On digraphs with unique walks of closed lengths between vertices

J. Gimbert
Departament de Matemàtica, Universitat de Lleida
Avda. Jaume II, 69, Campus Cappont
25001 Lleida, Spain
email: joangim@eup.udl.es

Abstract

It is known that regular digraphs of degree d, diameter k and unique walks of length not smaller than h and not greater than k between all pairs of vertices ([h, k]-digraphs), exist only for $h=k$ and $h=k-1$, if $d \geq 2$. This paper deals with the problem of the enumeration of $[k-1, k]$-digraphs in the case of diameter $k=2$ or degree $d=2$. It is shown, using algebraic techniques, that the line digraph $L K_{d+1}$ of the complete digraph K_{d+1} is the only [1,2]-digraph of degree d, that is to say the only digraph - up to isomorphisms- whose adjacency matrix A fulfills the equation $A+A^{2}=J$, where J denotes the all-one matrix. As a consequence, we deduce that there does not exist any other almostMoore digraph of diameter $k=2$ with all selfrepeat vertices apart from Kautz digraph. In addition, the cycle structure of a $[k-1, k]$-digraph is studied. Thus, a formula that provides the number of short cycles (cycles of length $\leq k$) of such a digraph is obtained. From this formula, using graphical arguments, the enumeration of $[k-1, k]$-digraphs of degree 2 and diameter not greater than 4 is concluded.

1 Introduction

Digraphs with unique walks of length in a fixed interval $[h, k]$ between all pairs of vertices, were introduced by Plesnik and Znám [19] and, since then, they have been extensively studied, because they are suitable models for dense interconnection networks. Some problems related to such a class of digraphs, denoted by $[h, k]$ digraphs, have been solved by means of algebraic (spectral) techniques applied to the equation

$$
\begin{equation*}
A^{h}+A^{h+1}+\cdots+A^{k}=J \tag{1}
\end{equation*}
$$

satisfied by their corresponding adjacency matrix A, where J denotes the all-one matrix. Thus, for instance, the regularity of a $[h, k]$-digraph and the computation of its order $n=d^{h}+d^{h+1}+\cdots+d^{k}$, where d is its degree, are easily derived from (1) (see Hoffman and McAndrew [12].) Furthermore, the problem of their existence was completely solved by Bosák [4], who proved that, for degree $d \geq 2$, there only exist $[k, k]$ - and $[k-1, k]$-digraphs, where k is precisely their diameter. Among such digraphs there are Good-De Bruijn (see [16]) and Kautz (proposed in [13, 14]), which, in fact, can be seen as iterated line digraphs of the complete digraph of degree d with loops and without loops, respectively (see Fiol et al. [7, 8].) With regard to their structure and enumeration, several results concerning the class of $[k, k]$-digraphs ${ }^{1}$ have already been obtained (see [9], [15], [16].) Thus, it is known that, in general, the family of Good-De Bruijn digraphs is not the only one whose adjacency matrix A fulfills the equation $A^{k}=J$. In particular, Mendelsohn [16] proved that for diameter $k=2$ and degree $d=3$ there are exactly six non-isomorphic digraphs of that type. Furthermore, Fiol et al. [9] described two direct methods of constructing digraphs of this kind by adequately modifying Good-De Bruijn digraphs.

In this paper, we focus our attention on the study of $[k-1, k]$-digraphs and, in particular, we face the problem of their enumeration in the case of diameter $k=2$ or degree $d=2$. First, in Section 2, we introduce the concepts of (l, m)-reachable digraph and reachable digraph with a maximum delay m (an extension of the notions of l-reachable and equi-reachable digraph, respectively, introduced in [9]), we give a characterization of the class of reachable digraphs with a maximum delay m and we meet the class of $[k-1, k]$-digraphs when we consider $(k, 1)$-reachable digraphs with maximum order. In Section 3, we prove, by means of algebraic methods, that there is only one [1,2]-digraph of degree d, namely the line digraph $L K_{d+1}$ of the complete digraph K_{d+1} and, as a consequence, we deduce that there does not exist any other almost-Moore digraph of diameter $k=2$ with all selfrepeat vertices apart from Kautz digraph (this solves a question formulated by Baskoro et al. in [1].)

Some results about the cycle structure of a $[k-1, k]$-digraph are presented in Section 4. Thus, using the spectrum of a $[k-1, k]$-digraph and the property that any of its closed walks of length $l \leq k$ is either a cycle or a repeated cycle, we obtain a formula for the computation of its short cycles, that is to say cycles of length not greater than k. Such a formula, which almost coincides with that given in [16] for [k, k]-digraphs, allow us to know the number of cycles of length a divisor of $k-1$ or k, which constitute a partition of the set of vertices of a $[k-1, k]$-digraph. Finally, in Section 5 we make a first attempt to study the enumeration of $[k-1, k]$-digraphs of degree $d=2$ and diameter $k \geq 3$. Using the previous results about their cycle structure, together with other graphical arguments, we prove that for $k=3,4$ there is only one digraph of degree $d=2$ of that type.

