Balanced sampling plans with block size four excluding contiguous units

Charles J. Colbourn

Department of Computer Science
University of Vermont
Burlington, VT 05405 , U.S.A.

Alan C.H. Ling
Department of Computer Science
University of Toronto
Toronto, Ontario, CANADA M5S 1A4

Abstract

Constructions of balanced sampling plans excluding contiguous units, a class of designs introduced by Hedayat, Rao and Stufken, are given which provide a complete solution to this problem when $k=4$.

1 Introduction

Consider a finite ordered population of v identifiable units, labeled as $0,1, \ldots, v-1$. Let Λ_{i} denote a quantitative characteristic Λ for unit i. While the Λ_{i} 's are unknown, they can be observed for any unit. Observation of the Λ_{i} 's for a sample of k units at a time, for $k<v$, is performed to estimate the population total $T=\sum_{i=0}^{t-1} \Lambda_{i}$. In some applications, Λ_{i} 's for contiguous units are expected to be similar. In these settings, it is natural to sample k units so that contiguous or neighboring units of the v units are less likely to appear together than units that are further apart. Hedayat, Rao and Stufken [8,9] and Stufken [12] justify this idea in terms of the variance of the Horvitz-Thompson [10] estimator. This is the motivation for considering a special class of sampling plans [8, 9], and extensions [12]. A balanced sampling plan excluding contiguous units for a population of size v, with block size k, denoted $\operatorname{BSEC}(v, k, \lambda)$, is a block design with the properties that
(i) each block is a set of k different units,
(ii) each unit appears in the same number of blocks, say r,
(iii) any two contiguous units do not appear simultaneously in any of the blocks,
(iv) any two noncontiguous units appear simultaneously in the same number λ of blocks.

Throughout this paper, we assume that the units labeled as 0 and $v-1$ are also contiguous units. This assumption may not always be justified. However, when it fails to hold, balanced sampling plans excluding contiguous units can nonetheless give a considerable reduction in the variance of the Horvitz-Thompson estimator of T [11]. Hedayat, Rao and Stufken $[8,9]$ established the following:

Lemma 1.1 (1) For $k \geq 3$, if a $B S E C(v, k, \lambda)$ exists, then $v \geq 3 k$.
(2) For $k=3,4$ a $B S E C(v, k, \lambda)$ exists for some λ if $v \geq 3 k$.

They also construct designs for $k=5$ and $v=23+3 w$, for any nonnegative integer w, and some λ. An iterative method plays an important role, constructing a $\operatorname{BSEC}\left(t+3, k, \lambda_{2}\right)$ from a $\operatorname{BSEC}\left(v, k, \lambda_{1}\right)$, where $\lambda_{2}=\lambda_{1}(t-1)$. Colbourn and Ling [4] settle existence of $\operatorname{BSEC}(v, 3, \lambda) \mathrm{s}$ with smallest index λ.

Similarly defined designs appear in the combinatorial literature, such as cycloids [6]. In fact, a $\operatorname{BSEC}(v, 4, \lambda)$ is equivalent to a partial block design with block size four whose leave contains the pairs of a v-cycle each λ times; to recover the BSEC, relabel the elements of the partial design using $0, \ldots, v-1$ so that the leave contains pairs $\{\{i, i+1\}: 0 \leq i<v\}$ and $\{0, v-1\}$. These designs have also arisen in the study of regular packings with block size four [2], and the existence of $\operatorname{BSEC}(v, 4,1) \mathrm{s}$ has been asked in that context.

The solutions in Lemma 1.1 give values of λ that are very large, while one typically prefers designs with few blocks and hence smaller values of λ. When $k=4$, every element x lies in $v-3$ distinct pairs of the form $\{x, y\}$ in which x and y are not contiguous. It follows that at least one of v or λ is a multiple of 3 . Considering the collection of blocks in a $\operatorname{BSEC}(v, 4, \lambda)$, we find $\lambda \frac{v(v-3)}{2}$ pairs in total, six per block, so that $\lambda v(v-3) \equiv 0 \quad(\bmod 12)$. It follows that either λ is even or $v \equiv 0,3(\bmod 4)$. We conclude that:

Lemma 1.2 If a $B S E C(v, 4, \lambda)$ exists, then $v \geq 12$ and

$$
\begin{array}{rlll}
v \equiv 0,3 & (\bmod 12) & \text { and } & \lambda \equiv 1,5 \quad(\bmod 6) \\
v \equiv 0 & (\bmod 3) & \text { and } \lambda \equiv 2,4 \quad(\bmod 6) \\
v \equiv 0,3 & (\bmod 4) & \text { and } \lambda \equiv 3 \quad(\bmod 6), \text { or } \\
v \text { arbitrary } & \text { and } \lambda \equiv 0 & (\bmod 6)
\end{array}
$$

