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Abstract 

Constructions of balanced sampling plans excluding contiguous units, a 
class of designs introduced by Hedayat, Rao and Stufken, are given which 
provide a complete solution to this problem when k = 4. 

1 Introduction 

Consider a finite ordered population of v identifiable units, labeled as 0,1, ... ,v - l. 
Let Ai denote a quantitative characteristic A for unit i. vVhile the Ai's are unknown, 
they can be observed for any unit. Observation of the Ai's for a sample of k units at a 
time, for k < v, is performed to estimate the population total T = L~:~ Ai. In some 
applications, for contiguous units are expected to be similar. In these settings, 
it is natural to sample k units so that contiguous or neighboring units of the v units 
are less likely to appear together than units that are further apart. Hedayat, Rao 
and Stufken [8, 9] and Stufken [12] justify this idea in terms of the variance of the 
Horvitz-Thompson [10J estimator. This is the motivation for considering a special 
class of sampling plans [8, 9], and extensions [12]. A balanced sampling plan excluding 
contiguous units for a population of size v, with block size k, denoted BSEC( v, k, ).), 
is a block design with the properties that 

(i) each block is a set of k different units, 

(ii) each unit appears in the same number of blocks, say r, 

(iii) any two contiguous units do not appear simultaneously in any of the blocks, 

Australasian Journal of Combinatorics 20(1999), pp.37-46 



(iv) any two noncontiguous units appear simultaneously in the same number A of 
blocks. 

Throughout this paper, we assume that the units labeled as 0 and v-I are also 
contiguous units. This assumption may not always be justified. However, when it 
fails to hold, balanced sampling plans excluding contiguous units can nonetheless 
give a considerable reduction in the variance of the Horvitz-Thompson estimator of 
T [11]. Hedayat, Rao and Stufken [8, 9] established the following: 

Lemma 1.1 (1) For k 2:: 3) if a BSEC(v, k, A) exists) then v 2:: 3k. 

(2) For k = 3,4 a BSEC( v, k, A) exists for some A if v 2:: 3k. 

They also construct designs for k = 5 and v = 23 + 3w, for any nonnegative 
integer w, and some A. An iterative method plays an important role, constructing a 
BSEC(t + 3, k, A2) from a BSEC(v, k, AI)' where A2 = Al(t - 1). Colbourn and Ling 
[4] settle existence of BSEC( v, 3, A)S with smallest index A. 

Similarly defined designs appear in the combinatorial literature, such as cycloids 
[6]. In fact, a BSEC(v,4,A) is equivalent to a partial block design with block size 
four whose leave contains the pairs of a v-cycle each A times; to recover the BSEC, 
relabel the elements of the partial design using 0, ... , v -1 so that the leave contains 
pairs {{i,i + I} : 0 ::; i < v} and {O,v - I}. These designs have also arisen in the 
study of regular packings with block size four [2], and the existence of BSEC (v, 4, l)s 
has been asked in that context. 

The solutions in Lemma 1.1 give values of A that are very large, while one typically 
prefers designs with few blocks and hence smaller values of A. When k = 4, every 
element x lies in v - 3 distinct pairs of the form {x, y} in which x and yare not 
contiguous. It follows that at least one of v or A is a multiple of 3. Considering the 
collection of blocks in a BSEC( v, 4, A), we find A V(V;3) pairs in total, six per block, so 
that AV( v - 3) = 0 (mod 12). It follows that either A is even or v 0,3 (mod 4). 
We conclude that: 

Lemma 1.2 If a BSEC(v,4, A) exists) then v 2:: 12 and 

v 0,3 (mod 12) and A = 1,5 (mod 6), 
v 0 (mod 3) and A = 2,4 (mod 6), 

v 0,3 (mod 4) and A=3 (mod 6), or 
v arbitrary and A=O (mod 6). 

Since the union of a BSEC( v, 4, Ad and a BSEC( v, 4, A2) is a BSEC( v, 4, Al + A2), 
it suffices to establish the existence of BSECs for the minimum value of A, namely 
for 

v = 0,3 (mod 12) and A = 1, 
v = 6,9 (mod 12) and A = 2, 

v 4,7,8,11 (mod 12) and A = 3, and 
v 1,2,5,10 (mod 12) and A = 6. 

