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Abstract 

The matching property of nested sets, which has been studied in [6], is 
extended to generalized nested sets, defined in [9]. Pairs of matching 
generalized nested sets on [m] are constructed and used for the creation 
of all generalized planar permutations on [m]. 

1. Introduction 

A set S of pairwise disjoint pairs of [2n]={1,2, ... ,2n} such that U{a,b}=[2n] 
{a.bjES 

and for any { a,b }, ( c,d} E S we never have a<c<b<d, is called nested set of 

pairs on [2nJ. The nested sets may be regarded as non-crossing partitions, the 

blocks of which contain exactly two elements; they are related to nested 

parentheses [3] and are used in the study of planar permutations [7] and Jordan 

sequences [2]. The set of nested sets is studied in [8], while in [6] it is shown 

how elements of this set match in order to create planar permutations. 

The notion of nested sets is generalized in [9], where the elements of S are 

not necessarily disjoint; the set S of pairs of N* is called generalized nested set 

(g.n.s.) if we never have a<c<b<d for {a,b }, {c,d} E S. For example the set 

S={(1,4},{2,4},{5,6},{S,10},{6,7},{8,9}} is a g.n.s. on [10] (see Fig. 1). 
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Fig.1 A generalized nested set on [10]. 

Generalized nested sets are characterized and constructed using a pair of 

finite sequences in [9]. 

Here, we study the matching property of g.n.s., allowing two g.n.s. to be 

joined in such a way that a unique cycle using elements of [m] is obtained. We 

construct a transformation on the set of g.n.s., which preserves the matching 

property and it is used for the creation of the set of g.n.s. from the nested 

sets. Thus, we obtain the set of generalized planar permutations (see [4]). 

2. Matching generalized nested sets 

If 5 is a g.n.s. of [m], we define the degree dii) of i in S to be the 

number of occurences of each element of ie [m] in pairs of 5, and the domain 

of 5, D(5)={ie [m] : <!s(i)=1 or 2}. Now, if Ik[m], let N(I,5)={ie [m] : '3 je I such 

that {i,j}e5}. 

We say that two g.n.s. U,L are matching if and only if : 

du(i)+dL(i)=2, for each ie D(U)uD(L), and 

for every non-empty IkD(U)uD(L), N(I,U)uN(I,L)=I implies I=D(U)uD(L). 

The above defInition suggests that the diagrams of the two matching g.n.s. 

can be joined in such a way that a unique cycle is generated, having U and L 

as its upper and lower parts (see Fig. 2). 

It is easy to check that if U ,L are nested sets, the matching property given 

here implies D(U)=D(L) and hence it coincides with the matching property given 

for nested sets in [8]. 
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Fig. 2 The matching of two g.n.s. 

Given a g.n.s. 5 we say that two elements X,yE D(S) are connected in 5 if 

there exists a sequence tlh, ... ,tn of elements of D(S) such that x=tl, y=tn and 

{y,y+dE 5, i=1,2, ... ,n-1. Moreover, if the sequence tl.tZ, ... ,tn is unique, we say 

that x,y are uniqueJy connected in 5 and we write x5y. Obviously this relation 

is transitive. 

Let GNm be the set of all g.n.s. 5 of [m], such that each pair of connected 

elements of D(5) are uniquely connected and Nm its subset consisting of nested 

sets. It is clear that if 51,52E GNm with D(51)= D(S2)' then 51~52 implies 51=52, 

We define a transformation <p from GNm to the set of all pairs (V ,A), 

where V E Nm, A~[m] and AnD(V)=0 as follows 

<p(U)=(V,A), where D(V)={iE D(U): du(i)=l}, {X,Y}E V if and only if x,y are 

connected in U, and A={iED(U): du(i)=2}. 

Proposition 2.1 : If cp(U)=(V,A) and cp(L)=(W, B), then U, L are matching 

g.n.s. if and only if V, W are matching nested sets and the family 

(A, B, D(V)) forms a partition of D(U)uD(L). 

Proof. 5uppose that U,L are matching. By the defmitions of A,B and D(V) it 

is clear that they form a partition of D(U)uD(L). Suppose now that I~D(V), 

with N(I,V)uN(I,W)=I. To prove that V, W are matching it is enough to prove 

that I=D(V). 
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Let J=IU{YE A : yUi for some iE I}U{YE B : yLi for some iE I}. 

We first show that if xUi (similarly if xli), then XE I, for every iE J, 

XE D(V). Indeed, if iE D(V), then {x,i} E V and hence XE N (I,V)~ I; if on the 

other hand ie D(V), then ie I and hence iE AnJ; so iUk for some kE I; then 

xUk, i.e. XE I. 