We conclude this introduction fixing the terminology used throughout the paper. Thus, a digraph G consists of a finite non-empty set $V(G)$ of objects called vertices

[^0]and a set $E(G)$ of ordered pairs of vertices called arcs. The order n of G is the cardinality of $V(G), n=|V(G)|$. If (u, v) is an arc, it is said that v is adjacent from $u[u$ is adjacent to $v]$ and also that a is incident from u to $v[a$ is an out-arc of u and an in-arc of v]. The set of vertices which are adjacent from [to] a given vertex v, also called successors of v, is denoted by $\Gamma^{+}(v)\left[\Gamma^{-}(v)\right]$ and its cardinality is the outdegree of $v, d^{+}(v)=\left|\Gamma^{+}(v)\right|\left[\right.$ in-degree of $\left.v, d^{-}(v)=\left|\Gamma^{-}(v)\right|\right]$. A vertex v is isolated if $d^{+}(v)=d^{-}(v)=0$. A digraph is regular of degree $d(d$-regular $)$ if, for any vertex $v, d^{+}(v)=d^{-}(v)=d$. A walk of length h from a vertex u to a vertex $v(u \rightarrow v$ walk) is a sequence of vertices $u=u_{0}, u_{1}, \ldots, u_{h-1}, u_{h}=v$ such that (u_{i-1}, u_{i}) is an arc. A circuit is a closed walk with all its arcs distinct. A cycle of length $h>0$ (h-cycle) is a closed walk with h distinct vertices. A repeated cycle is a closed walk originated by the repetition of a cycle. The length of a shortest $u \rightarrow v$ walk is the distance from u to v. Its maximum value over all pairs of vertices is the diameter k of the digraph. A p-generalized cycle is a digraph G such that $V(G)$ can be partitioned into p-parts V_{i} such that all adjacent vertices from vertices of V_{i} belong to V_{i+1}, for i modulo $p \geq 1$. The reader is referred to Chartrand and Lesniak [6] for additional graph concepts.

2 Reachable digraphs with a fixed maximum delay

Let G be a strongly connected digraph with adjacency matrix A and let m be a non-negative integer. Then, we say that G is (l, m)-reachable if $l \geq m$ is the smallest integer such that for each pair of vertices $u, v \in V(G)$, there is at least one $u \rightarrow v$ walk of length in the interval $[l-m, l]$, that is to say $A^{l-m}+\cdots+A^{l} \geq J$ and $A^{l^{\prime}-m}+\cdots+A^{l^{\prime}} \nsupseteq J$, if $l^{\prime}<l$. Moreover, if m is the smallest non-negative integer such that G is (l, m)-reachable for some $l \geq m$, then we say that G is reachable with a maximum delay m. Notice that in the case $m=0$ the notions of l-reachable and equi-reachable digraph, presented in [9], are recovered. We also remark that if G is a $[k-1, k]$-digraph of degree $d \geq 2$, then G is $(k, 1)$ - and ($k+1,0)$-reachable, since $A^{k-1}+A^{k}=J$ and $A^{k+1}=A J-A^{k} \geq(d-1) J$, and, consequently, G is reachable with a maximum delay 0 (equi-reachable).

Now, we state a characterization of reachable digraphs with a maximum delay m, which is in fact a natural extension of the one given in [9] for the case $m=0$, taking into account that any digraph G can be seen as a p-generalized cycle with $p=1$.
Proposition 1. A strongly connected digraph G is reachable with a maximum delay m iff $p=m+1$ is the greatest integer such that G is a p-generalized cycle.
Proof. We will prove that a strongly connected digraph G is reachable with a maximum delay $\leq m$ unless G is a p-generalized cycle with $p \geq m+2$. Since any reachable digraph G with a maximum delay $\leq m$ has walks of lengths that belong to a set of cardinal $m+1$ between all its pairs of vertices, the condition of not being a p-generalized cycle with a number of parts $p \geq m+2$ is clearly necessary. The sufficiency of such a condition can be derived using the same reasoning detailed in [9] for $m=0$.

From now on, we focus our attention on the study of largest (l, m)-reachable digraphs. Thus, if G is (l, m)-reachable with a maximum out-degree d, then its order n satisfies the following inequality

$$
n \leq d^{l-m}+\cdots+d^{l},
$$

since this bound is the maximum number of distinct walks of length not smaller than $l-m$ and not greater than l from any vertex of G. To attain this bound there must be exactly one walk of length in the interval $[l-m, l]$ between each pair of vertices. So, any digraph with such a property is an $[l-m, l]$-digraph and, consequently, it only exists for $m=0,1$, if $d \geq 2$.

3 Enumeration of [1,2]-digraphs

In this section we present the main result of this paper. We prove that Kautz digraphs of diameter 2 are the unique [1,2]-digraphs -up to isomorphisms. This means that all $n \times n$ binary matrices that are solution of the equation $A+A^{2}=J$ are of the form $P A P^{t}$, where A is the adjacency matrix of the line digraph $L K_{d+1}$, where $n=d+d^{2}$, and P is a permutation matrix.

We use, as an auxiliary result, the following characterization of regular line digraphs, which is based on Heuchenne's condition (see [11]). Such a condition says that a digraph G is a line digraph iff every pair of vertices u, v of G satisfy that their corresponding sets of successors $\Gamma^{+}(u), \Gamma^{+}(v)$ are either disjoint or equal. In matrix terms, a (0,1)-matrix A represents the adjacency matrix of a line digraph G iff the rows of A are either mutually ortogonal or identical.

