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Abstract 

A cycle in a graph is a set of edges that covers each vertex an even 
number of times. An even cycle is cycle of even cardinality. A co cycle 
is a collection of edges that intersects each cycle in an even number of 
edges. A coeven is a co cycle or the complement of a cocycle. A bieven is 
a collection of edges that is both an even cycle and a coeven. The even 
cycles, coevens, and bievens each form a vector space over the integers 
modulo two when addition is defined as symmetric difference of sets. An 
edge is co even cyclic if it belongs to a co even C for which C - {e} is an 
even cycle. An edge is bieven cyclic if it belongs to a bieven. We show 
that any edge in a graph is either coeven cyclic or bieven cyclic. 

1 Introduction 

Associated with an arbitrary graph are several vector spaces. In each case the vec
tors are sets and the sum of two vectors is their symmetric difference. Hence the 
underlying field is the set of integers modulo two. One such space is the edge space 
of a graph G: its elements are the subsets of EG, 0 ~ EG is the zero, and F = -F 
for all F ~ EG. We similarly define the vertex space. The dimension of the edge 
space is IEGI and the dimension of the vertex space is IVGI. 
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Given two edge sets F, F' of the edge space, (F, F') = 0 if and only if F and F' 
have an even number of edges in common. Given a subspace F of the edge space of 
G, we write 

F 1. = {D ~ E I (F, D) = 0 for all F E F}. 

This is again a subspace of the edge space, called the orthogonal subspace of F. 
The cycle space C = C( G) is the subspace of the edge space spanned by all the 

circuits (connected 2-regular subgraphs) in G-more precisely, by their edge sets. The 
orthogonal subspace CJ.. of C is called the co cycle space. (The co cycle space is called 
the cut space in [2].) The elements of C are called cycles; those of CJ.. are called 
cocycles. A set of edges is a cycle when it induces a subgraph where the degree of 
every vertex is even. A set of edges is a cocycle if it is the set [A, B] of all edges 
joining A and B where {A, B} is a partition of the vertex set. 

It is possible for a set of edges to be both a cycle and a cocycle. We call such sets 
bicycles. The bicycles form a vector space, called the bicycle space, which is precisely 
the space C n CJ... 

Rosenstiehl and Read [3] have shown the following striking theorem, which classi
fies the edges of an arbitrary graph into three types. 

Theorem 1 The Principal Edge Tripartition. For any edge e in a graph G) 
exactly one of the following holds: 

(1) e belongs to a cycle C for which C - {e} is a cocycle) 
(2) e belongs to a cocycle C for which C - {e} is a cycle) or 
(3) e belongs to a bicycle. 

An edge is called cyclic, cocyclic, or bicyclic according to whether it satisfies con
ditions (1), (2), or (3) in Theorem 1, respectively. 

A cycle C containing an edge e for which C - {e} is a cocycle is called a principal 
cycle and C - {e} a principal co cycle for e. If C is a co cycle containing an edge e 
with C - {e} a cycle, then C is called a principal co cycle and C - {e} a principal 
cycle for e. 

a 

b 

Figure 1: The graph G 

In Figure 1, the edges a, c, e, f, h, i are cyclic while the edges b, d, 9 are cocyclic. 
For example, the set of edges a, b, d, h, i is a principal cycle for the edge a, the set of 
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edges b, c, f, g, h is a principal cycle for the edge f, and the set of edges EG - {f, i} 
is a principal co cycle for the edge d. The gra,ph G of Figure 1 has no nonempty 
bicycles. The principal cycle and the principal cocycle are unique if a graph has no 
nonempty bicyles. 

As a direct consequence of the orthogonality of cycles and co cycles , we have the 
following elementary property of the Principal Edge Tripartition. 

Theorem 2 ([3]) Every principal cycle associated with a cyclic edge e is odd and 
every principal cocycle associated with e is even. If e is a cocyclic edge) then the 
above parities are reversed. Every bicycle is even. 

Let £( G) be the even space of the graph G; that is, £( G) is the subspace of the 
edge space spanned by all the even cycles in G. Associated with £( e) is an edge 
tripartition analogous to the principal edge tripartition of Rosenstiehl and Read [3]. 
We propose to study its properties. 

We denote the complement of a set T of edges in a graph G by T and the comple
ment with respect to G of a subgraph H by H. 