We now proceed to prove that N(J,U)u N (J,L)~1. Notice fIrst that if 

XE N(J,U) then {X,i}E U, Le. xUi for some iE 1. If XE D(V) then XE I~J by the 

previous result. If xe D(V) (and hence XE A) then either iE I and since (X,i}E U 

we have xUi, i.e. XE J, or iE (YE A: yUk for some kE I} and hence iUk for 

some kE I, i.e. xUk for some kE I, giving XE 1. So, in every case 

N(J,U)uN(J,L)~J. The proof is similar if XE N(J,L). 

Since U, L are matching, the above implies that J=D(U)uD(L) and hence 

J=AuBuD(V). Since I~J, I~D(V) we get I=D(V). 

Conversely now, suppose that V, W are matching nested sets and 

(A,B,D(V» form a partition of D(U)u D(L). Let J~ D(U)u D(L) and 

N(J,U)uN(J,L)~J. It is enough to prove that J=D(U)uD(L). 

We first show that if xUy (or xLy) and yE J, then XE J since xUy, there 

exists a unique sequence tl,t2, ... ,tn of elements of D(U) such that tl=x, tn=y 

and {ti,ti+l}E U, i=1.2, ... ,n-1. Since yE J, then tn_IE N(J,U)~J. It is now clear 

that we can inductively show that t1 =XE 1. 

Let now I=JnD(V). Then N(I,V)uN(I,W)~I. Indeed, if XE N(I,V) (similarly, if 

XE N(I,W» then there exists yE I such that (X,Y}EV; so xUy and yE I~J. Hence, 

by the above result, XE J and hence XE JnD(V)=L 

We have proved that for I=JnD(V)~D(V)=D(V)uD(W), we have that 

N(I,V)uN(I,W)~I and since V,W are matching we get I=D(V). 

Let now XE AuBuD(V). If XE A (similarly, if XE B) then there exists yE D(V) 
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such that xUy. But then yE I~J and hence XE 1. If on the other hand XE D(V)=I, 

then XE 1. So, D(U)uD(L)=AuBuD(v)d and hence J=D(U)uD(L). I 

In general, given a pair (v,A) such that VE Nm, A~[m] and D(V)nA=0, 

there exist several Ue GNm with <p(U)=(V ,A); (e.g. both g.n.s. of Fig. 3 give 

rise to the pair (V,A), where V={ {l,2),{7,10},{8,9}} and A={4,5,6}). 

2 3 4 5 6 7 8 9 10 

2 3 4 5 6 7 8 9 10 

Fig. 3 Two g.n.s. with the same image. 

Our aim is to determine the set of all UE GNm with <p(U)=(V,A). For this, 

we introduce two preliminary constructions. 

Construction 1 : Given a pair V={x,y}~[m] with x<:y and a set K~[m], such 

that VnK=0, we define T(V,K)={SE GNm : D(S)=VuK, ds(x)=ds(y)=l and ds(z)=2 

for each ZE K}. 

Clearly, for each Se T(V,K) , any two elements of VuK are connected in S. 

An inductive construction of the set T(V,K) is obtained as follows 

Let Ky={ZE K: x<z<y} and n= IKyHK\Kyl. 

If n==O then either Ky=0 or Ky=K. In both cases let S be the set of all 

pairs {z,w} such that z,w are consecutive elements of VuK and {z,w};t:V; 

(here, the elements min(VuK), max (VU K) are assumed to be consecutive). 

It is easy to show that T(V,K)={S}. 
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Now, assuming that n>O and T(V,K) is constructed for every pair V and set 

K such that IKyl·lK\Kykn, we will construct the set T(V,K), where IKyl·lK\Kyl=n. 

Indeed, let zl (resp. q) be the left (resp. right) neighbour of x in VuK. If 

we set V 1= {y,ztl and V2={y,q} then by the induction hypothesis the sets 

T(Vl,K\{ztl) and T(V2,K\{q}) can be constructed. Furthennore, by adding to 

each SeT(Vi,K\{~}) the pair (x,~}, we introduce the set T*(Vi,K\{~}), i=1,2. 

It is clear that T(V,K)=T*(Vl,K\{ztl)uT*(V2,K\{q}). 

The previous discussion also helps for the evaluation of the cardinal number 

of T(V,K). 

Indeed, since IT(V,K)I=IT(V',K')I whenever IKI=IK'I and IKyl=IK~'I, the function 

f(r,s)=IT(V,K)I where r=IKyl and r+s= IKI is well defined for r,se [IKll. 

Clearly, by the above construction we obtain that for every r,se [IKI] 

f(r,O)=f(O,s)=1 and f(r,s)= IT(V,K)I=IT*(Vl' K\{ztl)I+IT*(V2' K\{q})1 

IT(Vl, K\(ztl)I+IT(V2' K\{q})l=f(r,s-I)+f(r-l,s) 

Then, using a 

show that 

generating function and a standard procedure, it is easy to 

(
r+s) 

f(r,s) = r thus obtaining that IT(V,K)I = 
(

IKI) 
IKyl 

Now in order to proceed to the second construction, let B be a subset of a 

totally ordered set X, C a noncrossing partition of B (see [1]) and 

1:=Cu(X\B). We detennine a relation "../.. II on 1: as follows 

a 1.. ~ if and only if ~e C and there exist x,y consecutive elements of ~ 

such that x<rninaSnaxa<y. 