Lemma 1. A regular digraph G of degree $d \geq 1$ and order n is a line digraph iff the rank of its adjacency matrix A is equal to $\frac{n}{d}$.
Proof. Let us suppose that G is a regular digraph of degree d, order $n=d n^{\prime}$ and such that the rank of its adjacency matrix A is n^{\prime}. Then, we take n^{\prime} row vectors of A that constitute a basis of the row-space of A. Since the total number of entries of these $(0,1)$-vectors that are equal to 1 is exactly n, we deduce that these vectors must be mutually ortogonal. Otherwise, A would have a null column, which is impossible since $J A=d J$ (G is d-regular.) Moreover, since each row has just d elements equal to 1 , we deduce that any other row is identical to one of the basis. Hence, G satisfies Heuchenne's condition and, consequently, G is a line digraph.

Conversely, let G be the line digraph of a digraph G^{\prime} of order n^{\prime} without isolated vertices. Then, since G is regular, we have that G^{\prime} is also a regular digraph with the same degree d and, consequently, the order of G is $n=n^{\prime} d$. Therefore, using Heuchenne's condition, we deduce that the adjacency matrix A of G has a set of n^{\prime} mutually ortogonal rows such that any other row is equal to one of those. Hence, $\operatorname{rank} A=n^{\prime}=\frac{n}{d}$.

From the relation between the rank of a square matrix A and the dimension of its null-space, we can reformulate the previous characterization, saying that a regular
digraph G of degree $d \geq 2$ and order n is a line digraph, iff 0 is an eigenvalue of G with geometric multiplicity equal to $n-\frac{n}{d}$.

Besides, from the construction of a line digraph it follows that if the adjaceny matrix A of a digraph G fulfills the equation $P(A)=J$, where $P(x)$ is a polynomial, then the adjacency matrix A_{L} of $L G$ satisfies the equation $A_{L} P\left(A_{L}\right)=J$. The converse is also true if we assume that G has no isolated vertices. Taking into account this property, the following result is derived.

Lemma 2. Let G be a digraph without isolated vertices. Then, $L G$ is a $[k-1, k]-$ digraph iff G is a $[k-2, k-1]$-digraph, and both of them have the same degree.

Now, we can characterize the class of $[1,2]$-digraphs.
Theorem 1. There is only one $[1,2]$-digraph of degree d, namely $L K_{d+1}$.
Proof. Let A be the adjacency matrix of a $[1,2]$-digraph G of degree d and order $n=d+d^{2}$. Then, A fulfills the equation $A+A^{2}=J$ and, consequently, $\operatorname{tr} A=0$. From these relations, it follows that the characteristic polynomial of A is

$$
\operatorname{det}(x I-A)=(x-d) x^{n-d-1}(x+1)^{d} .
$$

Now, we will prove, using the previous lemmas, that G is the line digraph $L K_{d+1}$. In fact, for $d=1$ the result is trivial. So, from here on, we assume $d \geq 2$.

Since 0 is an eigenvalue of A with algebraic multiplicity equal to $n-d-1$, we have that $\operatorname{rank} A \geq d+1=\frac{n}{d}$. Suppose that $\operatorname{rank} A>d+1$. Then, A would have at least $d+2$ column vectors u_{1}, \ldots, u_{d+2} which are linearly independent. However, the relation $A+A^{2}=(A+I) A=J$ implies that $(A+I) u_{i}=(1, \ldots, 1)^{t}$, from which we deduce that the vectors $u_{i}-u_{1}$ belong to the null-space of $A+I$. Then, since these vectors $u_{i}-u_{1}(2 \leq i \leq d+2)$ are also linearly independent, we conclude that 0 must be an eigenvalue of $A+I$ with algebraic multiplicity not smaller than $d+1$. But, this is impossible because the characteristic polynomial of $A+I$ is

$$
\operatorname{det}(x I-(A+I))=\operatorname{det}((x-1) I-A)=(x-(d+1))(x-1)^{n-d-1} x^{d} .
$$

Therefore, since rank of A must be equal to $d+1$, from Lemma 1 it turns out that G is a line digraph.

Let G^{\prime} be a digraph - without isolated vertices- such that $G=L G^{\prime}$. Then, from Lemma 2, we have that G^{\prime} is a $[0,1]$-digraph of degree d. Hence, G^{\prime} is the complete digraph K_{d+1}.

