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Abstract 

Let k, t and n be three integers with t ~ 2, k ~ 2t and n ~ 3t. We 
conjecture that if G is a graph of order n with minimum degree at least 
k, then G contains t vertex-disjoint cycles covering at least min(2k, n) 
vertices of G. We will show the conjecture to be true for t = 2. 

1 Introduction 

We discuss only finite simple graphs and use standard terminology and notation 
from [1] except as indicated. Let k be an integer with k ~ 2. Let G be a graph of 
order n ~ 3. P. Erdos and T. Gallai [5] showed that if G is 2-connected and every 
vertex of G with at most one exception has degree at least k, then G contains a cycle 
of length at least min(2k, n). We wonder if G contains at least two vertex-disjoint 
cycles covering at least min(2k, n) vertices of G. This is certainly true if k ~ n/2 
with k ~ 4 and n ~ 6. by EI-Zahar's result [4]. EI-Zahar proved that if n = nl + n2 
is an integer partition of n with nl ~ 3 and n2 ~ 3 and the minimum degree of 
G is at least r nd21 + r n2/21, then G contains two vertex-disjoint cycles of lengths 
nl and n2, respectively. Cornidi and Hajnal [2] investigated the maximum number 
of vertex-disjoint cycles in a graph. They proved that if G is a graph of order at 
least 3t with minimum degree at least 2t, then G contains t vertex-disjoint cycles. 
In particular, when the order of G is exactly 3t, then G contains t vertex-disjoint 
triangles. Motivated by these results; we conjecture the following: 

Conjecture A Let k) t and n be three integers with t ~ 2) k ~ 2t and n ~ 3t. 
Suppose that G is a graph of order n with minimum degree at least k. Then G 
contains t vertex-disjoint cycles covering at least min(2k, n) vertices of G. 

Note that if this conjecture is true, then the condition on the degrees of G is 
sharp. This can be seen from the graph Kk-1,n-k+l with n > 2(k - 1). By observing 
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Kk,n-k, we also see that when n ~ 2k, G may not contain t vertex-disjoint cycles 
covering more than 2k vertices of G. 

Erdos and Faudree [6] conjectured that if G is a graph of order 4t with minimum 
degree at least 2t, then G contains t vertex-disjoint cycles of length 4. With respect 
to this conjecture, we proved [10] that G contains t vertex-disjoint cycles such that 
t - 1 of them are of length 4. It follows that G contains t vertex-disjoint cycles 
covering all the vertices of G such that at least t - 2 of them are of length 4. Thus 
Conjecture A is true when n = 2k = 4t. In this paper, we will prove the following 
result. 

Theorem B Let k and n be two' integers with k 2: 4 and n 2: 6. Let G be a graph of 
order n with minimum degree at least k. Then G contains two vertex-disjoint cycles 
covering at least min(2k, n) vertices of G. 

We shall use the following terminology and notation. Let G be a graph. For 
a vertex u E V(G) and a subgraph H of G, N(u, H) is the set of neighbors of u 
contained in H, i.e., N(u, H) = N(u) n V(H). We let d(u, H) = IN(u,H)I. Thus 
d(u, G) is the degree of u in G. For a subset U of V(G), G[U] denotes the subgraph 
of G induced by U. The length of a longest cycle of G is denoted by c(G). We define 
Ct( G) to be the maximal number of vertices of G covered by a set of t vertex-disjoint 
cycles of G. Thus Cl (G) = c( G). 

2 Lemmas 

Let G = (V, E) be a given graph in the following. Lemma 2.1 is an easy observation. 

Lemma 2.1 Let C be a cycle of length s in G. Let P be a path of length at least 
Ls/2J - 1 in G - V(C). Suppose that x and yare the two endverlices of P with 
d(x, C) ~ 1 and d(y, C) 2: 1. Then either G[V(C UP)] contains a cycle longer than 
C, or N(x, C) = N(y, C) = {u} for some u E V(C). 