We give a uniform construction for A E {I, 2, 3, 6}. 
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2 Small Orders 

Our basic strategy to produce BSECs is to establish the existence of a number of 
designs of small order, and then to employ a recursive method to complete the proof 
of existence. 

In order to avoid the presentation of many large designs, whenever possible we 
present a collection of base blocks for a cyclic BSEC( v, 4, A). For each {a, b, e} shown, 
the base block is {a, a, b, e}. The design itself is obtained by including, for each 
{a, b, e}, the v blocks {{ i, a + i, b + i, e+ i} : ° ~ i < v} in which elements are reduced 
modulo v into the range 0, ... , v 1. Tables 1, 2, and 3 give base blocks for cyclic 
BSEC( v, 4, A)S. When 'h' is indicated with the index A, one is to add the half orbit 
whose base block is {O, 2, ~, ~ + 2}. When 'q' is indicated with the index A, one is to 
add the quarter orbit whose base block is {o,~,~, ~}. 

v A Base Blocks 

27 {2,6,13} {3,8,18} 
39 1 {2,5,27} {4,1l,30} {6,16,24} 
51 1 {2,5,14} {4,19,26} {6,17,33} {8,21,31} 
87 1 {2,5,9} {6,14,29} {10,34,60} {1l,42,54} {13,38,59} {16,35,67} 

{17,39,57} 
99 1 {2,5,9} {6,14,24} {1l,36,65} {12,39,67} {13,43,64} {15,46,62} 

{17,40,66} {19,41 ,61} 
12 2 h {2,5,9} 
21 2 {2,4,9} {3,8,14} {3,9,13} 
30 2 h {2,5,9} {3,9,19} {4,12,20} {5,1l,18} 
33 2 {2,4,7} {3,12,21} {4,15,20} {6,13,23} {6,14,25} 
42 2 h {2,5,8} {4,8,20} {5,14,29} {6,15,26} {7,17,30} {7,18,32} 
45 2 {2,4,7} {3,7,18} {5,16,29} {6,19,28} {6,20,28} {8,18,33} {9,19,33} 
54 2 h {2,5,8} {4,8,14} {5,20,35} {7,20,36} {7,24,35} {9,21,37} {9,22,40} 

{l0,22,33} 
57 2 {2,4,7} {3,7,12} {6,20,35} {6,22,38} {8,25,36} {8,26,39} {9,23,42} 

{10,27,37} {1l,23,44} 
66 2 h {2,5,1l} {4,14,43} {7,26,48} {8,24,54} {13,34,51} {3,7,12} {6,28,52} 

{8,31,49} {10,37,50} {1l,32,47} 
69 2 {2,5,9} {6,14,27} {10,25,49} {1l,28,51} {12,31,4 7} {2,5,1l} {4,23,41} 

{7,33,43} {8,29,45} {12,27,47} {13,30,44} 
78 2 h {3,7,12} {6,14,41} {10,36,60} {1l,33,58} {13,30,62} {15,38,59} {2,5,9} 

{6,14,30} {10,29,61} {1l,36,56} {12,40,55} {13,34,60} 
81 2 {2,5,9} {6,14,24} {1l,30,53} {12,33,59} {13,38,54} {15,32,52} {2,5,9} 

{6,16,44} {8,32,54} {1l,36,50} {12,35,52} {13,31,61} {15,34,60} 

Table 1: Small Cyclic BSECs: A E {1,2} 

When v 12 and A = 1, the number of blocks in total is only nine, and hence this 
BSEC cannot exist by the Fisher-type inequality in [8]. We therefore provide solu-
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v A 
12 3q 
16 3q 
19 3 
20 3q 
23 3 
28 3q 
31 3 
32 3q 
35 3 