Since the union of a $\operatorname{BSEC}\left(v, 4, \lambda_{1}\right)$ and a $\operatorname{BSEC}\left(v, 4, \lambda_{2}\right)$ is a $\operatorname{BSEC}\left(v, 4, \lambda_{1}+\lambda_{2}\right)$, it suffices to establish the existence of BSECs for the minimum value of λ, namely for

$$
\begin{aligned}
& v \equiv 0,3 \quad(\bmod 12) \quad \text { and } \lambda=1, \\
& v \equiv 6,9 \quad(\bmod 12) \quad \text { and } \lambda=2 \text {, } \\
& v \equiv 4,7,8,11 \quad(\bmod 12) \quad \text { and } \lambda=3 \text {, and } \\
& v \equiv 1,2,5,10 \quad(\bmod 12) \text { and } \lambda=6 .
\end{aligned}
$$

We give a uniform construction for $\lambda \in\{1,2,3,6\}$.

2 Small Orders

Our basic strategy to produce BSECs is to establish the existence of a number of designs of small order, and then to employ a recursive method to complete the proof of existence.

In order to avoid the presentation of many large designs, whenever possible we present a collection of base blocks for a cyclic $\operatorname{BSEC}(v, 4, \lambda)$. For each $\{a, b, c\}$ shown, the base block is $\{0, a, b, c\}$. The design itself is obtained by including, for each $\{a, b, c\}$, the v blocks $\{\{i, a+i, b+i, c+i\}: 0 \leq i<v\}$ in which elements are reduced modulo v into the range $0, \ldots, v-1$. Tables 1,2 , and 3 give base blocks for cyclic $\operatorname{BSEC}(v, 4, \lambda)$ s. When ' h ' is indicated with the index λ, one is to add the half orbit whose base block is $\left\{0,2, \frac{v}{2}, \frac{v}{2}+2\right\}$. When ' q ' is indicated with the index λ, one is to add the quarter orbit whose base block is $\left\{0, \frac{v}{4}, \frac{2 v}{4}, \frac{3 v}{4}\right\}$.

Table 1: Small Cyclic BSECs: $\lambda \in\{1,2\}$
When $v=12$ and $\lambda=1$, the number of blocks in total is only nine, and hence this BSEC cannot exist by the Fisher-type inequality in [8]. We therefore provide solu-

v	λ	Base Blocks
12	3 q	\{2,4,7\} \{2,6,9\}
16	3 q	\{2,4,6\} $\{3,6,12\}\{3,7,11\}$
19	3	$\{2,4,9\}\{2,5,13\}\{3,7,13\}\{3,8,12\}$
20	3 q	$\{2,4,6\}\{3,6,11\}\{3,8,15\}\{4,9,14\}$
23	3	$\{2,4,7\}\{2,8,14\}\{3,10,14\}\{3,11,16\}\{4,9,17\}$
28	3 q	$\{2,4,6\}\{3,6,10\}\{3,10,19\}\{5,10,21\}\{5,12,19\}\{6,13,21\}$
31	3	$\{2,4,6\}\{3,6,15\}\{3,11,20\}\{4,14,19\}\{5,12,21\}\{5,13,23\}\{6,13,20\}$