Lemma 2.2 Let C be a cycle of length s in G. Let P be a path of length at least 2 in 
G - V(C). Suppose that x and yare the two endverlices of P and d(x, C) +d(y, C) > 
s/2. Then G[V(C UP)] contains a cycle longer than C. 

Proof. Let C = UlU2 ... UsUl. The subscripts of the Ui'S will be reduced modulo s 
in the following. Clearly, we have 

s 

2(d(x, C) + d(y, C)) = I)d(x, uiui+d + d(y, Ui+2Ui+3)) > s. 
i=l 

This implies that there exists i E {I, '2, ... ,s} such that d(x, U(lLi+l)+d(y, UH2Ui+3) 2: 
2. The lemma follows. 0 

Lemma 2.3 [5] Let C = UlU2". UsXl be a cycle of G. Let i,j E {I, 2, ... , s} with 
i =1= j. Suppose that d(Ui' C) + d(uj, C) 2: s + 1. Then for each c E {-I, I}, G has a 
path P from Ui+e to Uj+e such that V (P) = V (C), where the subscripts are reduced 
modulo s. 
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Lemma 2.4 [5] Let s 2:: 2 be an integer. Suppose that G is 2-connected and every 
vertex of G with at most one exception has degree at least s. Then G contains a cycle 
of length at least min(2s,n). 

3 Proof of Theorem B 

Let k and n be two integers with k 2:: 4 and n 2:: 6. Let G = (V, E) be a graph of order 
n with 8( G) > k. Suppose, for a contradiction, that G does not contain two vertex­
disjoint cycles covering at least min(2k, n) vertices of G, i.e., C2(G) < min(2k, n). 
By EI-Zahar's result, n > 2k. Hence C2(G) < 2k. Let Co be a smallest cycle of G, 
and subject to this, we choose Co such that the length of a longest cycle of G - V ( Co) 
is maximal. Let C1 be a longest cycle of G - V(Co). Subject to the choice of Co and 
C11 we choose Co and C1 such that the length of a longest path of G - V(Co U Cl ) is 
maximal. Set H = G - V(Co) and D = H - V(C1). Let Po be a longest path in D 
and set Do = G[V(Po)]. We say that a block of H is an endblock if either the block 
contains exactly one cut-vertex of H or the block is a component of H. 

We claim that Co is a triangle. If this is not true, then d(x, Co) ~ 2 for all 
x E V(H) for otherwise G contains a smaller cycle than Co. Hence 8(H) 2:: k - 2. 
Let P = YIY2 ... Yrn be a longest path in H. Then d(Y1' P) 2:: k - 2. As H does 
not contain a triangle, there exists Yi with i 2:: 2(k - 2) such that Y1Yi E E. Hence 
c(H) 2:: 2(k - 2) and therefore C2(G) 2:: 2k, a contradiction. Hence Co is a triangle. 
Then it is easy to see that C1 exists. 

Let Co Ul U2U3Ul. We divide our proof into the following two cases: k = 4 or 
k 2:: 5. 

Case 1. k = 4. 
In this case, C2(G) ~ 7. We break into the following two subcases according to 

whether H is 2-connected. 

Case 1.1. H is 2-connected. 
Clearly, c(H) 2:: 4 as IV(H)I = n - 3 > 4. Thus C2(G) = 7 and C1 is of length 

4. Let C l = X1X2X3X4X1. As H is 2-connected, for each x E V(D), there exist two 
paths from x to two distinct vertices of C1 such that x is the only common vertex 
of the two paths. Then we see that for each x E V(D), either N(x, C1) = {Xl, X3} 
or N(x, Cd = {X2' X4} for otherwise c(H) 2:: 5. Furthermore, D does not contain 
any edges. Let Xo E V(D). Then d(xo, Co) 2:: 2 and so Co + Xo is hamiltonian. 
Consequently, C2 (G) 2:: 8, a contradiction. 

Case 1.2. H is not 2-connected. 
Let HI and H2 be two endblocks. Moreover, we choose HI and H2 such that if 

H has a cut-vertex, then HI and H2 are in the same component of H. For each 
i E {I, 2}, let Xi E V(Hi) be such that if Hi contains a cut-vertex of H then it is Xi. 
We break into the following two situations. 