The previous result answers a question formulated by Baskoro et al. in [1] about the enumeration of almost-Moore digraphs (also called (d, k)-digraphs) of diameter $k=2$ with all selfrepeat vertices. A (d, k)-digraph is a regular directed graph of degree $d>1$, diameter $k>1$ and order one less than the (unattainable) Moore bound. Every (d, k)-digraph G has the property that for each vertex $v \in V(G)$ there exists only one vertex, denoted by $r(v)$ and called the repeat of v, such that there are exactly two $v \rightarrow r(v)$ walks of length less than or equal to k (one of them must
be of length k.) If $r(v)=v$, which means that v is contained in exactly one k-cycle, v is called a selfrepeat of G. The map r, which assigns the vertex $r(v)$ to each vertex $v \in V(G)$, is an automorphism of G and its associated permutation matrix P is related to the adjacency matrix A of G by means of the following equation $I+A+\cdots+A^{k}=J+P$ (see, for instance, [2], [3] and [17].) Therefore, the notion of (d, k)-digraph with all selfrepeat vertices $(P=I)$ and the concept of $[1, k]$-digraph are equivalent. Hence, (d, k)-digraphs with all selfrepeat vertices do only exist for diameter $k=2$ (see [2] and [4].) Moreover, in such a case, using Theorem 1, we have that $L K_{d+1}$ is the only ($d, 2$)-digraph with all selfrepeat vertices. Furthermore, using the results about the structure of almost-Moore digraphs with selfrepeat vertices, presented in [1], together with the necessary conditions in terms of the cycle structure of the permutation r, given in [10], it can be proved that all vertices of any ($d, 2$)-digraph of degree $d, 3 \leq d \leq 12$, are selfrepeats. Hence, the enumeration of almost-Moore digraphs of diameter 2 and small degree is reduced to the resolution of the equation $A+A^{2}=J$ (given in Theorem 1.)

4 Short cycles in a [$k-1, k]$-digraph

Several properties about the cycle structure of a $[k, k]$-digraph are already known. Thus, in [16] it is proved, using matrix techniques, that each closed walk of a $[k, k]$ digraph of length $\leq k$ is either a cycle or a repeated cycle. We will extend such a result, by means of graphical techniques, and, as a consequence, we will deduce that any $[k-1, k]$-digraph shares this same property. From this fact and the knowledge of the spectrum of a $[k-1, k]$-digraph, we will obtain a formula for the number of its short cycles.

Lemma 3. If G is a digraph such that for each pair of (not necessarily different) vertices u, v there is at most one $u \rightarrow v$ walk of length k, then each closed walk of G of length $\leq k$ is either a cycle or a repeated cycle.

Proof. Let $C: u_{0}, u_{1}, \ldots, u_{l}$ be a closed walk of G of length $l \leq k$ such that is neither a cycle nor a repeated cycle. Let u_{i} and u_{j} be the two first repeated vertices of the sequence C, where $0 \leq i<j<l$. Then, $C_{1}: u_{i}, u_{i+1}, \ldots, u_{j}$ is a cycle of length $j-i$ and $C_{2}: u_{j}, u_{j+1}, \ldots, u_{l}, u_{1}, \ldots, u_{i}$ is a closed walk of length $l+i-j$. Since C is not a repeated cycle, it can be seen that the two concatenation of these sequences, $C_{1} C_{2}$ and $C_{2} C_{1}$, represent different $u_{i} \rightarrow u_{i}$ closed walks of length l. But, then, there would be two $u_{i} \rightarrow u_{i+r}$ walks of length k, where $k-l \equiv r(\bmod j-i)$, which is impossible.
Corollary 1. Every closed walk of $a[k-1, k]$-digraph of length $\leq k$ is either a cycle or a repeated cycle.

Moreover, since the adjacency matrix A of a $[k-1, k]$-digraph G of degree d fulfills the equation $A^{k}+A^{k-1}=J$, we can deduce that the characteristic polynomial of A is $(x-d) x^{n-1-d}(x+1)^{d}$, where $n=d^{k-1}+d^{k}$. Therefore,

$$
\begin{equation*}
\operatorname{tr} A^{l}=d^{l}+(-1)^{l} d \tag{2}
\end{equation*}
$$

Working with such identities and using the previous corollary, we obtain the following result for the computation of the number of distinct short cycles of a $[k-1, k]-$ digraph. We say that two cycles $C_{1}: u_{0}, u_{1}, \ldots, u_{l}$ and $C_{2}: u_{0}^{\prime}, u_{1}^{\prime}, \ldots, u_{l}^{\prime}$ are equal iff one can be obtained from the other by means of a rotation, that is to say C_{2} : $u_{i}, u_{i+1}, \ldots, u_{i+l}$, for some i modulo l. Although the number of such cycles depends on the degree d of the digraph as well as on the length l, we simply denote it by $c(l)$.
Theorem 2. Let G be a $[k-1, k]$-digraph of degree d. Then, the number $c(l)$ of distinct cycles of G of length $l, l \leq k$, is given by the formula

$$
c(l)= \begin{cases}0, & \text { if } l=1, \tag{3}\\ \binom{d+1}{2}, & \text { if } l=2, \\ \frac{1}{l} \sum_{m l l} \mu\left(\frac{l}{m}\right) d^{m}, & \text { if } 3 \leq l \leq k,\end{cases}
$$

where $\mu(l)$ denotes the Möbius function.
Proof. From Corollary 1 and from identity (2), we have that

$$
\operatorname{tr} A^{l}=d^{l}+(-1)^{l} d=\sum_{m!l} m \cdot c(m), \text { if } l \leq k
$$