32	3 q	$\{2,4,6\}\{3,6,9\}\{4,11,21\}\{5,12,24\}\{5,13,24\}\{5,14,22\}\{7,15,23\}$
35	3	$\begin{aligned} & \{2,4,6\}\{3,6,13\}\{3,12,21\} \quad\{4,14,25\} \quad\{5,16,24\} \quad\{5,17,22\} \quad\{6,15,22\} \\ & \{7,15,27\} \end{aligned}$
40	3 q	$\begin{aligned} & \{2,4,6\} \quad\{3,6,9\} \quad\{4,9,14\} \quad\{5,12,28\} \quad\{7,17,30\} \\ & \{8,19,30\}\{9,19,30\} \end{aligned}$
43	3	$\begin{aligned} & \{2,4,6\}\{3,6,9\} \quad\{4,11,27\} \quad\{5,17,27\} \quad\{5,18,29\} \\ & \{7,21,30\}\{8,17,32\}\{8,18,33\} \end{aligned}$
44	3 q	$\begin{aligned} & \{2,4,6\} \quad\{3,6,9\} \quad\{4,9,14\} \\ & \{8,20,31\}\{9,20,33\} \quad\{10,21,33\} \end{aligned}$
47	3	$\begin{aligned} & \{2,4,7\}\{3,7,15\} \\ & \{2,5,15\}\{4,21,28\}\{5,15,33\} \end{aligned} \begin{aligned} & \{6,22,35\} \\ & \{6,20,31\} \end{aligned}\{8,20,29\}$
52	3 q	$\begin{aligned} & \{2,6,35\}\{3,31,39\}\{5,15,45\}\{9,27,41\}\{2,6,35\}\{3,31,39\} \quad\{5,15,45\} \\ & \{9,27,41\}\{2,7,31\}\{3,35,46\}\{4,26,40\}\{8,27,42\} \end{aligned}$
55	3	$\left.\left.\begin{array}{l} \{2,5,13\}\{4,20,35\} \\ \{6,24,35\}\{6,21,38\}\{7,25,34\}\{10,22,36\}\{2,5,12\} \\ \{8,25,41\} \\ \{2,5,12\} \end{array}\right\} 4,13,31\right\}\{6,25,39\}\{8,23,34\}$
56	3 q	$\begin{aligned} & \{2,5,13\}\{4,19,25\}\{7,29,47\}\{10,30,42\}\{2,5,13\}\{4,19,29\}\{6,18,42\} \\ & \{7,30,47\}\{2,5,18\}\{4,19,36\}\{6,27,34\}\{8,25,34\}\{10,21,33\} \end{aligned}$
59	3	$\begin{aligned} & \{2,5,9\}\{6,17,37\} \quad\{8,32,46\} \\ & \{9,23,44\}\{10,28,40\}\{2,5,9\}\{6,19,41\}\}\{8,27,39\}\{10,21,44\}\}(12,26,42\} \end{aligned}$
67	3	$\begin{aligned} & \{2,5,11\}\{4,23,43\}\{7,28,41\}\{8,29,44\} \quad\{10,27,45\} \quad\{12,26,42\} \quad\{2,5,9\} \\ & \{6,16,33\}\{8,21,45\}\{11,36,55\}\{14,29,49\}\{2,5,9\}\{6,16,33\}\{8,26,45\} \\ & \{11,35,47\}\{13,38,52\} \end{aligned}$
68	3 q	$\begin{aligned} & \{2,5,11\}\{4,26,40\}\{7,31,50\}\{8,31,47\}\{10,35,48\}\{12,34,53\}\{2,5,9\} \\ & \{6,16,48\}\{8,29,54\}\{11,28,55\}\{12,35,50\}\{2,5,9\}\{6,16,48\}\{8,29,57\} \\ & \{12,30,45\}\{13,37,54\} \end{aligned}$
71	3	$\begin{aligned} & \{2,5,9\}\{6,14,27\}\{10,32,48\}\{11,31,56\}\{12,30,47\}\{2,5,9\}\{6,20,43\} \\ & \{8,30,45\}\{10,29,46\}\{11,32,44\}\{13,29,53\}\{2,5,9\}\{6,16,41\}\{8,27,51\} \\ & \{11,26,49\}\{12,29,43\}\{13,32,50\} \end{aligned}$