40 3q 

43 3 

44 3q 

47 3 

52 3q 

55 3 

56 3 q 

59 3 

67 3 

68 3q 

71 3 

Base Blocks 
{2,4,7} {2,6,9} 
{2,4,6} {3,6,12} {3,7,1l} 
{2,4,9} {2,5,13} {3,7,13} {3,8,12} 
{2,4,6} {3,6,1l} {3,8,15} {4,9,14} 
{2,4,7} {2,8,14} {3,10,14} {3,1l,16} {4,9,17} 
{2,4,6} {3,6,10} {3,10,19} {5,10,21} {5,12,19} {6,13,21} 
{2,4,6} {3,6,15} {3,1l,20} {4,14,19} {5,12,21} {5,13,23} {6,13,20} 
{2,4,6} {3,6,9} {4,1l,21} {5,12,24} {5,13,24} {5,14,22} {7,15,23} 
{2,4,6} {3,6,13} {3,12,21} {4,14,25} {5,16,24} {5,17,22} {6,15,22} 
{7,15,27} 
{2,4,6} {3,6,9} {4,9,14} {5,12,28} {7,17,30} {7,22,32} {8,18,28} 
{8,19,30} {9,19,30} 
{2,4,6} {3,6,9} {4,1l,27} {5,17,27} {5,18,29} {5,19,31} {7,20,28} 
{7,21,30} {8,17,32} {8,18,33} 
{2,4,6} {3,6,9} {4,9,14} {5,12,19} {7,18,33} {8,18,33} {8,19,30} 
{8,20,31} {9,20,33} {10,21,33} 
{2,4,7} {3,7,15} {5,15,33} {6,22,35} {6,23,34} {8,24,33} {9,26,36} 
{2,5,15} {4,21,28} {6,20,31} {8,20,29} 
{2,6,35} {3,31,39} {5,15,45} {9,27,41} {2,6,35} {3,31,39} {5,15,45} 
{9,27,41} {2, 7,31} {3,35,46} {4,26,40} {8,27,42} 
{2,5,13} {4,20,35} {6,21,38} {7,25,34} {10,22,36} {2,5,12} {4,13,32} 
{6,24,35} {8,25,41} {2,5,12} {4,13,31} {6,25,39} {8,23,34} 
{2,5,13} {4,19,25} {7,29,47} {10,30,42} {2,5,13} {4,19,29} {6,18,42} 
{7,30,47} {2,5,18} {4,19,36} {6,27,34} {8,25,34} {10,21,33} 
{2,5,9} {6,17,37} {8,32,46} {10,26,44} {2,5,13} {4,27,34} {6,22,39} 
{9,23,44} {10,28,40} {2,5,9} {6,19,41} {8,27,39} {10,21,44} {12,26,42} 
{2,5,1l} {4,23,43} {7,28,41} {8,29,44} {10,27,45} {12,26,42} {2,5,9} 
{6,16,33} {8,21,45} {1l,36,55} {14,29,49} {2,5,9} {6,16,33} {8,26,45} 
{1l,35,47} {13,38,52} 
{2,5,1l} {4,26,40} {7,31,50} {8,31,47} {10,35,48} {12,34,53} {2,5,9} 
{6,16,48} {8,29,54} {1l,28,55} {12,35,50} {2,5,9} {6,16,48} {8,29,57} 
{12,30,45} {13,37,54} 
{2,5,9} {6,14,27} {10,32,48} {1l,31,56} {12,30,47} {2,5,9} {6,20,43} 
{8,30,45} {10,29,46} {1l,32,44} {13,29,53} {2,5,9} {6,16,41} {8,27,51} 
{1l,26,49} {12,29,43} {13,32,50} 

Table 2: Small Cyclic BSECs: A = 3 
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v A 
13 6 
14 6h 
17 6 
22 6h 