Case 1.2(a). There exists Yl E V(H1 - Xl) such that d(Y1' Co) 2:: 2. Then Co + Yl is 
hamiltonian. Hence C(H2) ~ 3. This implies that H2 - X2 contains a vertex Zl such 
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that d(Zl' Co) :2: 2. Therefore C(HI) ::s; 3. It follows that Hi S:! K2 or K3 for each 
i E {I, 2}. 

First, suppose that either HI S:! K2 or H2 S:! K2. Say w.l.o.g. that Hl ~ K2. 
Then d(Yb Co) = 3. Assume that H has a third endblock H3 . Then we also have 
that H3 S:! K2 or K3. Let WI E V(H3) be such that WI is not a cut-vertex of H. 
Thus d(WI' Co) :2: 2 and Co + Yl + WI is hamiltonian. Therefore any block of H 
other than HI and H3 is of order 2. In particular, H2 S:! K2. Similarly, we can 
readily show that H3 S:! K2. If HI and H2 are not in the same component of H, 
then by the choice of HI and H2, H must consist of independent edges only, and 
we see that C2(G) :2: 9 as e(Co, Hl U H2 U H3) = 18, a contradiction. Therefore HI 
and H2 are in the same component of H. Notice that d(WI' Co) = d(z!, Co) = 3 
where H2 = X2Z1' As Co - UI + WI is a triangle in G, it follows that Xl = X2 for 
otherwise c(H - WI + UI) :2: 5. If H3 is in a component D' of H which does not 
contain HI, then we see that either D' = H3 and so G[V(H3) U {U2' U3}] S:! K 4, or 
G[V(D' + U2)] contains a cycle of length at least 4 by applying the above argument 
to H3 and H4 where H4 is another endblock of D'. Thus C2 (G) :2: 8, a contradiction. 
This argument allows us to see that H is connected and conclude that H S:! K I ,n-4 

with d(Xb H) = n - 4. It follows that d(x, Co) = 3 for all xE V(H) - {Xl}, and 
consequently, we readily see that C2 (G) :2: 8. Therefore H does not have a third 
endblock. Then it is easy to see that H is a path and C2 (G) 2:: 8. 

Therefore HI S:! K 3. Similarly, H2 S:! K3. Let HI = XIYIY2XI. Then we see that 
Co + YI + Y2 is hamiltonian and so C2( G) :2: 8, a contradiction. 

Case 1.2(b). For each Y E V(HI - Xl), d(y, Co) ::s; 1. 
Similarly, we must have that d(z, Co) ::; 1 for all Z E V(H2 - X2)' Thus for each 

i E {I, 2}, d( v, Hi) :2: 3 for all v E V(Hi - Xi). Clearly, c(Hd 2:: 4 and C(H2) 2:: 4. On 
the other hand, we must have c(H) ::; 4 and so C(HI) = c(H2) = 4. Thus Xl = X2. Let 
P = VIV2 .. . Vm be a longest path of HI with VI =f:. Xl' Then N(Vb HI) = {V2' V3, V4} 
and d(VI' Co) = 1. It is easy to see that Hl ~ K4 for otherwise we readily see that 
either C(Hl) 2:: 5 or Hl has a path longer than P. Similarly, H2 ~ K4. Clearly, 
G[V(Co U HI - xt}] contains a cycle of length at least 4. We obtain that C2(G) 2:: 8, 
a contradiction. 

Case 2. k 2:: 5. 
Let C1 = XIX2 ... XsXI. Then s ::; 2k - 4. We break into the following two cases: 

s 2:: 2k - 6 or s ::s; 2k - 7. 

Case 2.1. s :2: 2k - 6. 
Thus s E {2k - 6, 2k - 5, 2k - 4}. Let Po = Y1Y2'" Yr' As s = c(H), we clearly 

have 

d(y, Cd ::; ls/2J for all Y E V(D). (1) 

We claim 

(2) 

Proof of (2). On the contrary, suppose r ::s; 3. First, assume r = 1. Then by (1), 
d(y, Co) :2: 2 for all Y E V(D). Thus Co + Yl is hamiltonian and so s ::; 2k - 5. Then 
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by (1) again, d(y, Co) ~ 3 for all Y E V(D). Clearly, adding any three vertices of 
D to Co will result in a hamiltonian subgraph of G. Consequently, C2(G) ~ 2k, a 
contradiction. 