Table 2: Small Cyclic BSECs: $\lambda=3$

v	λ	Base Blocks
13	6	$\{2,4,8\}\{2,5,10\}\{2,6,10\}\{2,7,9\}\{3,6,9\}$
14	6 h	$\{2,4,7\}\{2,5,10\}\{2,6,10\}\{2,7,10\}\{3,6,9\}$
17	6	\{2,4,6\} $\{2,5,10\}\{2,7,12\}\{2,8,11\}\{3,7,13\}\{3,8,11\}\{3,9,13\}$
22	6 h	$\begin{aligned} & \{2,4,6\}\{2,5,8\}\{2,7,14\}\{3,9,16\}\{3,10,15\}\{3,11,14\}\{4,9,17\}\{4,10,17\} \\ & \{4,12,16\} \end{aligned}$
25	6	$\{2,4,6\} \quad\{3,6,13\} \quad\{3,10,19\} \quad\{4,9,17\} \quad\{5,10,17\} \quad\{2,8,15\} \quad\{3,11,17\}$
		$\{3,12,15\}\{4,11,15\}\{5,11,16\}$
26	6 h	\{2,5,11\} $\{3,12,19\}\{4,8,18\}\{2,4,9\}\{3,8,16\}\{3,9,15\}\{4,11,16\}\{2,4,8\}$
		$\{3,10,17\}\{3,11,16\}\{5,11,17\}$
29	6	$\{2,4,6\}\{3,6,12\}\{3,10,19\}\{4,11,19\}\{5,12,20\}\{5,16,21\}\{2,4,7\}\{2,9,19\}$
		$\{3,12,18\}\{3,14,18\}\{4,12,20\}\{5,12,18\}\{5,13,19\}$
34	6 h	$\{2,4,7\} \quad\{3,13,19\} \quad\{4,16,23\} \quad\{5,14,26\} \quad\{6,17,26\} \quad\{2,4,7\} \quad\{3,13,19\}$
		$\{4,16,24\}\{5,12,25\}\{6,15,23\}\{2,5,8\}\{4,10,22\}\{4,13,24\}\{5,13,24\}$
		$\{7,14,23\}$
37	6	$\{2,4,7\} \quad\{3,9,22\} \quad\{4,14,24\} \quad\{5,14,26\} \quad\{6,17,25\} \quad\{7,15,28\} \quad\{2,4,7\}$
		$\{3,15,23\}\{4,15,23\} \quad\{5,18,24\} \quad\{6,16,26\} \quad\{7,16,28\} \quad\{2,4,7\}\{3,7,18\}$
		$\{5,17,29\}\{6,14,28\}\{6,17,27\}$
38	6 h	$\{2,5,8\}\{4,8,18\}\{5,12,26\}\{6,15,28\}\{7,16,27\}\{2,4,7\}\{3,9,23\}\{4,14,25\}$
		$\{5,15,27\}\{6,18,25\}\{8,16,25\}\{2,4,7\}\{3,10,23\}\{4,16,24\}\{5,16,26\}$
		$\{6,15,29\}\{6,17,25\}$
41	6	$\{2,4,7\}\{3,7,16\}\{5,20,31\}\{6,17,29\}\{6,20,28\}\{8,17,31\}\{2,4,7\}\{3,7,16\}$
		$\{5,20,31\}\{6,18,27\}\{6,19,29\}\{8,16,27\}\{2,4,8\} \quad\{3,14,26\}\{3,19,25\}$
		$\{5,17,26\}\{5,18,25\}\{7,17,31\}\{8,17,30\}$
46	6 h	$\{2,4,7\} \quad\{3,7,16\} \quad\{5,17,32\} \quad\{6,24,30\} \quad\{8,21,36\} \quad\{8,25,35\} \quad\{9,20,32\}$
		$\{2,4,7\}\{3,7,16\}\{5,17,33\}\{6,20,31\}\{6,21,29\}\{8,19,28\}\{10,22,32\}$
		$\{2,5,8\}\{4,8,21\}\{5,17,31\}\{6,20,30\}\{7,18,34\}\{7,20,31\}\{9,19,28\}$
49	6	$\{2,4,7\} \quad\{3,7,19\} \quad\{5,18,31\} \quad\{6,20,34\}\{6,22,31\} \quad\{8,20,30\}\{8,23,32\}$
		$\{10,21,38\}\{2,4,7\}\{3,7,19\}\{5,20,30\}\{6,20,31\}\{6,22,32\}\{8,21,36\}$
		$\{8,22,31\}\{9,21,32\}\{2,4,7\}\{3,7,12\} \quad\{6,14,31\} \quad\{6,19,35\}\{8,23,38\}$
		$\{9,22,33\}\{10,20,37\}$
50	6 h	$\{2,5,8\}\{4,8,13\} \quad\{6,18,33\} \quad\{7,20,36\}\{7,22,38\}\{9,26,40\}\{10,21,32\}$
		$\{2,4,7\} \quad\{3,7,17\} \quad\{5,20,31\} \quad\{6,21,34\} \quad\{6,23,31\} \quad\{8,20,34\} \quad\{9,20,38\}$
		$\{9,22,32\}\{2,4,7\} \quad\{3,7,17\} \quad\{5,20,31\} \quad\{6,20,31\} \quad\{6,21,33\} \quad\{8,24,32\}$
		$\{9,21,37\}\{9,22,32\}$
53	6	$\{2,5,9\}\{6,16,33\} \quad\{8,18,41\} \quad\{9,21,40\}\{11,24,39\} \quad\{2,5,39\}\{4,11,28\}$
		$\{6,18,33\}$ \{8,30,40\} $\{2,5,39\}$ \{4,11,28\} $\{6,18,33\}$ \{8,31,40\} \{2,5,39\}
		$\{4,11,28\}\{6,18,44\}\{8,21,31\}\{2,5,39\}\{4,11,28\}\{6,26,44\}\{8,21,31\}$
		$\{2,5,39\}\{4,11,29\}\{6,15,32\}\{8,31,41\}$
58	6 h	$\{2,5,9\}\{6,27,41\}\{8,36,48\}\{11,24,43\}\{2,5,11\}\{4,20,37\}\{7,23,36\}$
		$\{8,26,38\}\{10,24,43\}\{2,5,9\}\{6,27,45\}\{8,20,44\}\{10,26,43\}\{2,5,11\}$
		$\{4,18,35\}\{7,26,37\}\{8,24,36\}\{10,23,43\}\{2,5,9\}\{6,27,45\}\{8,23,34\}$
		$\{10,30,46\}\{3,7,15\}\{5,23,37\}\{6,25,36\}\{9,25,38\}\{10,24,41\}$

Table 3: Small Cyclic BSECs: $\lambda=6$
tions for $v=12$ and $\lambda \in\{2,3\}$. Moreover, when $v=12 t$ and $\lambda=1$, a putative cyclic solution would require both a half orbit and a quarter orbit. Since both employ the difference $6 t$, no such solution can exist. In this case we resort to non-cyclic solutions. The designs in Table 4 are on $\mathbb{Z}_{v / 2} \times\{0,1\}$, and are called bicyclic. The element (x, i) is written as x_{i}. When $v \equiv 0(\bmod 4)$, the base block $\left\{0_{0},(v / 4)_{0}, 0_{1},(v / 4)_{1}\right\}$ generates $v / 4$ blocks, while others all generate $v / 2$ blocks.