25 6 

26 6h 

29 6 

34 6h 

Base Blocks 
{2,4,8} {2,5,10} {2,6,10} {2,7,9} {3,6,9} 
{2,4,7} {2,5,10} {2,6,10} {2,7,10} {3,6,9} 
{2,4,6} {2,5,10} {2,7,12} {2,8,1l} {3,7,13} {3,8,1l} {3,9,13} 
{2,4,6} {2,5,8} {2, 7,14} {3,9,16} {3,10,15} {3,1l,14} {4,9,17} {4,10,17} 
{ 4,12,16} 
{2,4,6} {3,6,13} {3,10,19} {4,9,17} {5,10,17} {2,8,15} {3,1l,17} 
{3,12,15} {4,1l,15} {5,1l,16} 
{2,5,1l} {3,12,19} {4,8,18} {2,4,9} {3,8,16} {3,9,15} {4,1l,16} {2,4,8} 
{3,10,17} {3,1l,16} {5,1l,17} 
{2,4,6} {3,6,12} {3,10,19} {4,1l,19} {5,12,20} {5,16,21} {2,4,7} {2,9,19} 
{3,12,18} {3,14,18} {4,12,20} {5,12,18} {5,13,19} 
{2,4,7} {3,13,19} {4,16,23} {5,14,26} {6,17,26} {2,4,7} {3,13,19} 
{4,16,24} {5,12,25} {6,15,23} {2,5,8} {4,10,22} {4,13,24} {5,13,24} 
{7,14,23} 

37 6 {2,4,7} {3,9,22} {4,14,24} {5,14,26} {6,17,25} {7,15,28} {2,4,7} 
{3,15,23} {4,15,23} {5,18,24} {6,16,26} {7,16,28} {2,4,7} {3,7,18} 
{5,17,29} {6,14,28} {6,17,27} 

38 6 h {2,5,8} {4,8,18} {5,12,26} {6,15,28} {7,16,27} {2,4,7} {3,9,23} {4,14,25} 
{5,15,27} {6,18,25} {8,16,25} {2,4,7} {3,10,23} {4,16,24} {5,16,26} 
{6,15,29} {6,17,25} 

41 6 {2,4,7} {3,7,16} {5,20,31} {6,17,29} {6,20,28} {8,17,31} {2,4,7} {3,7,16} 
{5,20,31} {6,18,27} {6,19,29} {8,16,27} {2,4,8} {3,14,26} {3,19,25} 
{5,17,26} {5,18,25} {7,17,31} {8,17,30} 

46 6 h {2,4,7} {3,7,16} {5,17,32} {6,24,30} {8,21,36} {8,25,35} {9,20,32} 
{2,4,7} {3,7,16} {5,17,33} {6,20,31} {6,21,29} {8,19,28} {10,22,32} 
{2,5,8} {4,8,21} {5,17,31} {6,20,30} {7,18,34} {7,20,31} {9,19,28} 

49 6 {2,4,7} {3,7,19} {5,18,31} {6,20,34} {6,22,31} {8,20,30} {8,23,32} 
{10,21,38} {2,4,7} {3,7,19} {5,20,30} {6,20,31} {6,22,32} {8,21,36} 
{8,22,31} {9,21,32} {2,4,7} {3,7,12} {6,14,31} {6,19,35} {8,23,38} 
{9,22,33} {l0,20,37} 

50 6 h {2,5,8} {4,8,13} {6,18,33} {7,20,36} {7,22,38} {9,26,40} {10,21,32} 
{2,4,7} {3,7,17} {5,20,31} {6,21,34} {6,23,31} {8,20,34} {9,20,38} 
{9,22,32} {2,4,7} {3,7,17} {5,20,31} {6,20,31} {6,21,33} {8,24,32} 
{9,21,37} {9,22,32} 

53 6 {2,5,9} {6,16,33} {8,18,41} {9,21,40} {1l,24,39} {2,5,39} {4,1l,28} 
{6,18,33} {8,30,40} {2,5,39} {4,1l,28} {6,18,33} {8,31,40} {2,5,39} 
{4,1l,28} {6,18,44} {8,21,31} {2,5,39} {4,1l,28} {6,26,44} {8,21,31} 
{2,5,39} {4,1l,29} {6,15,32} {8,31,41} 

