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Abstract

We show that necessary and sufficient conditions for the existence of a
semi-evenly partite star - factorization of the symmetric complete tripar-
tite digraph K7, . are (i) kis even, k > 4 and (ii) ny =ny = nz3 =0
(mod k(k —1)/3) for k¥ =0 (mod 6) and n; = ny = n3z = 0 (mod k(k—1))
for k = 2,4 (mod 6).

1. Introduction

Let K ., . denote the symmetric complete tripartite digraph with partite sets
V1, V2, V3 of ny,ng,ng vertices each, and let S, denote the semi-evenly partite di-
rected star from a center-vertex to k — 1 end-vertices such that the center-vertex
is in V; and (k — 2)/2 end-vertices are in V}, and k/2 end-vertices are in V;, with
{1,71,72}={1,2,3}. A spanmng subgraph F of K is called an Sy - factor if each

nl sN2.73

component of F is S. If K is expressed as an arc-disjoint sum of Sy - factors,

then this sum is called an Sk factomzatzon of K oy ny-

In this paper, it is shown that necessary and sufficient conditions for the existence
of such a factorization are (i) k is even, k > 4 and (ii) ny = ny = ng = 0 (mod
k(k —1)/3) for k= 0 (mod 6) and ny = ny = n3g = 0 (mod k(k—1)) for k = 2,4
(mod 6).

Let Kn nys Ko ys i) nymgrand K denote the complete bipartite graph, the
symmetric complete bipartite digraph, the symmetric complete tripartite digraph,
and the symmetric complete multipartite digraph, respectively. And let Ck, Sk, Py,
and Kp’q denote the cycle or the directed cycle, the star or the directed star, the path
or the directed path, and the complete bipartite graph or the complete bipartite di-

graph, respectively, on two partite sets V; and V;. Then the problems of giving the

necessary and sufficient conditions of Cj, - factorization of Knynyy Ko s Koy g
and K .. . have been completely solved by Enomoto, Miyamoto and Ushiol[2]

Australasian Journal of Combinatorics 20(1999), pp.69-75




and Ushio[11,14]. S - factorization of K, ., K; .., and K - have been stud-
ied by Ushio and Tsuruno[8], Ushio[13], and Wang[15]. Recently, Martin[4,5] and
Ushio[10] give the necessary and sufficient conditions of Sy - factorization of K, n,
and K, . P, - factorization of K,, ,, and K ., have been studied by Ushio and
Tsuruno[7], and Ushio[6,9]. K, - factorization of Ky, ., has been studied by Mar-
tin[4]. Ushio[12] gives necessary and sufficient conditions for a I%',,,q - factorization of

K _ . For graph theoretical terms, see [1,3].

ny,n2

- L .
2. S, - factorization of K, , ..

We use the following notation.

Notation. Given an Sy - factorization of Ky nomg» et

7 be the number of factors

t be the number of components of each factor

b be the total number of components.

Among r components having vertex z in V;, let r;; be the number of components
whose center-vertex is in Vj .

We give the following necessary conditions for the existence of an S - factorization

of Kzl 2yt
Theorem 1. If K, . hasan S - factorization, then (i) k is even, k > 4 and

(i) n1 = ny = ng = 0 (mod k(k — 1)/3) for k = 0 (mod 6) and n; =ny =nz3 =0
(mod k(k — 1)) for k = 2,4 (mod 6).

Proof. Suppose that K, _ . hasan S - factorization. Then b = 2(ning + ning +
nynz)/(k —1),t = (ny + ny + na)/k,r = b/t = 2(nina + ning + nang)k/(na + na +
ns)(k — 1). By the definition of Sk, k is even and & > 4.

For a vertex z in Vj, we have rii(k — 1) = ny + n3, r2 = ne, ri3 = ng, and
r1 4+ T2 + m3 = r. For a vertex z in V5, we have ro2(k — 1) = ny + ng, ro1 = nq,
T93 = na, and rg; + rog + T3 = 7. For a vertex z in V3, we have ra3(k — 1) = ny + na,
T3 = Ny, T3z = Ng, and r3; + r3z + r33 = r. Therefore, we have ny = ny = nz. Put
ni=ny=n3=n. Thenryy =rps=ras=2n/(k—1),ria=rizg=ry =ryzg=rz =
rap =mn, b=06n?/(k—1),t=3n/k, r = 2nk/(k - 1).