	λ	Base Blocks
36	1	$\left\{0_{0}, 9_{0}, 0_{1}, 9_{1}\right\}$ $\left\{0_{0}, 1_{0}, 3_{0}, 8_{0}\right\}$ $\left\{0_{0}, 4_{0}, 1_{1}, 3_{1}\right\}$ $\left\{0_{0}, 6_{0}, 10_{1}, 14_{1}\right\}$ $\left\{0_{0}, 2_{1}, 5_{1}, 13_{1}\right\}$ $\left\{0_{0}, 6_{1}, 7_{1}, 12_{1}\right\}$
48	1	$\left.\begin{array}{l} \left\{0_{0}, 12_{0}, 0_{1}, 12_{1}\right\} \\ \left\{0_{0}, 4_{0}, 15_{0}, 21_{0}\right\} \end{array} \quad\left\{0_{0}, 41_{0}, 11_{0}, 2_{1}, 8_{1}\right\} \quad\left\{1_{1}\right\}\left\{0_{0}, 2_{0}, 10_{0}, 11_{0}, 11_{1}\right\}, 15_{1}\right\}\left\{0_{0}, 5_{1}, 18_{1}, 21_{1}\right\} .\left\{0_{0}, 3_{1}, 20_{1}, 22_{1}\right\}$
72	1	$\left\{0_{0}, 1_{1}, 21_{0}, 32_{1}\right\}$ $\left\{0_{0}, 2_{1}, 12_{0}, 21_{1}\right\}$ $\left\{0_{0}, 4_{1}, 12_{1}, 17_{0}\right\}$ $\left\{0_{0}, 6_{1}, 19_{1}, 28_{1}\right\}$ $\left\{0_{0}, 8_{1}, 20_{1}, 22_{0}\right\}$ $\left\{0_{0}, 5_{1}, 25_{1}, 28_{0}\right\}$ $\left\{0_{0}, 13_{0}, 16_{0}, 7_{1}\right\}$ $\left.\left\{0_{0}, 3_{1}, 14_{1}, 29_{1}\right\}, 11_{0}\right\}$ $\left\{0_{1}, 1_{1}, 3_{1}, 7_{1}\right\}$ $\left\{0_{0}, 18_{0}, 0_{0}, 0_{0}, 18_{1}\right\}$,
84	1	$\left\{0_{0}, 1_{1}, 24_{1}, 30_{0}\right\}$ $\left\{0_{0}, 3_{1}, 14_{1}, 27_{0}\right\}$ $\left\{0_{0}, 4_{1}, 28_{1}, 31_{0}\right\}$ $\left\{0_{0}, 6_{1}, 16_{0}, 33_{1}\right\}$ $\left\{0_{0}, 7_{1}, 18_{0}, 37_{1}\right\}$ $\left\{0_{0}, 8_{1}, 23_{0}, 34_{1}\right\}$ $\left\{0_{0}, 9_{1}, 28_{0}, 38_{1}\right\}$ $\left\{0_{0}, 10_{0}, 30_{1}, 35_{1}\right\}$ $\left\{0_{0}, 1_{0}, 3_{0}, 7_{0}\right\}\left\{0_{0}, 5_{0}, 13_{0}, 22_{0}\right\}\left\{0_{0}, 2_{1}, 5_{1}, 22_{1}\right\}\left\{0_{0}, 12_{1}, 16_{1}, 26_{1}\right\}\left\{0_{1}, 1_{1}, 7_{1}, 9_{1}\right\}$
18	2	$\left\{0_{0}, 0_{1}, 1_{1}, 3_{1}\right\}\left\{0_{0}, 0_{1}, 2_{1}, 5_{1}\right\}\left\{0_{0}, 1_{0}, 3_{0}, 7_{0}\right\}\left\{0_{0}, 1_{0}, 4_{1}, 5_{1}\right\}\left\{0_{0}, 1_{1}, 4_{0}, 6_{1}\right\}$

Table 4: Small Bicyclic BSECs

We close with a solution for $\operatorname{BSEC}(24,4,1)$. We were unable to find a bicyclic solution, but found a solution with an automorphism of order three on $\{0,1,2,3,4,5,6,7\}$ $\times \mathbb{Z}_{3}$. Its starter blocks are $\left\{0_{0}, 0_{1}, 1_{0}, 2_{0}\right\},\left\{0_{0}, 2_{1}, 3_{0}, 4_{0}\right\},\left\{0_{0}, 3_{1}, 5_{0}, 5_{1}\right\},\left\{0_{0}, 3_{2}, 6_{0}\right.$, $\left.7_{0}\right\},\left\{0_{0}, 4_{1}, 5_{2}, 6_{2}\right\},\left\{0_{0}, 4_{2}, 6_{1}, 7_{2}\right\},\left\{1_{0}, 1_{1}, 4_{0}, 6_{0}\right\},\left\{1_{0}, 2_{2}, 5_{2}, 6_{1}\right\},\left\{1_{0}, 3_{2}, 4_{1}, 5_{0}\right\},\left\{1_{0}\right.$, $\left.3_{0}, 3_{1}, 7_{0}\right\},\left\{1_{0}, 5_{1}, 7_{1}, 7_{2}\right\},\left\{2_{0}, 2_{1}, 5_{2}, 7_{1}\right\},\left\{2_{0}, 3_{1}, 6_{0}, 6_{1}\right\},\left\{2_{0}, 4_{0}, 4_{1}, 7_{2}\right\}$, and the remaining 28 blocks are obtained by adding 1 and 2 modulo 3 to the subscripts.

