right) \geq s+1$. Then for each $\varepsilon \in\{-1,1\}, G$ has a path P from $u_{i+\varepsilon}$ to $u_{j+\varepsilon}$ such that $V(P)=V(C)$, where the subscripts are reduced modulo s.

Lemma 2.4 [5] Let $s \geq 2$ be an integer. Suppose that G is 2 -connected and every vertex of G with at most one exception has degree at least s. Then G contains a cycle of length at least $\min (2 s, n)$.

3 Proof of Theorem B

Let k and n be two integers with $k \geq 4$ and $n \geq 6$. Let $G=(V, E)$ be a graph of order n with $\delta(G)>k$. Suppose, for a contradiction, that G does not contain two vertexdisjoint cycles covering at least $\min (2 k, n)$ vertices of G, i.e., $c_{2}(G)<\min (2 k, n)$. By El-Zahar's result, $n>2 k$. Hence $c_{2}(G)<2 k$. Let C_{0} be a smallest cycle of G, and subject to this, we choose C_{0} such that the length of a longest cycle of $G-V\left(C_{0}\right)$ is maximal. Let C_{1} be a longest cycle of $G-V\left(C_{0}\right)$. Subject to the choice of C_{0} and C_{1}, we choose C_{0} and C_{1} such that the length of a longest path of $G-V\left(C_{0} \cup C_{1}\right)$ is maximal. Set $H=G-V\left(C_{0}\right)$ and $D=H-V\left(C_{1}\right)$. Let P_{0} be a longest path in D and set $D_{0}=G\left[V\left(P_{0}\right)\right]$. We say that a block of H is an endblock if either the block contains exactly one cut-vertex of H or the block is a component of H.

We claim that C_{0} is a triangle. If this is not true, then $d\left(x, C_{0}\right) \leq 2$ for all $x \in V(H)$ for otherwise G contains a smaller cycle than C_{0}. Hence $\delta(H) \geq k-2$. Let $P=y_{1} y_{2} \ldots y_{m}$ be a longest path in H. Then $d\left(y_{1}, P\right) \geq k-2$. As H does not contain a triangle, there exists y_{i} with $i \geq 2(k-2)$ such that $y_{1} y_{i} \in E$. Hence $c(H) \geq 2(k-2)$ and therefore $c_{2}(G) \geq 2 k$, a contradiction. Hence C_{0} is a triangle. Then it is easy to see that C_{1} exists.

Let $C_{0}=u_{1} u_{2} u_{3} u_{1}$. We divide our proof into the following two cases: $k=4$ or $k \geq 5$.
Case 1. $k=4$.
In this case, $c_{2}(G) \leq 7$. We break into the following two subcases according to whether H is 2-connected.
Case 1.1. H is 2-connected.
Clearly, $c(H) \geq 4$ as $|V(H)|=n-3>4$. Thus $c_{2}(G)=7$ and C_{1} is of length 4. Let $C_{1}=x_{1} x_{2} x_{3} x_{4} x_{1}$. As H is 2-connected, for each $x \in V(D)$, there exist two paths from x to two distinct vertices of C_{1} such that x is the only common vertex of the two paths. Then we see that for each $x \in V(D)$, either $N\left(x, C_{1}\right)=\left\{x_{1}, x_{3}\right\}$ or $N\left(x, C_{1}\right)=\left\{x_{2}, x_{4}\right\}$ for otherwise $c(H) \geq 5$. Furthermore, D does not contain any edges. Let $x_{0} \in V(D)$. Then $d\left(x_{0}, C_{0}\right) \geq 2$ and so $C_{0}+x_{0}$ is hamiltonian. Consequently, $c_{2}(G) \geq 8$, a contradiction.
Case 1.2. H is not 2-connected.
Let H_{1} and H_{2} be two endblocks. Moreover, we choose H_{1} and H_{2} such that if H has a cut-vertex, then H_{1} and H_{2} are in the same component of H. For each $i \in\{1,2\}$, let $x_{i} \in V\left(H_{i}\right)$ be such that if H_{i} contains a cut-vertex of H then it is x_{i}. We break into the following two situations.
Case 1.2(a). There exists $y_{1} \in V\left(H_{1}-x_{1}\right)$ such that $d\left(y_{1}, C_{0}\right) \geq 2$. Then $C_{0}+y_{1}$ is hamiltonian. Hence $c\left(H_{2}\right) \leq 3$. This implies that $H_{2}-x_{2}$ contains a vertex z_{1} such
that $d\left(z_{1}, C_{0}\right) \geq 2$. Therefore $c\left(H_{1}\right) \leq 3$. It follows that $H_{i} \cong K_{2}$ or K_{3} for each $i \in\{1,2\}$.