Since k is even and k > 4, we must have 3n = 0 (mod k) and n = 0 (mod k — 1).
Therefore, we have n = 0 (mod k(k — 1)/3) for £ = 0 (mod 6) and n = 0 (mod
k(k — 1)) for k = 2,4 (mod 6).

We prove the following extension theorem, which we use later in this paper.

Theorem 2. If K*__ has an S - factorization, then K has an S - factoriza-

n,n,n 8n,sn,sn
tion.
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Proof. Let K, 04 denote the tripartite digraph with partite sets Uy,Up,Us of
¢1, 2, g3 vertices such that g, start-vertices in Uy are adjacent to both ¢; end-vertices
in U, and ¢z end-vertices in Us. Then Sk can be denoted by K1 ag(atr) for k = 2a+4-2.
When K, , has an S - factorization, K onan has & K sagaasr) - factorization.

K, saos(ar1) has an Sy - factorization. Therefore, K, ., ., has an S - factorization.

We give the following sufficient conditions for the existence of an Sy - factorization
of Kj e
Theorem 3. When k is even, k > 4 and n = 0 (mod k(k — 1)), K}, has an Sy -
factorization.

Proof. Put n = k(k — 1)s, N = k(k —1). When s =1, let V| = {1,2,..., N},
Vo = (1,2, N'}, Vs = {1",2", ... N"}. Fori=1,2,...,k and j = 1,2,...,k,
construct 2k* Sy - factors F}(jl)7 Fi(f) as follows:

FO= {(A+15(B+(k—1)+1,...,B+(k—1)+(k—2)/2), (C+ (k- 1)+ (k-
9)/2+1,...,C + 20k — 1))
((A+2)(B+2(k—1)+1,....,B+2(k—=1)+(k—2)/2), (C+2(k—1)+(k—2)/2 +
1,...,C+3(k —1))")
(Atk—15(B+(k—1)2+1,. . B+ (k—12+(k=2)/2), (C+(k—1)*+ (k-
9)/2+1,...,C + k(k — 1))")
(B+1)y(C+k—1)+1,.,CHk—1)+(k—2)/2)", (A+(k—1)+(k—2)/2 +
1, A+2k—1)))

(B+2)5(C+2(k —1)+1,...,C +2(k — 1) + (k—2)/2)", (A+2(k — 1) + (k -
9)/2+1,...,A+3(k—1))
(B+k—1/5(C+(k=1)2+1,...,C+ (k=12 + (k—2)/2)", (A+ (k- 1)* + (k-
9)/2+1,..., A+ k(k - 1)))

(C+1)" A+ (k—1)+1,... A+ (E—1)+ (E=2)/2), (B+ (k—1)+ (k—2)/2 +
1,...,B+2(k—1)))

(Cr2)(Arok—1)+1,..., A+2(k—1)+(k—2)/2), (B+2(k—1)+(k —2)/2+
1,...,B+3(k—1)))
(CHE—1(A+ (k=12 +1,.. A+ (k=124 (k=2)/2), (B+ (k- 1)+ (k-
9/2+1,...,B+k(k—1)))},

FP= {(A+1i(C+ (k—1)+1,...,C+(k—1)+(k~2)/2)", (B+ (k—1) + (k-
2)/2+1,...,B+2(k-1)))
(A+2)(CH+2(k—=1)+1,...,C+2(k 1)+ (k—2)/2)", (B+2(k—1)+(k—2)/2+
L,...,B+3(k—-1)))

(A+k—15(CH+ (k-1 +1,...,C+ (k=12 +(k—2)/2)", (B+ (k= 1)* + (k-
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J2+1,...,B+k(k—-1)))
(B+1Yi{(A+(k-1)+1,. ., A+(k-1)+(k—2)/2), (C+ (k—1)+(k—2)/2+
s C+2(k = 1)))

(B+2Y;(A+2(k—1)+1,...,A+2(k—1)+(k—2)/2), (C+2(k— 1)+ (k—2)/2+
oo C 3= 1))

(B+k-1)5(A+ (k=12 +1,..., A+ (k= 1)+ (k—2)/2), (C+ (k=12 + (k-
/2+1,...,C+k(k- ))")

((C+1)";(B+(k'—1)+1 B+ (k=1)+(k-2)/2), (A+(k-1)+(k-2)/2+
sy AR 2(k = 1))
(C+2)"(B+2k—-1)+1,....,B+2(k—1)+ (k—2)/2), (A+2(k~1)+ (k-
2)/241,...,A+3(k—1)))

(C+k—-1y(B+(k—-1)*+1,...,B+(k—1%+(k—2)/2), (A+ (k- 1)*+ (k-

2)/241,...,A+k(k—1)) },

where A = (1 —1)(k—1), B=(j—1)(k—1),C = (i+75—2)(k—1), and the additions

are taken modulo N with residues 1,2,..., N.