3 Indices One and Two

We employ some recursive constructions. We require a definition. An incomplete transversal design of order n and block size k with holes of sizes $h_{1}, h_{2}, \ldots, h_{l}$, or $T D(k, n)-\sum_{i=1}^{l} T D\left(k, h_{i}\right)$, is a quadruple $(X, \mathcal{H}, \mathcal{G}, \mathcal{B})$ with the following properties. X is a set of $k n$ elements. $\mathcal{G}=\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$ is a partition of X into k sets each of size n; each element of the partition is a group. $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{l}\right\}$ is a set of pairwise disjoint subsets of X, with the property that $\left|H_{j} \cap G_{i}\right|=h_{j}$ for $1 \leq j \leq l$ and $1 \leq i \leq k$; each H_{j} is a hole. \mathcal{B} is a set of k-subsets of X, with the property that each $B \in \mathcal{B}$ satisfies $\left|B \cap G_{i}\right|=1$ for each $1 \leq i \leq k$; sets in \mathcal{B} are blocks. Finally, each unordered pair of elements from X is either in a hole or group together, or in exactly one block of \mathcal{B}.

Lemma 3.1 If a $\operatorname{BSEC}(m, 4, \lambda)$ exists, then a $\operatorname{BSEC}(4 m, 4, \lambda)$ exists.

Proof: There exists a TD $(4, m)-\mathrm{TD}(4,4)$ (see [1], for example). Replicate every block λ times. Let $\left\{x_{i j}: 1 \leq i, j \leq 4\right\}$ be the points in the hole, with $\left\{x_{i j}: 1 \leq j \leq 4\right\}$ in the i th group. For $1 \leq i \leq 4$, place a $\operatorname{BSEC}(m, 4, \lambda)$ on the points of the i th group so that the pairs $\left\{x_{i 1}, x_{i 3}\right\},\left\{x_{i 2}, x_{i 3}\right\}$, and $\left\{x_{i 2}, x_{i 4}\right\}$ appear in the leave. To fill the hole, form sixteen blocks of the form $\{\{i, i+2, i+6, i+13\}: 0 \leq i \leq 16\}$ with arithmetic modulo 16. Relabel the points of these 16 blocks using the mapping:

$$
\begin{array}{cccccccccccccccc}
0 & 8 & 9 & 1 & 3 & 11 & 10 & 2 & 4 & 12 & 13 & 5 & 7 & 15 & 14 & 6 \\
x_{11} & x_{12} & x_{13} & x_{14} & x_{21} & x_{22} & x_{23} & x_{24} & x_{31} & x_{32} & x_{33} & x_{34} & x_{41} & x_{42} & x_{43} & x_{44}
\end{array}
$$

and place the sixteen blocks obtained, λ times each, on the sixteen points of the hole. The resulting design is the required BSEC.

Lemma 3.2 Let $\lambda \in\{1,2\}$. Let $m \geq 4$, and $m \equiv 0,1(\bmod 4)$ when $\lambda=1$. Let $x=1$ or $4 \leq x \leq m$, and $x \equiv 0,1(\bmod 4)$ when $\lambda=1$. Then if a $\operatorname{BSEC}(3 m, 4, \lambda)$ exists and a $\operatorname{BSEC}(3 x, 4, \lambda)$ exists, so does a $\operatorname{BSEC}(12 m+3 x, \lambda)$.

Proof: Let $(X, \mathcal{G}, H, \mathcal{B})$ be $\operatorname{TD}(5, m)-\mathrm{TD}(5,1)$. Delete $m-x$ points from G_{5}, but do not delete the point in $H \cap G_{5}$. Let $\mathcal{G}=\left\{G_{1}, G_{2}, G_{3}, G_{4}, G_{5}\right\}$ be the five groups of the resulting design.

The $\operatorname{BSEC}(12 m+3 x, 4, \lambda)$ to be constructed has elements $\left(G_{1} \cup G_{2} \cup G_{3} \cup G_{4} \cup\right.$ $\left.G_{5}\right) \times\{0,1,2\}$. For each block $B \in \mathcal{B}$, place on $B \times\{0,1,2\}$ the blocks of a 4-GDD of type $3^{|B|}$ and index λ so that $\{(x, 0),(x, 1),(x, 2)\}$ is a group for each $x \in B$.