Next, assume r = 2. If d(Yb CO)+d(Y2, Co) ::; 2, then d(Y1' C1)+d(Y2, C1) ~ 2k-4. 
By (1), we must have that d(Y1' C1) = d(Y2' C1) = k - 2. It is easy to see that 
C1 + Y1 + Y2 contains a cycle of length 8 + 1 or 8 + 2, a contradiction. Hence 
d(Y1' Co) + d(Y2' Co) 2 3. Thus Co + Y1 + Y2 contains a cycle of length at least 4, 
and so 8 ::; 2k - 5. If d(Y1' Co) + d(Y2' Co) = 3, then d(Y1' C1) + d(Y2' C1 ) ~ 2k - 5, 
and consequently, either d(Yb C1) ~ k - 2 or d(Y2' C1) ~ k - 2, contradicting (1). So 
d(Yb Co) + d(Y2' Co) 2 4. Thus Co + Y1 + Y2 is -hamiltonian, and so 8 = 2k - 6. If 
d(Yll Co) + d(Y2' Co) = 4, then we have, by (1), that d(Yb Cd = d(Y2' C1) = k - 3. 
Again, we readily see that C1 +Y1 +Y2 contains a cycle longer than C, a contradiction. 
Hence d(Yb Co) + d(Y2' Co) ~ 5. Let y' be a third vertex of D. Then d(y', D) ::; 1 as 
r = 2. Thus d(y', Co) ~ 2 by (1), and consequently, Co + Y1 + Y2 + Y' is hamiltonian. 
It follows that C2 (G) 2 2k. 

Finally, we assume that r = 3. By Lemma 2.2, d(Y1' Cd + d(Y3' C1) ::; l 8/2 J. 
We must have that d(Yb Co) + d(Y3, Co) ::; 3 for otherwise Co + Y1 + Y2 + Y3 is 
hamiltonian. This implies that d(Y1) + d(Y3) ::; ls/2J + 3 + 4. Furthermore, if 
d(Yl' Co) + d(Y3, Co) = 3, then Co + Y1 + Y3 contains a cycle of length at least 4, and 
so we must have that s ::; 2k - 5. It follows that d(Y1) + d(Y3) < 2k, a contradiction. 
So (2) holds. 0 

By (2) and Lemma 2.2, we obtain 

Note that if max(d(Yl' Co), d(Yr' Co)) ~ 2, then Co + Y1 + Yr contains a cycle of 
length at least 4 and so s ::; 2k - 5. Together with (3), we obtain 

(4) 

By (4), we see that either d(Yl' Po) ~ rk/21 or d(Yn Po) ~ rk/21, and so c(Do) ~ 
rk/21 + 1. As c2(H) < 2k, 4 ::; rk/21 + 1 ::; 5. It follows 

k E {5, 6, 7, 8} and s E {2k - 6, 2k - 5}. (5) 

We now break into the following two situations. 

Case 2.1(a). 8 = 2k - 5. _ 
Then c(G - V(C1)) ::; 4. W.l.o.g., say d(Y1' Po) ~ d(Yr' Po). Then we must 

have that k E {5,6} and N(Y1' Po) = {Y2, Y3, Y4}. Then Do has a hamiltonian path 
from Yi to Yr for each i E {I, 2, 3}. By Lemma 2.2, d(Y1' Cr) + d(Y3, C1) ::; k - 3. 
First, suppose that d(Yn Co) ~ 1. Then we must have that d(Yi' Co) = 0 for each 
i E {I, 2, 3}. Consequently, d(Y1' Po) + d(Y3, Po) ~ k + 3. It follows that c(Do) ~ 5, 
a contradiction. Therefore, we must have that d(Yn Co) = O. By (1), d(Yr' C1) ::; 
k - 3 and so d(Yn Po) = 3, too. Similarly, we can readily show that d(Yb Co) = 0, 
d(Y1' Po) + d(Yn Po) ~ k + 3 and c(Do) ~ 5, a contradiction. 
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Case 2.1(b). s = 2k - 6. 
Note that 4 ::::; s ::::; 10 by (5). First, suppose that d(Yl' Co) 2: 1 and d(Yn Co) 2: 1. 