Then we claim that they comprise an Sy - factorization of Ky -

We can see that each of them is an S - factor, because it spans all vertices of Ky nn-

We show that they are arc-disjoint.

Suppose that they are not arc-disjoint. In the following, we consider A = (1—1)(k—1),

B=@G-1)k-1),C=0(+7-2)(k-1),D=(h-1)(k—-1), E=({-1)(k-1),
=(h+1-2)(k=1),1<14,4,h,1 <k Notethat A,B,C,D, E, F, N are integral

multiples of & — 1.

Let (X,Y”) be an arc joining from V; to V; and let z and y be the residues of X

and Y modulo k — 1, respectively. Then the arc (X, Y”) can appear only in the z-th

components of F,(JI),F(Q) according as 1 <y < (k- 2)/2,(k -=2)/2+1<y<k-—1,

respectively.

First, we assume that the common arc joining from V; to V, appears in the z-th com-

ponent ((A+z);(B+z(k—1)+1,...,B+z(k—1)+(k—2)/2),(C+z(k—1)+ (k—

2)/2+1,...,C+(z+1)(k—1))") of Fi(jl) and the z-th component ((D+z);(E+z(k—

D+1,..., BE+z(k—1)+(k=2)/2) (F+z(k—1)+(k—2)/241,..., F+(z+1)(k—-1))")

of F,S,l)

Say ((A-+z),(B+z(k—1)+y)) = ((D+z),(E4+z(k—1)+y)), where 1 <y < (k—2)/2.

Then A+ z=D+x (mod N)and B+z(k—1)+y=E + z(k — l) y (mod N).

From the congruences, we have 4 = D and B = E, which impliesi = h and j = [.

This contradicts the assumption.

Next, we assume that the common arc joining from V; to V, appears in the z-th com-

ponent ((A-+z);(C+az(k—1)+1,....,C+az(k—1)+(k—2)/2)" (B4 z(k— 1)+ (k—

2)/2+1,...,B+(z+1)(k—1))) of Fi(;) and the z-th component ((D +z);(F+z(k—

D+1,..., F+a(k=1)+(k—2)/2)" (E+z(k—1)+(k—2)/24+1,..., E+(z+1)(k=1)}")

of F{?.

Say ((A+a),(B+a(k—1)+y)) = (D+a),(B+a(k—1)+y)), where (k—2)/2+1 <

y<k-1.
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Then A+ z2=D+2 (mod N) and B+z(k—1)+y=E + z(k—1) + y (mod N).
From the congruences, we have A = D and B = F, which implies ¢ = h and j = [.
This contradicts the assumption.

Thus, there is no common arc joining from Vj to V,.

Similarly, there are no common arcs joining from V; to Vi, from V; to Vi, from V; to
Va, from V3 to Vi, or from V3 to Vj.

Therefore, 2k? Sy - factors FI(] ), F( ) comprise an S - factorization of Ky v Ap-

plying Theorem 2, K7, . has an Sy - factorization.

Theorem 4. When k = 0 (mod 6) and n = 0 (mod k(k — 1)/3), K= ., has an S, -

factorization.

Proof. Put &k = 6p, n = 2p(6p — 1)s, N = 2p(6p — 1). When s = 1, let

Vi ={1,2,...,N}, Vo= {1',2,... N"}, Vs = {1,2", ... N"}. For i =1,2,...,2p

and j = 1,2,...,2p, construct 24p® S - factors Fl(;), F,(f , F,(JS), F,(f), F,(;), F,(J6

follows:

First, construct Fi(jl).