First, suppose that either $H_{1} \cong K_{2}$ or $H_{2} \cong K_{2}$. Say w.l.o.g. that $H_{1} \cong K_{2}$. Then $d\left(y_{1}, C_{0}\right)=3$. Assume that H has a third endblock H_{3}. Then we also have that $H_{3} \cong K_{2}$ or K_{3}. Let $w_{1} \in V\left(H_{3}\right)$ be such that w_{1} is not a cut-vertex of H. Thus $d\left(w_{1}, C_{0}\right) \geq 2$ and $C_{0}+y_{1}+w_{1}$ is hamiltonian. Therefore any block of H other than H_{1} and H_{3} is of order 2. In particular, $H_{2} \cong K_{2}$. Similarly, we can readily show that $H_{3} \cong K_{2}$. If H_{1} and H_{2} are not in the same component of H, then by the choice of H_{1} and H_{2}, H must consist of independent edges only, and we see that $c_{2}(G) \geq 9$ as $e\left(C_{0}, H_{1} \cup H_{2} \cup H_{3}\right)=18$, a contradiction. Therefore H_{1} and H_{2} are in the same component of H. Notice that $d\left(w_{1}, C_{0}\right)=d\left(z_{1}, C_{0}\right)=3$ where $H_{2}=x_{2} z_{1}$. As $C_{0}-u_{1}+w_{1}$ is a triangle in G, it follows that $x_{1}=x_{2}$ for otherwise $c\left(H-w_{1}+u_{1}\right) \geq 5$. If H_{3} is in a component D^{\prime} of H which does not contain H_{1}, then we see that either $D^{\prime}=H_{3}$ and so $G\left[V\left(H_{3}\right) \cup\left\{u_{2}, u_{3}\right\}\right] \cong K_{4}$, or $G\left[V\left(D^{\prime}+u_{2}\right)\right]$ contains a cycle of length at least 4 by applying the above argument to H_{3} and H_{4} where H_{4} is another endblock of D^{\prime}. Thus $c_{2}(G) \geq 8$, a contradiction. This argument allows us to see that H is connected and conclude that $H \cong K_{1, n-4}$ with $d\left(x_{1}, H\right)=n-4$. It follows that $d\left(x, C_{0}\right)=3$ for all $x \in V(H)-\left\{x_{1}\right\}$, and consequently, we readily see that $c_{2}(G) \geq 8$. Therefore H does not have a third endblock. Then it is easy to see that H is a path and $c_{2}(G) \geq 8$.