58 6 h {2,5,9} {6,27,41} {8,36,48} {1l,24,43} {2,5,1l} {4,20,37} {7,23,36} 
{8,26,38} {lO,24,43} {2,5,9} {6,27,45} {8,20,44} {10,26,43} {2,5,1l} 
{4,18,35} {7,26,37} {8,24,36} {10,23,43} {2,5,9} {6,27,45} {8,23,34} 
{10,30,46} {3,7,15} {5,23,37} {6,25,36} {9,25,38} {10,24,41} 

Table 3: Small Cyclic BSECs: A = 6 
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tions for v 12 and ,\ E {2, 3}. Moreover, when v = 12t and A 1, a putative cyclic 
solution would require both a half orbit and a quarter orbit. Since both employ the 
difference 6t, no such solution can exist. In this case we resort to non-cyclic solutions. 
The designs in Table 4 are on Zv/z X {0,1}, and are called bicyclic. The element 
(x,i) is written as Xi. When v == ° (mod 4), the base block {0o, (v/4)0,01, (v/4)d 
generates v /4 blocks, while others all generate v /2 blocks. . 

v ,\ Base Blocks 
36 {00,90,01,91} {00,10,30,80} {00,40,1 1,31} {00,60,101,141} 

{00,21 ,51,131} {00,61, 71,121} 
48 1 {0o, 120,01, 12t} {00,10,21,8t} {00,20,100 ,19d {00,31,201,22d 

{00,40,150,210} {00,41 ,131 ,14t} {00,50,111,15I} {00,51 ,181 ,21 d 
72 1 {00,11,210,32I} {00,21 ,120,21d {00,41,121,170} {00,51,251,280} 

{00,61 ,191 ,28d {00,81 ,201 ,22o} {00,10,50,110} {01 ,1 1,31, 71} {0o, 70 ,90,241 } 

{0o, 130, 160,71} {00,31 ,141 ,291 } {0o, 180,01,181} 
84 {00,11 ,24 1 ,30o} {Oo,31,141 ,27o} {00,41,281,310} {00,61,160,331} 

{0o, 71,180,37 d {00,81 ,230,34d {00,91,280,38d {00,100 ,301 ,35d 
{00,10,30,70} {00,50,130,220} {00,21 ,51 ,22d {00,121,161,26I} {Ol,h,71,91} 
{00,210,01,21d 

18 2 {00,01,l l ,3d {00,01,2l ,5d {00,10,30,70} {00,10,4l,5d {Oo,11,40,61 } 

Table 4: Small Bicyclic BSECs 

We close with a solution for BSEC(24,4,1). We were unable to find a bicyclic solu
tion, but found a solution with an automorphism of order three on {a, 1,2,3,4,5,6, 7} 
X Z3. Its starter blocks are {0o, 01 ,10, 2o}, {0o, 21, 30, 4o}, {0o, 31, 50, 51}' {0o, 32 , 60, 
7o}, {00,41,5z,62}, {00,42 ,61, 72}, {1o, 11 ,40,60}, {10,22,52 ,6d, {10,32 ,41,50}, {1o, 
30,31,70}, {10,5l , 71, 72}, {20,21,52 , 7t}, {20,31,60,6d, {20,40,41,72 }, and the re
maining 28 blocks are obtained by adding 1 and 2 modulo 3 to the subscripts. 

3 Indices One and Two 

We employ some recursive constructions. We require a definition. An incomplete 
transversal design of order n and block size k with holes of sizes hI, h2 , • •• , hi, or 
T D(k, n) 2:~=1 T D(k, hi), is a quadruple (X, H, Q, B) with the following properties. 
X is a set of kn elements. Q={G1 , G2 , ••• , Gd is a partition of X into k sets each 
of size n; each element of the partition is a group. 1-i={H1 , H2, ... , HI} is a set of 
pairwise disjoint subsets of X, with the property that jHj n Gi \= hj for 1 :::; j :::; 1 
and 1 :::; i :::; k; each H j is a hole. B is a set of k-subsets of X, with the property that 
each B E B satisfies IB n Gd= 1 for each 1 :::; i :::; k; sets in B are blocks. Finally, 
each unordered pair of elements from X is either in a hole or group together, or in 
exactly one block of B. 