F{ = {((A+a); (B+(6p—1)p—(z~1)(3p—1)+3p-+1,..., B+(6p—1)p—(2—1)(3p—

16p-1), (C+(6p—1) +(a~1)3p+1,..., O (6p-1) 1 (2~ 3p+30)) | 1 < = < 29}

U{((B+=z); (C+(Bp—1)(p+1)+(z—2p-1)Bp~1)+p+1,...,C+ (6p—1)(p+

D4+(z—2p—-1)(8p~1)+4p—1), (A+(6p—1)p—(z—2p—1)3p—2p+1,..., A+

(bp—Lp—(z—-2p—1)3p+p)) | 2p+1<z<3p}

U{{(B+z); (C+(6p—1)(p+1)+(z—3p—1)3p+3p° +1,..., C+(6p—1)(p+1)+(z—3p—

1)3p+3p°+3p), (A—(z—-3p—1)(3p—1)+3p* ~3p+2,..., A=(2-3p—1)(3p—1)+3p*)) |

p+l<z<dp—1}

U{(CH«"); (A+(6p—1)p+p+1,...,4+(6p—1)p+dp—1), (B+(6p—1)—2p+
, B+ (6p—1) +p)) | z = 4p}

U{((C+m) (A+(6p—12p—(z—4p—1)3p—3p+1,..., A+ (6p—1)2p — (z —

4p—1)3p), (B+(6p—1)(p+1) + ($—4p—1)(3p~1)+1,~-»,B+(6p—1)(p+1)+

(e~ 4p—~1)(8p 1) +3p— 1)) [ 4p + 1 < 2 < 6p 2}

U{((C +x); (A4+2p+1,...,A+4p—1, A+ (6p—1)p+4p,...,A+ (6p— L)p +

5p), (B+(6p—1)2p—p+2,...,B+(6p—1)2p+2p)) |z = 6p — 1},

where (A + u),(B + u),(C + u) mean (4 + u),(B + u),(C + u)", respectively, and

A=(i—-1)6p—1),B=(j—-1)(6p—1), C = (147 —2)(6p— 1), and the additions

are taken modulo N with residues 1,2,...  N.

Next, construct F,(JZ), F,(]s), Fz(f), FZ(J"S, Fz(f) by applying all possible permutations of

A, B,Cin Fi&X)A

Then we claim that they comprise an S'k - factorization of K,’(,’NVN.

We can see that each of them is an Sy - factor, because it spans all vertices of Ky nne

We show that they are arc-disjoint.

Suppose that they are not arc-disjoint. Let (X, Y”) be a common arc joining from V;

to V; and let z be the residue of X modulo 6p — 1. Then the arc (X,Y”) can appear

only in the z-th components of Fi(l) F® F® W Fo o F,»(f). But in the same

L R EE Y IR B R Y ]
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way as the proof of Theorem 3, there is no common arc in those components. Thus,
there is no common arc joining from V; to V5.
Similarly, there is no common arc joining from V; to V3, from V; to Vi, from V; to

V3, from V3 to Vi, or from V3 to V,. Therefore, those 24p® S, - factors F,(Jl), Ft(f),
183), F,(f), Fz(;): F,( ) are arc-disjoint.

The total number of arcs in the factors is equal to the total number of arcs in K3 y n-

So the factors do indeed constitute a decomposition of K3 y » and comprise an Sy -

factorization of K3 y n. Applying Theorem 2, K ., has an Sy - factorization.
We give the following example of Theorem 4.

Example. An Sg - factorization of K7 10,100 We have 24 Se - factors as follows:

FO = {(1;9,10,6",7",8")(2; 7', 8/, 17, 9", 10")(3/; 2", 3", 4,5,6) (43 7,8, 4, 5/, 6/) (53 3,9, 10, 1", 2')}
2’— {(1;97,107,6,7,8)(257",8", 1,9, 10)(3"; 2, 3, 4, 5", 6') (4; 7', 8/, 4", 5, 6") (5; 3, 9/, 10/, 1", 2"")}
F(3) ={(1";9,10,6',7',8)(2; 7,8, 1,9, 10')(3; 2/, 3/, 4", 5", 6") (4'; 7", 8", 4,5, 6) (53", 9", 10", 1,2)}
1“1(;*) = {(1;9”,10",6', 7, 8")(2; 7", 8", 1,9/, 10')(3"; 2/, 3/, 4,5, 6) (4, 7,8, 4", 5, 6")(5'; 3, 9,10, 1", 2"} }
]?: (19,10, 6", 77, 8")(2'37, 8, 17, 9", 10")(3; 2", 3", &', 5/, 6') (4”5 7', &', 4, 5, 6)(5"; 3/, 9/, 10/, 1, 2)}
", ol 7 1. 7l 7 1. "ot " 1 17 ! 7 I Y 1 i 1 s