Therefore $H_{1} \cong K_{3}$. Similarly, $H_{2} \cong K_{3}$. Let $H_{1}=x_{1} y_{1} y_{2} x_{1}$. Then we see that $C_{0}+y_{1}+y_{2}$ is hamiltonian and so $c_{2}(G) \geq 8$, a contradiction.
Case $1.2(b)$. For each $y \in V\left(H_{1}-x_{1}\right), d\left(y, C_{0}\right) \leq 1$.
Similarly, we must have that $d\left(z, C_{0}\right) \leq 1$ for all $z \in V\left(H_{2}-x_{2}\right)$. Thus for each $i \in\{1,2\}, d\left(v, H_{i}\right) \geq 3$ for all $v \in V\left(H_{i}-x_{i}\right)$. Clearly, $c\left(H_{1}\right) \geq 4$ and $c\left(H_{2}\right) \geq 4$. On the other hand, we must have $c(H) \leq 4$ and so $c\left(H_{1}\right)=c\left(H_{2}\right)=4$. Thus $x_{1}=x_{2}$. Let $P=v_{1} v_{2} \ldots v_{m}$ be a longest path of H_{1} with $v_{1} \neq x_{1}$. Then $N\left(v_{1}, H_{1}\right)=\left\{v_{2}, v_{3}, v_{4}\right\}$ and $d\left(v_{1}, C_{0}\right)=1$. It is easy to see that $H_{1} \cong K_{4}$ for otherwise we readily see that either $c\left(H_{1}\right) \geq 5$ or H_{1} has a path longer than P. Similarly, $H_{2} \cong K_{4}$. Clearly, $G\left[V\left(C_{0} \cup H_{1}-x_{1}\right)\right]$ contains a cycle of length at least 4 . We obtain that $c_{2}(G) \geq 8$, a contradiction.
Case 2. $k \geq 5$.
Let $C_{1}=x_{1} x_{2} \ldots x_{s} x_{1}$. Then $s \leq 2 k-4$. We break into the following two cases: $s \geq 2 k-6$ or $s \leq 2 k-7$.
Case 2.1. $s \geq 2 k-6$.
Thus $s \in\{2 k-6,2 k-5,2 k-4\}$. Let $P_{0}=y_{1} y_{2} \ldots y_{r}$. As $s=c(H)$, we clearly have

$$
\begin{equation*}
d\left(y, C_{1}\right) \leq\lfloor s / 2\rfloor \text { for all } y \in V(D) \tag{1}
\end{equation*}
$$

We claim

$$
\begin{equation*}
r \geq 4 \tag{2}
\end{equation*}
$$

Proof of (2). On the contrary, suppose $r \leq 3$. First, assume $r=1$. Then by (1), $d\left(y, C_{0}\right) \geq 2$ for all $y \in V(D)$. Thus $C_{0}+y_{1}$ is hamiltonian and so $s \leq 2 k-5$. Then
by (1) again, $d\left(y, C_{0}\right) \geq 3$ for all $y \in V(D)$. Clearly, adding any three vertices of D to C_{0} will result in a hamiltonian subgraph of G. Consequently, $c_{2}(G) \geq 2 k$, a contradiction.

Next, assume $r=2$. If $d\left(y_{1}, C_{0}\right)+d\left(y_{2}, C_{0}\right) \leq 2$, then $d\left(y_{1}, C_{1}\right)+d\left(y_{2}, C_{1}\right) \geq 2 k-4$. By (1), we must have that $d\left(y_{1}, C_{1}\right)=d\left(y_{2}, C_{1}\right)=k-2$. It is easy to see that $C_{1}+y_{1}+y_{2}$ contains a cycle of length $s+1$ or $s+2$, a contradiction. Hence $d\left(y_{1}, C_{0}\right)+d\left(y_{2}, C_{0}\right) \geq 3$. Thus $C_{0}+y_{1}+y_{2}$ contains a cycle of length at least 4 , and so $s \leq 2 k-5$. If $d\left(y_{1}, C_{0}\right)+d\left(y_{2}, C_{0}\right)=3$, then $d\left(y_{1}, C_{1}\right)+d\left(y_{2}, C_{1}\right) \geq 2 k-5$, and consequently, either $d\left(y_{1}, C_{1}\right) \geq k-2$ or $d\left(y_{2}, C_{1}\right) \geq k-2$, contradicting (1). So $d\left(y_{1}, C_{0}\right)+d\left(y_{2}, C_{0}\right) \geq 4$. Thus $C_{0}+y_{1}+y_{2}$ is hamiltonian, and so $s=2 k-6$. If $d\left(y_{1}, C_{0}\right)+d\left(y_{2}, C_{0}\right)=4$, then we have, by (1), that $d\left(y_{1}, C_{1}\right)=d\left(y_{2}, C_{1}\right)=k-3$. Again, we readily see that $C_{1}+y_{1}+y_{2}$ contains a cycle longer than C, a contradiction. Hence $d\left(y_{1}, C_{0}\right)+d\left(y_{2}, C_{0}\right) \geq 5$. Let y^{\prime} be a third vertex of D. Then $d\left(y^{\prime}, D\right) \leq 1$ as $r=2$. Thus $d\left(y^{\prime}, C_{0}\right) \geq 2$ by (1), and consequently, $C_{0}+y_{1}+y_{2}+y^{\prime}$ is hamiltonian. It follows that $c_{2}(G) \geq 2 k$.