Lemma 3.1 If a BSEC(m, 4, ,\)existsJ then a BSEC(4m, 4,'\) exists. 
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Proof: There exists a TD( 4, m)-TD( 4,4) (see [1], for example). Replicate every block 
A times. Let {Xij : 1 S i, j S 4} be the points in the hole, with {Xij : 1 S j S 4} in 
the ith group. For 1 SiS 4, place a BSEC(m, 4,'\) on the points of the ith group 
so that the pairs {Xil, Xi3}, {Xi2, Xi3}, and {Xi2, Xi4} appear in the leave. To fill the 
hole, form sixteen blocks of the form {{ i, i + 2, i + 6, i + 13} : 0 SiS 16} with 
arithmetic modulo 16. Relabel the points of these 16 blocks using the mapping: 

o 8 9 1 3 11 10 2 4 12 13 57 15 14 6 

and place the sixteen blocks obtained, ,\ times each, on the sixteen points of the hole. 
The resulting design is the required BSEC. 0 

Lemma 3.2 Let'\ E {1,2}. Let m 2 4) and m == 0,1 (mod 4) 'When ,\ = 1. Let 
x = 1 or 4 S x S m) and x == 0,1 (mod 4) 'When ,\ 1. Then if a BSEC(3m, 4, A) 
exists and a BSEC(3x, 4, A) exists) so does a BSEC(12m + 3x, A). 

Proof: Let (X,g,H,B) be TD(5,m)-TD(5,1). Delete m x points from G5 , but do 
not delete the point in H n G5 . Let 9 {G I , G2 , G3 , G4 , Gs} be the five groups of 
the resulting design. 

The BSEC(12m + 3x, 4,'\) to be constructed has elements (G1 U G2 U G3 U G4 U 
G5 ) x {O, 1, 2}. For each block B E B, place on B x {O, 1, 2} the blocks of a 4-GDD 
of type 31B1 and index A so that {(x, 0), (x,I), (x, 2)} is a group for each x E B. 

Next, for each group Gi , i 1,2,3,4,5, place the blocks of a BSEC(3IGi l,4,A) 
on G i x {O, 1, 2}, so that for every g E Gi , the pairs {(g, 0), (g, I)} and {(g, 0), (g, 2)} 
appear in the leave of the BSEC. Finally, on H x {O, 1, 2}, place the blocks of a 
BSEC(15,4)) so that {(g, 0), (g, 2)} and {(g, 1), (g, 2)} appear in the leave. It is 
routine to check that the result is the required BSEC. 0 

Lemma 3.3 A BSEC(v, 4,1) exists 'Whenever v 2 12 and v 0,3 (mod 12) except 
'when v 12. 

Proof: Solutions are given in §2 when v = 15, 24, 27, 36, 39, 48, 51, 72, 84, 87, 
99. Apply Lemma 3.2 to handle all remaining values with v == 3 (mod 12). Now 
Lemma 3.1 handles all values of v == ° (mod 48) with v 2 96, and all values of 
v == 12 (mod 48) with v 2 60. Lemma 3.2 with x 8 handles all values of 
v == 24,36 (mod 48) with v 2 120. 0 

Lemma 3.4 A BSEC(v,4, 2) exists whenever v 2 12 and v 0 (mod 3). 

Proof: Lemma 3.3 handles all values with v == 0,3 (mod 12) except for v = 12. 
Solutions are given in §2 when v = 12, 18, 21, 30, 33, 42, 45, 54, 57, 66, 69, 78, 81. 
For v = 93, form a {4,5}-GDD of type 65 71 containing a block of size 5, by deleting 
four points of a block in a TD(5,7). Employ this design on 31 points, giving weight 3 
as in Lemma 3.2, to produce a BSEC(93,4,2). For the remaining cases, apply Lemma 
3.2. 0 
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4 Indices Three and Six 

Lemma 4.1 Let A E {3, 6}. Let m ~ 12 and x = O} or m ~ x ;::: 12} where 
m, x == 0,3 (mod 4) when A = 3. If a BSEC(m, 4, A) exists} and either x = ° or a 
BSEC(x, 4, A) also exists} then a BSEC(4m + x, 4, A) exists. 