Then we must have that N(Yl' Co) = N(Yn Co) = {Ui} for some i E {I, 2, 3} and 
r = 4 for otherwise c(G[V(Co U Po)]) 2: 6. If d(Yb C1) = 0, then d(Yl' Po) 2: k -1 2: 4 
and so r 2: 5, a contradiction. Hence d(Yl' C1) 2: 1, and similarly, d(Yn Cd ~ 1. 
Then we see that c(H) 2:.': 5 and so k ~ 6 by the maximality of s. It is easy to see 
that if either max(d(Yl, C1), d(Yr' C1)) ~ 2 or N(Yl, C1 ) i= N(Yn C1), then k = 8 
and max(d(Yb Cd, d(Yn C1)) ::::; 2 for otherwise c(H) > s. Hence d(Yl' C1) = 1 
for otherwise d(Yl' Po) ~ 5 and so c(Do) 2: 6, a contradiction. It follows that 
d(Yl' Po) 2:.': k - 2 2: 4 and so r ~ 5, a contradiction. 

Therefore we may assume w.l.o.g. that d(Yn Co) = O. Then d(Yn C1) 2: 1 for 
otherwise we readily see that c(Do) ~ 6. We claim that d(Yl' C1) = O. If this is not 
true, then c(H) ~ 5 and so k 2: 6. As c(Do) ::::; 5, d(Yr' Po) ::::; 4 and so d(Yn C1) ~ 2. 
Then again, we must have that k = 8 and d(Yr, C1) = 2 for otherwise c(H) > s. 
Hence d(Yn Po) ~ 6 and so c(Do) ~ 7, a contradiction. So d(Y1' C1) = O. Hence 
d(Y1' Co) 2:.': 1 for otherwise c(Do) 2: 6. 

As k 2: 5 and d(Yl' Cd = 0, d(Yl' Po) ~ 2. Let j + 1 be the greatest integer in 
{2, 3, ... , r} such that YIYj+l E E. Then Do has a hamiltonian path from Yj to Yr' 
Similarly, we must have that d(Yj, Cd = 0 and d(Yj, Co) 2: 1. As YIYj+1Yj is a path 
of G, we see that d(Yb Co) = d(Yj, Co) = 1 for otherwise c(G[V(Co U Do)]) 2: 6. This 
yields that d(Yl' Po) + d(Yj, Po) ~ 2k - 2, and consequently, c(Do) 2:.': k. It follows 
that k = 5. But then s = 4, contradicting the maximality of s. 

Case 2.2. s ::::; 2k 7. 
Clearly, we have that 8(H) ~ k - 3. If H is 2-connected, then c(H) 2: 2k - 6 

by Lemma 2.4, a contradiction. Hence H is not 2-connected. Let HI and H2 be two 
arbitrary endblocks of H. Set nl = IV(H1)1 and n2 = IV(H2)1. As 8(H) 2: k - 3 and 
by Lemma 2.4, we must have 

k - 2 ::::; ni ::::; 2k - 7 and k - 2 ::::; n2 ::::; 2k - 7. (6) 

By Lemma 2.4, both Hi and H2 are hamiltonian. Let Ql = ZIZ2' .. znl ZI and 
Q2 = YIY2 ... Yn2Yl be two hamiltonian cycles of HI and H2, respectively such that 
every v E V(HI U H2) - {ZI' yd is not a cut-vertex of H. 