Finally, we assume that $r=3$. By Lemma 2.2, $d\left(y_{1}, C_{1}\right)+d\left(y_{3}, C_{1}\right) \leq\lfloor s / 2\rfloor$. We must have that $d\left(y_{1}, C_{0}\right)+d\left(y_{3}, C_{0}\right) \leq 3$ for otherwise $C_{0}+y_{1}+y_{2}+y_{3}$ is hamiltonian. This implies that $d\left(y_{1}\right)+d\left(y_{3}\right) \leq\lfloor s / 2\rfloor+3+4$. Furthermore, if $d\left(y_{1}, C_{0}\right)+d\left(y_{3}, C_{0}\right)=3$, then $C_{0}+y_{1}+y_{3}$ contains a cycle of length at least 4 , and so we must have that $s \leq 2 k-5$. It follows that $d\left(y_{1}\right)+d\left(y_{3}\right)<2 k$, a contradiction. So (2) holds.

By (2) and Lemma 2.2, we obtain

$$
\begin{equation*}
d\left(y_{1}, C_{0}\right)+d\left(y_{r}, C_{0}\right) \leq 3 \text { and } d\left(y_{1}, C_{1}\right)+d\left(y_{r}, C_{1}\right) \leq\lfloor s / 2\rfloor . \tag{3}
\end{equation*}
$$

Note that if $\max \left(d\left(y_{1}, C_{0}\right), d\left(y_{r}, C_{0}\right)\right) \geq 2$, then $C_{0}+y_{1}+y_{r}$ contains a cycle of length at least 4 and so $s \leq 2 k-5$. Together with (3), we obtain

$$
\begin{equation*}
d\left(y_{1}, P_{0}\right)+d\left(y_{r}, P_{0}\right) \geq k . \tag{4}
\end{equation*}
$$

By (4), we see that either $d\left(y_{1}, P_{0}\right) \geq\lceil k / 2\rceil$ or $d\left(y_{r}, P_{0}\right) \geq\lceil k / 2\rceil$, and so $c\left(D_{0}\right) \geq$ $\lceil k / 2\rceil+1$. As $c_{2}(H)<2 k, 4 \leq\lceil k / 2\rceil+1 \leq 5$. It follows

$$
\begin{equation*}
k \in\{5,6,7,8\} \text { and } s \in\{2 k-6,2 k-5\} . \tag{5}
\end{equation*}
$$

We now break into the following two situations.
Case 2.1(a). $s=2 k-5$.
Then $c\left(G-V\left(C_{1}\right)\right) \leq 4$. W.l.o.g., say $d\left(y_{1}, P_{0}\right) \geq d\left(y_{r}, P_{0}\right)$. Then we must have that $k \in\{5,6\}$ and $N\left(y_{1}, P_{0}\right)=\left\{y_{2}, y_{3}, y_{4}\right\}$. Then D_{0} has a hamiltonian path from y_{i} to y_{r} for each $i \in\{1,2,3\}$. By Lemma 2.2, $d\left(y_{1}, C_{1}\right)+d\left(y_{3}, C_{1}\right) \leq k-3$. First, suppose that $d\left(y_{r}, C_{0}\right) \geq 1$. Then we must have that $d\left(y_{i}, C_{0}\right)=0$ for each $i \in\{1,2,3\}$. Consequently, $d\left(y_{1}, P_{0}\right)+d\left(y_{3}, P_{0}\right) \geq k+3$. It follows that $c\left(D_{0}\right) \geq 5$, a contradiction. Therefore, we must have that $d\left(y_{r}, C_{0}\right)=0$. By (1), $d\left(y_{r}, C_{1}\right) \leq$ $k-3$ and so $d\left(y_{r}, P_{0}\right)=3$, too. Similarly, we can readily show that $d\left(y_{1}, C_{0}\right)=0$, $d\left(y_{1}, P_{0}\right)+d\left(y_{r}, P_{0}\right) \geq k+3$ and $c\left(D_{0}\right) \geq 5$, a contradiction.