Proof: Form a TD(5, m)-TD(5,2), which exists by the main theorem in [1]. Select 
one group and delete m - x elements of this group; when x > 0, these do not include 
the two elements of the group in the hole. Now replace each block of size four by 
three copies of the block, and replace each block of size five by the blocks of a 4-GDD 
of type 15 and index three (this is all possible 4-sets on 5 elements). Now on each 
nonempty group, place a BSEC whose leave includes the pair of elements in the hole. 
It remains only to fill the hole. Let {Xi, Yi} be the elements in the intersection of 
the hole and the ith group. When x > 0, place the blocks of a 4-GDD of type 25 

and index 3 so that its groups align on {Xl,Y2}, {X2,Y3}, {X3,Y4}, {X4,Y5}, {x5,yd. 
When x = 0, instead use type 24 and index 3 placing the groups on {x 1, Y2}, {X2, Y3}, 
{X3,Y4}, {x4,yd· 

The leave is then a single cycle as required. 0 

Lemma 4.2 Let A E {3, 6}. Let m ~ 6 when A = 6; and m ~ 8} m i=- 10} and m == ° 
(mod 2) when -\ = 3. Let 3m - 1 ~ x ~ 12} and x == 0,3 (mod 4) when ). = 3. If 
a BSEC(2m, 4, -\) and a BSEC(x, 4, -\) both exist} so does a BSEC(8m + x, 4, -\). 

Proof: We employ 4-GDDs of type 240"1 when 0" = 0,1,2,3, for index 3. The GDDs 
with 0" = 0,2 are in [7]. When 0" = 1, develop starter blocks {0,1,2,3} and {0,3,6,oo} 
modulo 8 to get the 4-GDD. When 0" = 3, instead use the starter blocks {0,1,3,ood, 
{0,1,3,oo2}, {0,1,3,oo3}. 

Form a TD(5,m)-TD(5,1) of index ~. Give weight 2 to every point in the first 
four groups. Give weight 2 to the point of the hole in the fifth group. Give the 
remaining m - 1 points weights W2, .. . , Wm so that Wi E {O, 1,2, 3} when 2 ::; i ::; m 
and 2 + 2:::2 Wi = x. Now for each block B, employ a 4-GDD of type 240'1 where 
0" is the weight of the point in the fifth group. The remainder of the proof parallels 
Lemma 4.1. 0 

We use these two constructions to settle existence of BSEC( v, 4, -\)s with -\ == ° 
(mod 3). 

Lemma 4.3 A BSEC(v, 4, 3) exists whenever v == 0,3 (mod 4) and v ~ 12. 

Proof: A BSEC( v, 4,1) is given for v == 0,3 (mod 12) except when v = 12. 
BSEC( v, 4, 3)s are given in §2 for v = 12, 16, 19, 20, 23, 28, 31, 32, 35, 40, 43, 
44, 47, 52, 55, 56, 59, 67, 68, and 71. Lemma 4.2 with m = 8 and x = 19 handles 
v = 83. A variant of Lemma 4.2 with m = 10, using a TD(5,10)-TD(5,2)-TD(5,1), 
with x = 23 handles v = 103. For the remaining values of v, write v = 4m + x with 
x = ° or 12 :::; x ::; m and apply Lemma 4.1. 0 

Lemma 4.4 A BSEC(v, 4, 6) exists whenever v ~ 12. 
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Proof: A BSEC( v, 4, 3) when v == 0,3 (mod 4) exists by Lemma 4.3. A BSEC( v, 4, 2) 
when v 0 (mod 3) exists by Lemma 3.4. It remains to treat cases with v == 
1,2,5,10 12). BSEC( v, 4, 6)s are given in §2 for v 13, 14, 17, 22, 25, 26, 
29, 34,37, 38,41,46,49,50,53,58. Apply Lemma 4.2 with Tn = 6 and x E {13, 14} 
to handle v E {61,62}. For the remaining values of v, write v = 4m + x with 
12 ::; x ::; m and apply Lemma 4.1. 0 
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