2 The even and coeven spaces 

We begin this section by establishing the dimension of £( G) and £.1. (e). 

Theorem 3 FOT any 2-connected graph G) 

{

dim C(G) 
dim £(e) = 

dim C(G) - 1 

if G is bipartite 

otherwise. 

Proof. The theorem is clear if e is bipartite. We therefore suppose that G is 
non-bipartite. Then dim £( G) < dim C( G). Let Go, G 1 , ••• ,en be a sequence of 
graphs where Go is induced by a circuit Co of G, Gn G, and, for each i > 0, G j is 
constructed from G j - 1 by adding a path Pi joining distinct vertices Uj and Vi of G i - 1 

and having no edges or internal vertices in common with Gi - 1 . For each i > 0, let 
Cj be a circuit which is the union of Pi and a path Qi in Gi - 1 joining 1.Lj and Vj. Let 
j be the smallest subscript for which e j is non-bipartite. Hence Cj is even for every 
i < j and Cj is odd. 

We now show that for each i > j, we may choose Cj to be even. Since G j is 
non-bipartite, e i - 1 has an odd circuit C. As G i - 1 is 2-connected, two independent 
paths P and Q join Uj and Vi, respectively, to distinct vertices 1.L and v, respectively, 
of C (see [1]). We may assume that P and Q are chosen to have minimal length. 
Since C includes both an even and an odd path joining U to v, it follows that G i - 1 

contains both an even and an odd path joining Uj to Vi. Hence Qi can be chosen to 
have the same parity as Pi, and so Ci is even. 
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Let S = {Co, CI , ... , Cn}. Clearly, S is a basis for the cycle space C(G). Each 
circuit of S - {C j } is even. Since dim £(G) < dim C(G), it follows that dim £(G) = 
dim C(G) - 1. 0 

Corollary 4 For any graph GJ 

dim £(G) = dim C(G) - b(G) = IEGI- IVGI + c(G) - b(G), 

where c( G) denotes the number of components of G and b( G) denotes the number of 
non-bipartite blocks of G. 

Corollary 5 For any 2-connecied graph G J 

{

dim C-L(G) 
dim £-L(G) = 

dim C-L( G) + 1 

Corollary 6 For any graph G J 

if G is bipartite 

otherwise 

dim £-L(G) = dim C-L(G) + b(G) = IVGI- c(G) + b(G), 

where c( G) denotes the number of components of G and b( G) denotes the number of 
non-bipartite blocks of G. 

Theorem 7 A cycle of G belongs to £( G) if and only if it is even. 

Proof. Clearly, any member of £( G) is even. The result is also clear for bipartite 
graphs. Suppose, therefore, that G has an odd circuit C. By Theorem 3 it suffices 
to show that the number of even cycles is equal to the number of odd cycles. We 
therefore define a bijection ¢ from the set of even cycles to the set of odd cycles by 
the equation ¢(A) = A + C for each even cycle A. This function is an injection, for 
if A + C = B + C where A and B are even cycles, then A = B. The function is a 
surjection, for if D is an odd cycle, then D = ¢>( C + D) and C + D is even. 0 

Theorem 8 The co even space of a non-bipartite graph consists of the cocycles and 
their complements. 

Proof. Let G be a non-bipartite graph. It suffices to consider the case when G is 
2-connected. By Corollary 5, the cardinality of the coeven space is twice that of the 
co cycle space. Moreover the co cycle space is a subspace of the coeven space and the 
set of complements of co cycles is included in the coeven space. It therefore suffices 
to show that no complement of a co cycle is a cocycle. Let C be an odd circuit and 
D a cocycle. Then ID n CI == 0 (mod2), so that I(EG - D) n CI == 1 (mod2). Hence 
EG - D is not a cocycle. 0 

We call the elements of £-L (G) coevens. Adapting the terminology of [3], we define 
an eventree in a graph G as a minimal subset of EG which meets every nonzero 
coeven. A coeventree is a minimal subset of EG which meets every nonzero even 
cycle. 

For each 5 ~ VG we write 8G 5 = [5, VG - 5]. 
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Theorem 9 A subgmph of a non-bipartite gmph is an eventree if and only if it is a 
connected spanning subgraph with no even circuit and just one odd circuit. 