Case 2.1(b). $s=2 k-6$.
Note that $4 \leq s \leq 10$ by (5). First, suppose that $d\left(y_{1}, C_{0}\right) \geq 1$ and $d\left(y_{r}, C_{0}\right) \geq 1$. Then we must have that $N\left(y_{1}, C_{0}\right)=N\left(y_{r}, C_{0}\right)=\left\{u_{i}\right\}$ for some $i \in\{1,2,3\}$ and $r=4$ for otherwise $c\left(G\left[V\left(C_{0} \cup P_{0}\right)\right]\right) \geq 6$. If $d\left(y_{1}, C_{1}\right)=0$, then $d\left(y_{1}, P_{0}\right) \geq k-1 \geq 4$ and so $r \geq 5$, a contradiction. Hence $d\left(y_{1}, C_{1}\right) \geq 1$, and similarly, $d\left(y_{r}, C_{1}\right) \geq 1$. Then we see that $c(H) \geq 5$ and so $k \geq 6$ by the maximality of s. It is easy to see that if either $\max \left(d\left(y_{1}, C_{1}\right), d\left(y_{r}, C_{1}\right)\right) \geq 2$ or $N\left(y_{1}, C_{1}\right) \neq N\left(y_{r}, C_{1}\right)$, then $k=8$ and $\max \left(d\left(y_{1}, C_{1}\right), d\left(y_{r}, C_{1}\right)\right) \leq 2$ for otherwise $c(H)>s$. Hence $d\left(y_{1}, C_{1}\right)=1$ for otherwise $d\left(y_{1}, P_{0}\right) \geq 5$ and so $c\left(D_{0}\right) \geq 6$, a contradiction. It follows that $d\left(y_{1}, P_{0}\right) \geq k-2 \geq 4$ and so $r \geq 5$, a contradiction.

Therefore we may assume w.l.o.g. that $d\left(y_{r}, C_{0}\right)=0$. Then $d\left(y_{r}, C_{1}\right) \geq 1$ for otherwise we readily see that $c\left(D_{0}\right) \geq 6$. We claim that $d\left(y_{1}, C_{1}\right)=0$. If this is not true, then $c(H) \geq 5$ and so $k \geq 6$. As $c\left(D_{0}\right) \leq 5, d\left(y_{r}, P_{0}\right) \leq 4$ and so $d\left(y_{r}, C_{1}\right) \geq 2$. Then again, we must have that $k=8$ and $d\left(y_{r}, C_{1}\right)=2$ for otherwise $c(H)>s$. Hence $d\left(y_{r}, P_{0}\right) \geq 6$ and so $c\left(D_{0}\right) \geq 7$, a contradiction. So $d\left(y_{1}, C_{1}\right)=0$. Hence $d\left(y_{1}, C_{0}\right) \geq 1$ for otherwise $c\left(D_{0}\right) \geq 6$.

As $k \geq 5$ and $d\left(y_{1}, C_{1}\right)=0, d\left(y_{1}, P_{0}\right) \geq 2$. Let $j+1$ be the greatest integer in $\{2,3, \ldots, r\}$ such that $y_{1} y_{j+1} \in E$. Then D_{0} has a hamiltonian path from y_{j} to y_{r}. Similarly, we must have that $d\left(y_{j}, C_{1}\right)=0$ and $d\left(y_{j}, C_{0}\right) \geq 1$. As $y_{1} y_{j+1} y_{j}$ is a path of G, we see that $d\left(y_{1}, C_{0}\right)=d\left(y_{j}, C_{0}\right)=1$ for otherwise $c\left(G\left[V\left(C_{0} \cup D_{0}\right)\right]\right) \geq 6$. This yields that $d\left(y_{1}, P_{0}\right)+d\left(y_{j}, P_{0}\right) \geq 2 k-2$, and consequently, $c\left(D_{0}\right) \geq k$. It follows that $k=5$. But then $s=4$, contradicting the maximality of s.