First, suppose that for each i E {1,2}, G does not have two independent edges 
between Co and Hi. As 8(G) ~ k, this implies that nl 2: k and n2 2: k. Therefore 
we must have that ZI = YI for otherwise ~(H) 2: 2k. As 2k - 7 2:.': ni ~ k, 
k 2: 7. As 8(H) 2: k - 3, we have that 8(Hi - ZI) 2: k 4 ~ (ni - 1)/2 for each 
i E {1,2}. Therefore both HI - ZI and H2 - ZI are hamiltonian. Hence we must 
have that ni = n2 = k for otherwise c2(H) ~ 2k. Therefore d(Zi' Co) ~ 1 for all 
i E {2, 3, ... , k}. As there exist no two independent edges between Co and Hb we 
obtain that d(Zi' Co) = 1 and d(Zil HI) = k -1 for all i E {2, 3, ... , k}. Consequently, 
HI e:! K k , and we readily see that c(G[V(Co U HI - ZI)]) 2: k, and so C2(G) 2: 2k, a 
contradiction. 

Therefore we may assume w.l.o.g. that there exist two independent edges between 
Co and HI' Say {UIZi,U2Zj} ~ E for some 1 ::::; i < j ::::; ni. If {Zi,Zj} = {Z2,ZnJ, 
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then c(G[V(Co U HI - ZI)]) 2:: k. Then n2 ::; k - 1 for otherwise C2(G) 2:: 2k. Hence 
d(Yi' Co) 2:: 2 for all i E {2, 3, ... , n2}. As c5(H) 2:: k - 3 and n2 ::; 2k - 7, it is easy 
to prove that H2 contains a triangle. Therefore 2k - 7 2:: k by the maximality of s, 
and so k 2:: 7. It follows that there are two independent edges between Co and H2 
which are not incident with any of Y2 and Yn 2' Therefore by abusing notation, we 
may assume in the first place that {Zi' Zj} ::j:. {Z2' znJ. Then either Zl (j. {Zi-b zj-d 
or ZI (j. {Zi+l, zj+d where the subscripts are taken modulo ni' We show k 2:: 7 as 
follows. As c5(H) 2:: k - 3, ni ::; 2k - 7 and by Lemma 2.3, HI has a hamiltonian 
path from Zi to Zj and so c(G[V(Co U HI))) 2:: k + 1. As before, we readily see that if 
H2 - Yl contains a triangle, then k 2:: 8. If H2 -' Yl does not contain a triangle, then 
we must have that d(Y2' Co) = d(Y3, Co) = 3 and therefore U3Y2Y3U3 is a triangle. 
Clearly, C(HI + UI + U2) 2:: k. Then we obtain k 2:: 7 as 2k - 7 2:: k by the maximality 
of s. 

Suppose ZI ::j:. Yl' Then we must have n2 = k - 2 by (6) for otherwise C2(G) 2:: 2k. 
Consequently, we see that H2 ~ K k - 2 and d(Yi' Co) = 3 for each i E {2, 3, ... , k - 2}. 
Similarly, we must have that HI ~ Kk - 2 and d(Zi' Co) = 3 for all i E {2, 3, ... , k-2}. 
Then we see that H does not have a path of length at least 2 from ZI to YI for 
otherwise C2(G) 2:: 2k. Thus H must have a third endblock H3. Then we may 
assume that HI n H3 = 0 and repeat the above argument with H3 replacing the role 
of H2. Clearly, we see that C2(G) 2:: 3(k - 2) + 2 > 2k, a contradiction. 

Therefore Zl = Yl. As n > 2k, H has a third endblock H3, too. Set n3 = IV(H3)1. 
Similarly, we can show that ZI E V(H3), k-2 ::; n3 ::; k-l and H3-ZI is hamiltonian. 
Clearly, d(Y2' C2) 2:: 2. As before, using Lemma 2.3, we see that HI has a hamiltonian 
path from Zl to each Z E V(HI) - {ZI}' In particular, HI has a hamiltonian path 
from ZI to a vertex z' E {Zi' Zj}. Then we see that G[V(COUHI UH2)] is hamiltonian. 
Hence C2(G) 2:: 3k - 5 > 2k, a contradiction. This proves the theorem. 
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