Therefore, applying Möbius's inversion formula [18], we deduce that

$$
\begin{equation*}
c(l)=\frac{1}{l} \sum_{m \mid l} \mu\left(\frac{l}{m}\right) d^{m}+\frac{1}{l} d \sum_{m \mid l} \mu\left(\frac{l}{m}\right)(-1)^{m} . \tag{4}
\end{equation*}
$$

Now, we compute the auxiliary function

$$
f(l)=\sum_{m \mid l} \mu\left(\frac{l}{m}\right)(-1)^{m}=\sum_{m \mid l} \mu(m)(-1)^{\frac{l}{m}} .
$$

If l is odd, then

$$
\begin{aligned}
f(l) & =-\sum_{m| |} \mu(m)=-\sum_{m| |} \operatorname{tr} \Phi_{m}(x)=-\operatorname{tr} \prod_{m| |} \Phi_{m}(x) \\
& =-\operatorname{tr}\left(x^{l}-1\right)=\left\{\begin{array}{l}
-1, \text { if } l=1, \\
0, \text { otherwise },
\end{array}\right.
\end{aligned}
$$

where $\Phi_{m}(x)$ denotes the m-th cyclotomic polynomial and $\operatorname{tr} \Phi_{m}(x)$ represents the sum of all its complex roots.

Likewise, if $l=2^{e} l^{\prime}$, where $e \geq 1$ and l^{\prime} is odd, then

$$
\begin{aligned}
f(l) & =\sum_{m \mid l^{\prime}} \mu(m)(-1)^{2 e^{\frac{l^{\prime}}{m}}}+\sum_{m \mid l^{\prime}} \mu(2 m)(-1)^{2^{e-1} \frac{l^{\prime}}{m}} \\
& =\sum_{m \mid l^{\prime}} \mu(m)\left(1-(-1)^{2^{e-1}}\right)
\end{aligned}
$$

Clearly, $f(l)=0$, if $l=2^{e} l^{\prime}$ and $e>1$. Moreover, if $l=2 l^{\prime}$, then

$$
f(l)=2 \sum_{m \mid l^{\prime}} \mu(m)= \begin{cases}2, \text { if } l=2 \\ 0, \text { otherwise }\end{cases}
$$

Hence, $f(1)=-1, f(2)=2$ and $f(l)=0$ if $l>2$. The proof is concluded by substituting these values into (4).

We notice that the number $c(l)$ of distinct cycles of length $l \leq k$ in a $[k-1, k]-$ digraph does not depend on k. Moreover, if $l \geq 3$, then $c(l)$ turns out to be equal to the number of distinct cycles of the same length in a $[k, k]$-digraph with equal degree (see [16]). Furthermore, the number of 2 -cycles of a $[k-1, k]$-digraph is equal to the number of loops plus the number of 2 -cycles of a $[k, k]$-digraph. We also remark that if $d \geq 2$, then $c(l) \geq 1$, which implies that any $[k-1, k]$-digraph of degree $d \geq 2$ has cycles of each length $l, 2 \leq l \leq k$. The problem of the existence of longer cycles has been solved in the particular case of Kautz digraphs by Villar, who proved in [21] that any Kautz digraph has cycles of any length, except for 1 and $n-1$, where n is its order.

Taking into account that each vertex of a $[k-1, k]$-digraph is included in exactly one closed walk of length $k-1$ or k, we can also derive some other properties about the cycle structure of such a digraph.

Corollary 2. If G is $a[k-1, k]$-digraph of degree d, then the following statements hold.
(i) There exists a partition of the set of vertices of G into $\binom{d+1}{2}$ cycles of length 2 and $\frac{1}{l} \sum_{m \mid l} \mu\left(\frac{l}{m}\right) d^{m}$ cycles of length l, for each $l \geq 3$ a divisor of $(k-1)$ or k. Moreover, the total number $\mathcal{N}(k)$ of these cycles is given by the expression

$$
\begin{equation*}
\mathcal{N}(k)=\frac{1}{k} \sum_{l \mid k} \phi\left(\frac{k}{l}\right) d^{l}+\frac{1}{k-1} \sum_{l \mid(k-1)} \phi\left(\frac{k-1}{l}\right) d^{l}-d, \tag{5}
\end{equation*}
$$

where $\phi(i)$ stands for the Euler function.
(ii) Each arc not contained in a cycle of length a divisor of k belongs to a unique closed walk of length $k+1$, which is either a cycle, a repeated cycle or the concatenation of two arc-disjoint cycles.

Proof. From the definition of a $[k-1, k]$-digraph G, the existence of a partition of $V(G)$ into cycles of length a divisor of $k-1$ or k is derived. The number $c(l)$ of such cycles of each length l is given by Theorem 2 and its total number $\mathcal{N}(k)$ can be deduced as follows. Since $\operatorname{gcd}(k-1, k)=1$ and $c(1)=0$, we have that $\mathcal{N}(k)=\sum_{l \mid k} c(l)+\sum_{l \mid(k-1)} c(l)$. Therefore, using Theorem 2, we obtain that

$$
\mathcal{N}(k)=\sum_{l \mid k} \frac{1}{l} \sum_{m \mid l} \mu\left(\frac{l}{m}\right) d^{m}+\sum_{l \mid(k-1)} \frac{1}{l} \sum_{m \mid l} \mu\left(\frac{l}{m}\right) d^{m}-d .
$$

Then, taking into account that

$$
\sum_{l \mid n} \frac{1}{l} \sum_{m \mid l} \mu\left(\frac{l}{m}\right) d^{m}=\sum_{m \mid n} d^{m} \sum_{\substack{m|l \\ l| n}} \frac{1}{l} \mu\left(\frac{l}{m}\right)=\frac{1}{n} \sum_{m \mid n} d^{m} \sum_{l^{\prime} \left\lvert\, \frac{n}{m}\right.} \frac{\frac{n}{m}}{l^{l}} \mu\left(l^{\prime}\right)
$$

and using the identity $\sum_{d \mid n} \frac{n}{d} \mu(d)=\phi(n)$ (see [18]), we can deduce (5).