Proof. Let G be a non-bipartite graph and T a connected spanning subgraph with 
no even circuit and just one odd circuit. Since T contains a spanning tree, T meets 
every nonzero co cycle of G. Since T contains an odd circuit, T meets the complement 
of every cocycle. Furthermore, for every bridge e of T there is a co cycle containing 
e but no other edge of T. For every edge f of T which belongs to the circuit there 
is a cocycle (namely, 3G S where 8T -{J}S = ET {f}) whose complement contains 
f but no other edge of T. Hence T is minimal and therefore an eventree. 

Conversely, let T be an eventree of G. Then T contains a spanning tree of G since 
ET meets every nonzero cocycle. Suppose T does not contain an odd circuit. Then 
T is bipartite. Hence ET = 8T S for some subset S of VG. Therefore, ET does 
not meet the complement of 8G S. Hence T must contain an odd circuit. By the 
minimali ty of T, it follows that T is a connected spanning su bgraph with no even 
circuit and just one odd circuit. 0 

Theorem 10 A subgraph of a graph is an coeventree if and only if it is the comple
ment of an eventree. 

Proof. A set S of edges in a graph G meets every even circuit if and only if its 
complement induces a spanning subgraph H where every block is K2 or an odd 
circuit. In fact, if S is a coeventree, then H has at most one odd circuit, for the sum 
of two odd circuits is an even cycle. The converse is obvious. 0 

Let e be an edge in an eventree T in a non-bipartite graph C. If e is a bridge, then 
there is a unique co cycle which meets T in e alone but no complement of a co cycle 
which meets T in e alone because of the presence of the odd circuit. If e belongs to 
the odd circuit, then there is a unique co cycle whose complement meets T in e alone 
but there is no co cycle which meets T in e alone. In both cases, we let T( e) be the 
unique coeven which meets T in e alone. The family {T( e) 1 e E ET} is a basis for 
£l.(G). We call this basis a fundamental basis for £l.(G). 

Let f be an edge in the coeventree T. Then T + {f} contains either a unique even 
circuit or exactly two odd circuits. Thus, in either case T + {f} contains a unique 
even cycle T(f) which meets l' in f alone. The family {T(f) 1 fEET} is a basis 
for £(G). We call this basis a fundamental basis for £(G). 

3 The principal edge bipartition of a graph 

Theorem 1 in fact holds for any vector space associated with a graph. In particular, 
we have the following edge tripartition associated with £(G). A bieven is an even 
cycle which is also a coeven. 

Theorem 11 FOT any edge e in a graph G) exactly one of the following hold8: 
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(1) e belongs to an even cycle C for which C - {e} is a coeven) 
(2) e belongs to a co even C for which C - {e} is an even cycle) or 
(3) e belongs to a bieven. 

We call an edge even cyclic, coeven cyclic, or bieven cyclic according to whether 
it satisfies conditions (1), (2), or (3) in Theorem 11, respectively. The next results 
show that every edge is either coeven cyclic or bieven cyclic. 

Lem rna 12 If C is an even cycle containing an edge e) then C - {e} is not the 
complement of a cocycle. 

Proof. Suppose C - {e} is the complement of a co cycle X. Then C - {e} = EG - X, 
and so X n C { e }. This contradicts the fact that X is a cocycle and therefore 
meets every cycle in an even number of edges. 0 

Lemma 13 No edge is even cyclic. 

Proof. Let e be an edge of a graph G. Then by the Principal Edge Tripartition, e 
is either cyclic, cocyclic, or bicyclic. If e is a cyclic edge, then, by Theorem 2, every 
principal cycle associated with e is odd. Furthermore, by Lemma 12, if e belongs to 
an even cycle C, then C - {e} is not the complement of a cocycle. Hence, e is not 
even cyclic. If e is a cocyclic edge, then, by Theorem 2, e is also co even cyclic. If e 
is a bicyclic edge, then, by Theorem 2, e is also bieven cyclic. In all cases, the edge 
e is not even cyclic. 0 

Theorem 11 and Lemma 13 thus classify the edges of an arbitrary graph into two 
types. 

Theorem 14 The Principal Edge Bipartition. Any edge e in a graph is either 
coeven cyclic or bieven cyclic. 

In Figure 1, the edges b, d, 9 are cocyclic and therefore coeven cyclic, while the 
edges in EG - {b, d, g} are bieven cyclic since EG - {b, d, g} is both an even cycle 
and a complement of a cocycle and is therefore a bieven. 
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