Case 2.2. $s \leq 2 k-7$.
Clearly, we have that $\delta(H) \geq k-3$. If H is 2-connected, then $c(H) \geq 2 k-6$ by Lemma 2.4, a contradiction. Hence H is not 2-connected. Let H_{1} and H_{2} be two arbitrary endblocks of H. Set $n_{1}=\left|V\left(H_{1}\right)\right|$ and $n_{2}=\left|V\left(H_{2}\right)\right|$. As $\delta(H) \geq k-3$ and by Lemma 2.4, we must have

$$
\begin{equation*}
k-2 \leq n_{1} \leq 2 k-7 \text { and } k-2 \leq n_{2} \leq 2 k-7 \tag{6}
\end{equation*}
$$

By Lemma 2.4, both H_{1} and H_{2} are hamiltonian. Let $Q_{1}=z_{1} z_{2} \ldots z_{n_{1}} z_{1}$ and $Q_{2}=y_{1} y_{2} \ldots y_{n_{2}} y_{1}$ be two hamiltonian cycles of H_{1} and H_{2}, respectively such that every $v \in V\left(H_{1} \cup H_{2}\right)-\left\{z_{1}, y_{1}\right\}$ is not a cut-vertex of H.

First, suppose that for each $i \in\{1,2\}, G$ does not have two independent edges between C_{0} and H_{i}. As $\delta(G) \geq k$, this implies that $n_{1} \geq k$ and $n_{2} \geq k$. Therefore we must have that $z_{1}=y_{1}$ for otherwise $c_{2}(H) \geq 2 k$. As $2 k-7 \geq n_{1} \geq k$, $k \geq 7$. As $\delta(H) \geq k-3$, we have that $\delta\left(H_{i}-z_{1}\right) \geq k-4 \geq\left(n_{i}-1\right) / 2$ for each $i \in\{1,2\}$. Therefore both $H_{1}-z_{1}$ and $H_{2}-z_{1}$ are hamiltonian. Hence we must have that $n_{1}=n_{2}=k$ for otherwise $c_{2}(H) \geq 2 k$. Therefore $d\left(z_{i}, C_{0}\right) \geq 1$ for all $i \in\{2,3, \ldots, k\}$. As there exist no two independent edges between C_{0} and H_{1}, we obtain that $d\left(z_{i}, C_{0}\right)=1$ and $d\left(z_{i}, H_{1}\right)=k-1$ for all $i \in\{2,3, \ldots, k\}$. Consequently, $H_{1} \cong K_{k}$, and we readily see that $c\left(G\left[V\left(C_{0} \cup H_{1}-z_{1}\right)\right]\right) \geq k$, and so $c_{2}(G) \geq 2 k$, a contradiction.

Therefore we may assume w.l.o.g. that there exist two independent edges between C_{0} and H_{1}. Say $\left\{u_{1} z_{i}, u_{2} z_{j}\right\} \subseteq E$ for some $1 \leq i<j \leq n_{1}$. If $\left\{z_{i}, z_{j}\right\}=\left\{z_{2}, z_{n_{1}}\right\}$,
then $c\left(G\left[V\left(C_{0} \cup H_{1}-z_{1}\right)\right]\right) \geq k$. Then $n_{2} \leq k-1$ for otherwise $c_{2}(G) \geq 2 k$. Hence $d\left(y_{i}, C_{0}\right) \geq 2$ for all $i \in\left\{2,3, \ldots, n_{2}\right\}$. As $\delta(H) \geq k-3$ and $n_{2} \leq 2 k-7$, it is easy to prove that H_{2} contains a triangle. Therefore $2 k-7 \geq k$ by the maximality of s, and so $k \geq 7$. It follows that there are two independent edges between C_{0} and H_{2} which are not incident with any of y_{2} and $y_{n_{2}}$. Therefore by abusing notation, we may assume in the first place that $\left\{z_{i}, z_{j}\right\} \neq\left\{z_{2}, z_{n_{1}}\right\}$. Then either $z_{1} \notin\left\{z_{i-1}, z_{j-1}\right\}$ or $z_{1} \notin\left\{z_{i+1}, z_{j+1}\right\}$ where the subscripts are taken modulo n_{1}. We show $k \geq 7$ as follows. As $\delta(H) \geq k-3, n_{1} \leq 2 k-7$ and by Lemma 2.3, H_{1} has a hamiltonian path from z_{i} to z_{j} and so $c\left(G\left[V\left(C_{0} \cup H_{1}\right)\right]\right) \geq k+1$. As before, we readily see that if $H_{2}-y_{1}$ contains a triangle, then $k \geq 8$. If $H_{2}-y_{1}$ does not contain a triangle, then we must have that $d\left(y_{2}, C_{0}\right)=d\left(y_{3}, C_{0}\right)=3$ and therefore $u_{3} y_{2} y_{3} u_{3}$ is a triangle. Clearly, $c\left(H_{1}+u_{1}+u_{2}\right) \geq k$. Then we obtain $k \geq 7$ as $2 k-7 \geq k$ by the maximality of s.