Next, for each group $G_{i}, i=1,2,3,4,5$, place the blocks of a $\operatorname{BSEC}\left(3\left|G_{i}\right|, 4, \lambda\right)$ on $G_{i} \times\{0,1,2\}$, so that for every $g \in G_{i}$, the pairs $\{(g, 0),(g, 1)\}$ and $\{(g, 0),(g, 2)\}$ appear in the leave of the BSEC. Finally, on $H \times\{0,1,2\}$, place the blocks of a $\operatorname{BSEC}(15,4, \lambda)$ so that $\{(g, 0),(g, 2)\}$ and $\{(g, 1),(g, 2)\}$ appear in the leave. It is routine to check that the result is the required BSEC.

Lemma 3.3 A $\operatorname{BSEC}(v, 4,1)$ exists whenever $v \geq 12$ and $v \equiv 0,3(\bmod 12)$ except when $v=12$.

Proof: Solutions are given in $\S 2$ when $v=15,24,27,36,39,48,51,72,84,87$, 99. Apply Lemma 3.2 to handle all remaining values with $v \equiv 3(\bmod 12)$. Now Lemma 3.1 handles all values of $v \equiv 0(\bmod 48)$ with $v \geq 96$, and all values of $v \equiv 12(\bmod 48)$ with $v \geq 60$. Lemma 3.2 with $x=8$ handles all values of $v \equiv 24,36 \quad(\bmod 48)$ with $v \geq 120$.

Lemma 3.4 $A \operatorname{BSEC}(v, 4,2)$ exists whenever $v \geq 12$ and $v \equiv 0(\bmod 3)$.
Proof: Lemma 3.3 handles all values with $v \equiv 0,3(\bmod 12)$ except for $v=12$. Solutions are given in $\S 2$ when $v=12,18,21,30,33,42,45,54,57,66,69,78,81$. For $v=93$, form a $\{4,5\}$-GDD of type $6^{5} 7^{1}$ containing a block of size 5 , by deleting four points of a block in a $\operatorname{TD}(5,7)$. Employ this design on 31 points, giving weight 3 as in Lemma 3.2, to produce a $\operatorname{BSEC}(93,4,2)$. For the remaining cases, apply Lemma 3.2 .

4 Indices Three and Six

Lemma 4.1 Let $\lambda \in\{3,6\}$. Let $m \geq 12$ and $x=0$, or $m \geq x \geq 12$, where $m, x \equiv 0,3 \quad(\bmod 4)$ when $\lambda=3$. If $a \operatorname{BSEC}(m, 4, \lambda)$ exists, and either $x=0$ or a $\operatorname{BSEC}(x, 4, \lambda)$ also exists, then a $\operatorname{BSEC}(4 m+x, 4, \lambda)$ exists.

Proof: Form a $\mathrm{TD}(5, m)-\mathrm{TD}(5,2)$, which exists by the main theorem in [1]. Select one group and delete $m-x$ elements of this group; when $x>0$, these do not include the two elements of the group in the hole. Now replace each block of size four by three copies of the block, and replace each block of size five by the blocks of a 4-GDD of type 1^{5} and index three (this is all possible 4 -sets on 5 elements). Now on each nonempty group, place a BSEC whose leave includes the pair of elements in the hole. It remains only to fill the hole. Let $\left\{x_{i}, y_{i}\right\}$ be the elements in the intersection of the hole and the i th group. When $x>0$, place the blocks of a 4-GDD of type 2^{5} and index 3 so that its groups align on $\left\{x_{1}, y_{2}\right\},\left\{x_{2}, y_{3}\right\},\left\{x_{3}, y_{4}\right\},\left\{x_{4}, y_{5}\right\},\left\{x_{5}, y_{1}\right\}$. When $x=0$, instead use type 2^{4} and index 3 placing the groups on $\left\{x_{1}, y_{2}\right\},\left\{x_{2}, y_{3}\right\}$, $\left\{x_{3}, y_{4}\right\},\left\{x_{4}, y_{1}\right\}$.

The leave is then a single cycle as required.
Lemma 4.2 Let $\lambda \in\{3,6\}$. Let $m \geq 6$ when $\lambda=6$; and $m \geq 8, m \neq 10$, and $m \equiv 0$ $(\bmod 2)$ when $\lambda=3$. Let $3 m-1 \geq x \geq 12$, and $x \equiv 0,3(\bmod 4)$ when $\lambda=3$. If a $B S E C(2 m, 4, \lambda)$ and a $B S E C(x, 4, \lambda)$ both exist, so does a $B S E C(8 m+x, 4, \lambda)$.

Proof: We employ 4-GDDs of type $2^{4} \sigma^{1}$ when $\sigma=0,1,2,3$, for index 3 . The GDDs with $\sigma=0,2$ are in [7]. When $\sigma=1$, develop starter blocks $\{0,1,2,3\}$ and $\{0,3,6, \infty\}$ modulo 8 to get the 4-GDD. When $\sigma=3$, instead use the starter blocks $\left\{0,1,3, \infty_{1}\right\}$, $\left\{0,1,3, \infty_{2}\right\},\left\{0,1,3, \infty_{3}\right\}$.