O = (119, 101,6,7,8)(2"5 7', 8',1,9,10) (32, 3,4", 5", 6")(4; 7", 8", 4/, 57, 6') (5; 3", 9", 10", 1", 2')}
Fl(;): (147,57, 17,27, 3")(2; 2/, 3', 47, 5", 6")(8'; 7, 8", 4,5,6)(9"5 7,8, 1,9, 10) (10”3 3,9, 10,6/, 7')}
F& = {(17;47,5",1,2,3)(2,2",3", 4,5,6) (8, 7,8,4, 5, 6')(9; 7/, 8,17, 9, 10")(10; 3", 9, 10/, 6", 7"")}
F = {(17;4,5,1,2,3)(2";2,3, 4, 5/, 6/)(8; ', 8/, 4", 5", 6") (9'; 7", 8", 1,9, 10) (10'; 3", 9", 10", 6, 7)}
F® = {13 4" 5717, 3')(2; 27, 3", 4', 5, 6')(8"; 7', 8', 4,5, 6) (95 7,8,1”,9”, 10”) (10'; 3,9, 10,6, 7")}
1(2): {( 1" 2// 3//)(2! 2 3 4]! 5” 6/!)(8 7// 8[/ 4/ 5/ )(9/1 7‘/ 8/ 1 9 10)(10// 3/ 9/ 10/ 6 7)}
FO = {q”; 4’ 5,1,2,3)(25 2,3, 4,5,6)(8;7,8,4", 57, 6”)(9; 77,8, 1,9, 10")(10; 3", 9", 10", 6/, 7')}

FED = ((8;9, 107, 17,27, 3")(7; 7', 87, 4", 5", 67)(3'; 77, 8", 1,9, 10)(9"; 2, 3, 4, 5/, 6/)(10"; 4,5, 8,1/, 2')}
F(”)— {(6/39",10",1,2,3)(7'; 77, 8", 4,5,6)(3"; 7,8, 1,9/, 10)(9; 2/, 3, 4, 5, 6") (10; 4/, 5, 8, 1", 2")}
F(3) {(67;9,10, 17,2/, 3")(7"; 7,8, 4", 5, 6')(3; 7', 8/, 1", 9", 10”)(9/; 2"/, 3", 4, 5, 6) (10 4”, 5", 8", 1,2)}
2(?):{( S0 107, 1,2/, 3)(7; 7", 8", 4/, 5/,6')(3"; 7, 8/, 1,9, 10)(9%2, 3,4, 5", 6")(10';4,5,8, 1", 2")}

P = {(67;9,10,17,2",3")(7';7,8,4", 5", 6")(3; 7, 8", 1,9/, 10') (9"; 2/, 3", 4, 5, 6) (10", 4',5', 8', 1, 2)}
F§§"’> {(6“ o', 107,1,2,3) (7" 7', 8/, 4,5, 6)(3; 7,8, 17,9, 10")(9; 2", 3", 4/, 5, 6/)(10; 4", 5", 8", 1/, 2)}

F{P = {(6;4, 5,6, 7",8")(7; 2,3, 1, 9", 10")(8';2”, 3", 1,9, 10)(4"; 2,3, 1", 9, 10')(5"; 4,5, 8, 6/, T') }
FE2 = {(6;4",5",6,7,8) (72, 3",1,9,10)(8";2,3,1, 9/, 10') (4; 2", 3', 1", 9", 10") (5; 4', 5/, 8', 6", 7")}
Fi) = {(6";4,5,6,7,8)(77;2,3, 1,9, 10')(8; 2/, 3/, 1,9", 10")(4; 2", 3", 1,9, 10) (5'; 4", 5", 8", 6, 7)}
F2‘§3: {(6;47, 5", 6/, 7', 8')(7; 2", 3", ', 9/, 10')(8; 2, 3/, 1,9, 10) (4; 2, 3,1", 9", 10") (5; 4, 5,8,6", 7")}
P = {(6'34,5,67,77,8")(7';2,3,17,9",10")(8; 2", 3", 1/, 9', 10') (4”5 2/, 3/, 1,9, 10) (5"; 4, 5/, 8,6, 7)}
F{ = (654, 5,6,7,8) (7" 2,3, 1,9,10)(852,3,1”,9”,10")(4;2,3", 1/, 9/, 10) (5; 4", 5", 8", 6/, )}

We have the following main theorem.

Main Theorem. K; ,, .. has an Sy - factorization if and only if (i) k is even, k > 4

and (ii) ny = ny = ng =0 (mod k(k—1)/3) for k=0 (mod 6) and ny =ny =nz3 =0
(mod k(k — 1)) for k = 2,4 (mod 6).
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