Suppose $z_{1} \neq y_{1}$. Then we must have $n_{2}=k-2$ by (6) for otherwise $c_{2}(G) \geq 2 k$. Consequently, we see that $H_{2} \cong K_{k-2}$ and $d\left(y_{i}, C_{0}\right)=3$ for each $i \in\{2,3, \ldots, k-2\}$. Similarly, we must have that $H_{1} \cong K_{k-2}$ and $d\left(z_{i}, C_{0}\right)=3$ for all $i \in\{2,3, \ldots, k-2\}$. Then we see that H does not have a path of length at least 2 from z_{1} to y_{1} for otherwise $c_{2}(G) \geq 2 k$. Thus H must have a third endblock H_{3}. Then we may assume that $H_{1} \cap H_{3}=\emptyset$ and repeat the above argument with H_{3} replacing the role of H_{2}. Clearly, we see that $c_{2}(G) \geq 3(k-2)+2>2 k$, a contradiction.

Therefore $z_{1}=y_{1}$. As $n>2 k, H$ has a third endblock H_{3}, too. Set $n_{3}=\left|V\left(H_{3}\right)\right|$. Similarly, we can show that $z_{1} \in V\left(H_{3}\right), k-2 \leq n_{3} \leq k-1$ and $H_{3}-z_{1}$ is hamiltonian. Clearly, $d\left(y_{2}, C_{2}\right) \geq 2$. As before, using Lemma 2.3, we see that H_{1} has a hamiltonian path from z_{1} to each $z \in V\left(H_{1}\right)-\left\{z_{1}\right\}$. In particular, H_{1} has a hamiltonian path from z_{1} to a vertex $z^{\prime} \in\left\{z_{i}, z_{j}\right\}$. Then we see that $G\left[V\left(C_{0} \cup H_{1} \cup H_{2}\right)\right]$ is hamiltonian. Hence $c_{2}(G) \geq 3 k-5>2 k$, a contradiction. This proves the theorem.

4 References

[1] B. Bollobás, Extremal Graph Theory, Academic Press, London(1978).
[2] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14(1963), 423-439.
[3] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2(1952), 69-81.
[4] M.H. El-Zahar, On circuits in graphs, Discrete Math. 50(1984), 227-230.
[5] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10(1959), 337-356.
[6] P. Erdős, Some recent combinatorial problems, Technical Report, University of Bielefeld, Nov. 1990.
[7] H. Wang, Partition of a bipartite graph into cycles, Discrete Mathematics, 117 (1993), 287-291.
[8] H. Wang, Covering a graph with cycles, Journal of Graph Theory, Vol. 20, No. 2 (1995), 203-211.
[9] H. Wang, Two vertex-disjoint cycles in a graph, Graphs and Combinatorics, 11(1995), 389-396.
[10] H. Wang, On quadrilaterals in a graph, manuscript.
(Received 4/5/99)

[^0]: *This research was supported by UIRC SEED GRANTS-KDY932.