Besides, given an arc $u v$ of G, and since there exists exactly one $v \rightarrow u$ walk of length $k-1$ or k, we have that $u v$ is included in exactly one closed walk of length k or $k+1$. Therefore, using Corollary 1 , we deduce that if $u v$ is not included in a cycle of length a divisor of k, then $u v$ belongs to a unique closed walk of length $k+1$. Let $C: u_{0}, u_{1}, \ldots, u_{k+1}$ be such a closed walk and let us assume that C is neither a cycle nor a repeated cycle. Then, if u_{i} and u_{j} are the first two repeated vertices of the sequence C, we have that $C_{1}: u_{i}, u_{i+1}, \ldots, u_{j}$ is a cycle and $C_{2}: u_{j}, u_{j+1}, \ldots, u_{k+1}, u_{0}, \ldots, u_{i}$ is a cycle or the repetition of a cycle C_{2}^{\prime} distinct from C_{1}. But such a repetition is impossible because, otherwise, we would have more than one walk of length k between u_{i} and u_{i-1}. Hence, C is equal to the concatenation of the two cycles C_{1} and C_{2}, which are arc-disjoint.

We point out that the computation of the number of Kautz necklaces, that is to say cycles of a Kautz digraph of length a divisor of its diameter k or $k-1$, was previously proved by Tvrdík in [20], by using combinatorial techniques. Here, we have extended such a result (5) to the class of $[k-1, k]$-digraphs.

Thus, if G is a $[k-1, k]$-digraph of degree d and diameter $k \leq 5$, then G has a vertex partition into $c(l)$ distinct l-cycles, where such numbers are shown in Table 1. For $k=2$, since $L K_{d+1}$ is the only [1,2]-digraph, we have that the number of l-cycles equals the number of circuits of K_{d+1} of the same length, which represents the number of closed sequences of length l of $(d+1)$-ary digits: $0, \ldots, d$ such that two consecutive digits are different and subsequences of length two are all different. It can be verified that these computations turn out to be equal to $c(l)$ for $l \leq 4$ but not for $l=5$, that is to say the expression of $c(l)$, given in Theorem 2 for $l \leq k$, can be extended, in the case $k=2$, for $l=k+1, k+2$. We do not know if such an extension can be generalized, neither do we know if there exists a formula for the computation of long cycles (cycles of length $>k$) of a $[k-1, k]$-digraph.

k	num. 2-cycles	num. 3-cycles	num. 4-cycles	num. 5-cycles
3	$\frac{d^{2}+d}{2}$	$\frac{d^{3}-d}{3}$		
4	$\frac{d^{2}+d}{2}$	$\frac{d^{3}-d}{3}$	$\frac{d^{4}-d^{2}}{}$	
5	$\frac{d^{2}+d}{2}$	$\frac{d^{3}-d}{3}$	$\frac{d^{4}-d^{2}}{4}$	$\frac{d^{5}-d}{5}$

Table 1: Number of short cycles of a $[k-1, k]$-digraph of diameter $k \leq 5$.

5 The case $d=2$

In this section, we will illustrate how the previous results about the cycle structure of a $[k-1, k]$-digraph can be used in order to find the enumeration of such digraphs in the case of degree $d=2$ and small diameter k.

Applying Corollary 2 , in the case $k=3$, we derive the following result.
Lemma 4. If G is a [2,3]-digraph of degree d, then the following statements hold.
(i) There is a partition

$$
\mathcal{P}=\left\{C_{1}^{2}, C_{2}^{2}, \ldots, C_{\frac{d^{2}+d}{2}}^{2}, C_{1}^{3}, C_{2}^{3}, \ldots, C_{\frac{d^{3}-d}{3}}^{3}\right\}
$$

of the set of vertices of G, where $C_{i}^{j}=\left\{v_{1}^{i}, v_{2}^{i}, \ldots, v_{j}^{i}\right\} \subset V(G)$ is such that $v_{1}^{i}, v_{2}^{i}, \ldots, v_{j}^{i}, v_{1}^{i}$ represents a j-cycle of G.
(ii) Each arc of G not contained in a cycle of length 2 or 3 belongs to a unique cycle of G of length 4.