Form a $\operatorname{TD}(5, m)-\operatorname{TD}(5,1)$ of index $\frac{\lambda}{3}$. Give weight 2 to every point in the first four groups. Give weight 2 to the point of the hole in the fifth group. Give the remaining $m-1$ points weights w_{2}, \ldots, w_{m} so that $w_{i} \in\{0,1,2,3\}$ when $2 \leq i \leq m$ and $2+\sum_{i=2}^{m} w_{i}=x$. Now for each block B, employ a 4-GDD of type $2^{4} \sigma^{1}$ where σ is the weight of the point in the fifth group. The remainder of the proof parallels Lemma 4.1.

We use these two constructions to settle existence of $\operatorname{BSEC}(v, 4, \lambda) \mathrm{s}$ with $\lambda \equiv 0$ $(\bmod 3)$.

Lemma 4.3 $A \operatorname{BSEC}(v, 4,3)$ exists whenever $v \equiv 0,3(\bmod 4)$ and $v \geq 12$.
Proof: A $\operatorname{BSEC}(v, 4,1)$ is given for $v \equiv 0,3(\bmod 12)$ except when $v=12$. $\operatorname{BSEC}(v, 4,3)$ s are given in $\S 2$ for $v=12,16,19,20,23,28,31,32,35,40,43$, $44,47,52,55,56,59,67,68$, and 71 . Lemma 4.2 with $m=8$ and $x=19$ handles $v=83$. A variant of Lemma 4.2 with $m=10$, using a $\operatorname{TD}(5,10)-\operatorname{TD}(5,2)-\operatorname{TD}(5,1)$, with $x=23$ handles $v=103$. For the remaining values of v, write $v=4 m+x$ with $x=0$ or $12 \leq x \leq m$ and apply Lemma 4.1.

Lemma 4.4 $A \operatorname{BSEC}(v, 4,6)$ exists whenever $v \geq 12$.

Proof: $\operatorname{ABSEC}(v, 4,3)$ when $v \equiv 0,3(\bmod 4)$ exists by Lemma 4.3. A BSEC $(v, 4,2)$ when $v \equiv 0 \quad(\bmod 3)$ exists by Lemma 3.4. It remains to treat cases with $v \equiv$ $1,2,5,10(\bmod 12) . \operatorname{BSEC}(v, 4,6)$ s are given in $\S 2$ for $v=13,14,17,22,25,26$, $29,34,37,38,41,46,49,50,53,58$. Apply Lemma 4.2 with $m=6$ and $x \in\{13,14\}$ to handle $v \in\{61,62\}$. For the remaining values of v, write $v=4 m+x$ with $12 \leq x \leq m$ and apply Lemma 4.1.

Acknowledgments

Research of the authors is supported by the Army Research Office (U.S.A.) under grant number DAAG55-98-1-0272 (Colbourn).

References

[1] R.J.R. Abel, C.J. Colbourn, J.X. Yin and H. Zhang, Existence of incomplete transversal designs with block size five and any index λ, Designs, Codes Crypt. 10 (1997), 275-307.
[2] J-C. Bermond, J. Bond and D. Sotteau, On regular packings and coverings, Annals of Discrete Mathematics 34 (1987).
[3] T. Beth, D. Jungnickel and H. Lenz, Design Theory, Cambridge University Press, 1986.
[4] C.J. Colbourn and A.C.H. Ling, A class of partial triple systems with applications in survey sampling, Communications in Statistics: Theory and Methods 27 (1998), 1009-1018.
[5] C.J. Colbourn and A. Rosa, Quadratic leaves of maximal partial triple systems, Graphs Combin. 2 (1986), 317-337.
[6] M. Deza and T. Huang, ℓ_{1}-Embeddability of some block graphs and cycloids, Bull. Inst. Math. Academia Sinica 24 (1996), 87-102.
[7] H. Hanani, Balanced incomplete block designs and related designs, Discrete Math. 11 (1975), 255-369.
[8] A.S. Hedayat, C.R. Rao, and J. Stufken, Sampling plans excluding contiguous units, J. Stat. Plann. Infer. 19 (1988), 159-170.
[9] A.S. Hedayat, C.R. Rao, and J. Stufken, Designs in survey sampling avoiding contiguous units, In: Handbook of Statistics 6 (P.R. Krishnaiah and C.R. Rao, eds.) Elsevier Science Publishers, 1988, pp. 575-583.
[10] D.G. Horvitz and D.J. Thompson, A generalization of sampling without replacement from a finite universe, J. Amer. Statist. Assoc. 47 (1952), 663-685.
[11] K. See, S.Y. Song and J. Stufken, On a class of partially balanced incomplete block designs with applications in survey sampling, Commun. Statist. 26 (1997), 1-13.
[12] J. Stufken, Combinatorial and statistical aspects of sampling plans to avoid the selection of adjacent units, J. Combin. Info. Syst. Sci. 18 (1993), 81-92.