In particular, every [2,3]-digraph G of degree $d=2$ must contain the subdigraph G_{p} shown in Figure 1. Moreover, the strongly connected components of the subdigraph $\bar{G}_{\mathcal{P}}$ of G induced by the remaining arcs -one incident arc from each vertexare cycle digraphs of order 4. The following technical lemma says how the arcs of $\bar{G}_{\mathcal{P}}$ have to be placed. Using this lemma, we will show that there is only one way of constructing (up to isomorphisms) a [2,3]-digraph of degree 2 . In order to simplify the notation, from now on each part C_{i}^{j} will be identified by its associated cycle.

Figure 1: The subdigraph G_{p}.
Lemma 5. Let G be a $[2,3]$-digraph of degree 2. Let $G_{\mathcal{P}}$ be the subdigraph of G induced by its 2-cycles $\left(C_{1}^{2}, C_{2}^{2}, C_{3}^{2}\right)$ and its 3 -cycles $\left(C_{1}^{3}, C_{2}^{3}\right)$, and let $\bar{G}_{\mathcal{P}}$ the subdigraph of G induced by its remaining arcs. Then, the arcs of $\bar{G}_{\mathcal{P}}$ satisfy the following properties:
(i) Each arc of $\bar{G}_{\mathcal{P}}$ is incident from a vertex of a 2-cycle [3-cycle] to a vertex of a 3-cycle [2-cycle]. Moreover, the arcs of $\bar{G}_{\mathcal{P}}$ incident from vertices of G included in the same 2-cycle [3-cycle] are incident to vertices of G included in distinct 3-cycles [2-cycles]. (See Figure 2 (I).)
(ii) Let u_{1}, u_{2}, u_{3} be a walk of \bar{G}_{p}. If u_{1} is included in a 2-cycle [3-cycle] of G, then u_{3} is contained in a distinct 2-cycle [3-cycle] of G. (See Figure 2 (II).)
(iii) Let $u_{1} v_{1}\left[v_{1} u_{1}\right]$ be an arc of $\bar{G}_{\mathcal{P}}$ such that u_{1} is included in a 2-cycle C_{i}^{2} : u_{1}, u_{2}, u_{1} and v_{1} is included in a 3-cycle $C_{j}^{3}: v_{1}, v_{2}, v_{3}, v_{1}$ of G. Then, $v_{3} u_{2}$ $\left[u_{2} v_{2}\right]$ is an arc of $\bar{G}_{\mathcal{P}}$. (See Figure 2 (III).)

Figure 2: Conditions about the arcs of $\bar{G}_{\mathcal{P}}$.
Proof. Taking into account the definition of a $[k-1, k]$-digraph G, it can be seen that, given a vertex v_{0} included in a cycle $C: v_{0}, v_{1}, \ldots, v_{l}$ of G of length l a divisor of $k-1$, then each out-arc of v_{0}, except for $v_{0} v_{1}$, is an in-arc of a vertex included in a cycle of length a divisor of k. Since the converse digraph of G (derived from G by changing the orientation of its arcs) is also a $[k-1, k]$-digraph, every property satisfied by the out-arcs of a vertex v of G is also fulfilled by its in-arcs. In particular, if $k=3$, then each arc of $\bar{G}_{\mathcal{P}}$ that is incident from [to] a vertex included in a 2 -cycle must also be incident to [from] a vertex included in a cycle of length 3. Moreover, since in the case $d=2$ there are equal numbers of vertices included in 2-cycles and in 3 -cycles, we have that each arc of $\bar{G}_{\mathcal{P}}$ joins two vertices included in cycles of $G_{\mathcal{P}}$ of distinct length. Now, let us suppose that $\bar{G}_{\mathcal{P}}$ has two $\operatorname{arcs} u_{1} v_{1}$ and $u_{2} v_{2}$, where $C^{2}: u_{1}, u_{2}, u_{1}$ and $C^{3}: v_{1}, v_{2}, v_{3}, v_{1}$ are cycles of $G_{\mathcal{P}}$ of length 2 and 3 , respectively. Then, the sequences $u_{1}, v_{1}, v_{2}, v_{3}$ and $u_{1}, u_{2}, v_{2}, v_{3}$ are two different $u_{1} \rightarrow v_{3}$ walks of length 3 , which is impossible. The proof of $(i i)$ is quite similar and property (iii) is a consequence of the first two.

The application of the previous lemma to the subdigraph shown in Figure 1 allows us to conclude the enumeration of [2,3]-digraphs of degree 2 .

Proposition 2. There is only one $[2,3]$-digraph of degree 2, namely $L^{2} K_{3}$.

Proof. Let G be a $[2,3]$-digraph of degree 2. We will prove, using Heuchenne's condition, that G is a line digraph, from which we will deduce, taking into account Lemma 2 and Theorem 1, that G is the Kautz digraph of diameter $k=3$ and degree $d=2$.

Let u_{1} and v_{1} be two vertices of G such that $\Gamma^{+}\left(u_{1}\right) \cap \Gamma^{+}\left(v_{1}\right) \neq \emptyset$. From property (i) of Lemma 5 , we have that u_{1} and v_{1} must belong to cycles of G_{p} of distinct length. Let us assume that u_{1} belongs to the cycle $C^{2}: u_{1}, u_{2}, u_{1}$ and that v_{1} is included in the 3 -cycle $C^{3}: v_{1}, v_{2}, v_{3}, v_{1}$. Therefore, since $u_{1} v_{2}\left[v_{1} u_{2}\right]$ is an arc of $\bar{G}_{\mathcal{P}}$, we deduce, using property (iii) of the previous lemma, that $\Gamma^{+}\left(u_{1}\right)=\Gamma^{+}\left(v_{1}\right)$ and, consequently, G is a line digraph. Then, from Lemma 2, we have that $G=L G^{\prime}$ where G^{\prime} is a [1,2]-digraph of degree 2. Hence, using Theorem 1, we obtain that G is $L^{2} K_{3}$. (See Figure 3.)

Figure 3: The digraph $L^{2} K_{3}$.
We notice that while Good-De Bruijn digraph of degree 2 and diameter 3 is one of the three non-isomorphic [3,3]-digraphs of such a degree (see [9]), Kautz digraph with equal parameters is the only [2,3]-digraph of degree 2 . This may stregthen the idea that, as the order becomes closer to the Moore bound, there are fewer digraphs. With a more detailed reasoning it can be seen that $L^{3} K_{3}$ is the only [3, 4]-digraph of degree 2. However, because of the ad hoc nature of these techniques, it may be worthwhile to find other approaches to the problem of the enumeration of $[k-1, k]-$ digraphs for $k \geq 3$.

Acknowledgments

I thank M.A. Fiol for his encouragement and suggestions.

References

[1] E.T. Baskoro, M. Miller and J. Plesník, Further results on almost Moore digraphs, Ars Combin., to appear.
[2] E.T. Baskoro, M. Miller, J. Plesník and Š. Znám, Digraphs of degree 3 and order close to the Moore bound, J. Graph Theory 20 (1995) 339-349.
[3] E.T. Baskoro, M. Miller, J. Plesník and Š. Znám, Regular digraphs of diameter 2 and maximum order, Australas. J. Combinatorics 9 (1994) 291-306.
[4] J. Bosák, Directed graphs and matrix equations, Math. Slovaca 28 (1978) 189202.
[5] J.H. Conway and M.J.T. Guy, Message Graphs, Annals of Discrete Mathematics 13 (1982) 61-64.
[6] G. Chartrand and L. Lesniak, Graphs \& Digraphs, Chapman \& Hall, third edition (1996).
[7] M.A. Fiol, I. Alegre and J.L.A. Yebra, Line digraphs iterations and the (d, k) problem for directed graphs, Proc. 10th Int. Symp. Comput. Arch., Stockholm (1983) 174-177.
[8] M.A. Fiol, J.L.A. Yebra and I. Alegre, Line digraphs iterations and the (d, k) digraph problem, IEEE Trans. Comput. C-32 (1984) 400-403.
[9] M.A. Fiol, I. Alegre, J.L.A. Yebra and J. Fábrega, Digraphs with walks of equal length between vertices, Graph Theory and its Applications to Algorithms and Computer Science, Eds Y. Alavi et al. John Wiley \& Sons (1985) 702-713.
[10] J. Gimbert, On the existence of (d, k)-digraphs, Discrete Math. 197-198 1-3 (1999) 375-391.
[11] C. Heuchenne, Sur une certaine correspondance entre graphes, Bull. Soc. Roy. Sci. Liège 33 (1964) 743-753.
[12] A.J. Hoffman and M.H. McAndrew, The polynomial of a directed graph, Proc. Amer. Math. Soc. 16 (1965) 303-309.
[13] W.H. Kautz, Bound on directed (d, k) graphs, Theory of cellular logic networks and machines. AFCRL-68-0668 Final Report (1968) 20-28.
[14] W.H. Kautz, Design of optimal interconnection networks for multiprocessors, Architecture and Design of Digital Computers. NATO Advanced Summer Institute (1969) 249-272.
[15] D.E. Knuth, Notes on central groupoids, J. Combin. Theory 8 (1970) 376-390.
[16] N.S. Mendelsohn, Directed graphs with the unique path property, Combinatorial Theory and its Applications II (Proc. Colloq. Balatonfürer, 1969), North Holland (1970) 783-799.
[17] M. Miller and I. Fris, Maximum order digraphs for diameter 2 or degree 2, Pullman Volume of Graphs and Matrices, Lecture Notes in Pure and Applied Mathematics 139 (1992) 269-278.
[18] I. Niven, H.S. Zuckerman and H.L. Montgomery, An Introduction to the Theory of Numbers, John Wiley \& Sons, fifth edition (1991).
[19] J. Plesník and Š. Znám, Strongly geodetic directed graphs, Acta F. R. N. Univ. Comen.-Mathematica XXIX (1974) 29-34.
[20] P. Tvrdík, Kautz Necklaces, Research Report 94-08, LIP ENSL, 69364 Lyon, France (1994).
[21] J.L. Villar, Kautz s-ary closed sequences, Combinatorics 88, II, Research and Lecture Notes in Mathematics, Mediterranean Press (1991) 459-469.
(Received 8/7/98)

[^0]: ${ }^{1}$ The class of $[k, k]$-digraphs has been studied by Mendelsohn in [16] as "UPP digraphs" (digraphs with the unique path property of order k) and by Conway and Guy in [5] as "tight precisely k-steps digraphs".