This relation is transitive and it is used for the following definition : 

Given ~e C and ae 1:, we say that ~ is the father of a if and only if a i.. ~ 

and there is no ye B with a L... y ..( ~. 

Furthennore c,de 1: are called brothers if they both have no father or 

they have the same father ~ and there is no element of the father which lies 

between them (Le. there is no xe ~ such that min(cud)<x<max(cud». 
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Construction 2 : Given a totally ordered set X and B~X, we denote by 

R(B,X) the set of all noncrossing partitions C of X, such that each member 

of C contains exactly one element of B. 

The set R(B,X) is determined by induction on n=IX\B1 as follows : If n=O 

and hence then R(B,x)={Co}' where Co={{~}; ~E B}. Now assuming that 

n>O and the set R(B,X) is determined for each X with 1X\BI=n-l, we will 

determine the set R(B,X), when 1X\BI=n. Indeed, given l;E X\B and 

C E R(B,X\{~}), let T be the set which contains the father and the brothers of 

~ in C u {l; }. For each yE T, we obtain through C a non crossing partition C y of 

X by adding l; to y. It is clear that eyE R(B,X) and R(B,X) = u ( C y: yE T}. 

C E R(B,X\{t;}) 

We now corne to determine the set of all g.n.s. which are mapped under 

the transformation <p to a pair (\I,A). 

Main Construction : Let l...=VuA and L be the partition of l... generated by 

the equivalence relation * with : 

a*b iff a=b or a,b are brothers 

If we add to each member X of [. the common father, if it exists, we 

obtain a set X on which the natural ordering of [ml gives a total ordering, 

defined as follows 

a~ if and only if max a ~ max b 

If we choose a family C=(C x), XEL, where CxERcXnV,X), we define for 

each VE V a set Ay( C)= {aE A:a,v belong to the same block of some ex}' It is 

dear that if aE Ay( C), then v is either the father or a brother of a. 

Moreover, since each member of C contains an element of V, we deduce that 

the family (Ay(C», VE V is a partition of A. 

Now, for each VEV we choose SyET(v,Ay(C» and we set U= u Sv, 
VEV 
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Clearly, since for vl>V2E V with vl;tv2 we obtain D(Sv )nD(Sv )=0, we 
1 '1 

conclude that Sv nSv =0. Furthennore, we have that : 
1 '2. 

{ 

0, if X~ D(V)uA 

du(x)= 1 ,if XE D(V) 

2 ,if XE A 

The following two propositions accomplish the generation of all UE GNm, 

which are mapped to a given pair (V,A). 

Proposition 2.2 : Every set U obtained by a pair (Y,A) according to the 

main construction is a g.n.s. in GNm, which is mapped under the basic 

transformation cp to the pair (V,A). 

Proof. We first show that U is a g.n.s. Indeed, if this is not true, there exist 

vl,v2EV with vl;t:v2 and {a,b}ESv ,{c,d}ESv such that a<c<b<d. 
1 2. 

Without loss of generality, we may assume that a,bE Av(C) and c,dE Av:(C), 
I t 

since the cases where some of a,b,c,d belong to the corresponding Vi, i=1,2, 

are treated similarly. 

Then, for a,b we have two possible cases : 

(I) (l,b are brothers. 

(II)The father of one is a brother of the other. 

For case I, we assume that a,b have a common father v=(x,y); let X be 

the set of all the children of v; (in the case that a,b have no father, we work 

similarly). 

We consider two sub cases : 

(11) If d>y, then v is a brother of d and the father of c, so that v=v2' Then 

there exist two different blocks of C x such that one contains a,b and the other 

c,d while a<c<b<v. This contradicts the non crossing property of C X' 

(12) If d<y we use the same method. Here, the four elements that give the 

required contradiction are a,b,z,w where Z is either c or v2 and w is either d 

or v2' 

The proof of case n is similar and it is omitted. 
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We now show that UE GNm. Indeed, if a and b are connected in U, there 

Then, since D(Sy )nD(Sv )=0 for vl;cv2, we deduce that there exists VE V such 
t 1. 

that {tL,tL+1}E Sv for each iE [k-l]. Thus, aSvb and hence aUb. 

It remains to show that <p(U)=(V ,A). Indeed, since A= {iE D(U) : duCi)=2} and 

D(V)={iE D(U) : du(i)=l}, it is enough to show that for X,YE D(V) we have that 

{X,Y}E V if and only if xUy. 

If (X,y}=VE V we have xSyy and hence xUy. Conversely, if xUy, then as we 

have shown in an earlier step of the proof, there exists VE V such that xSyy. 

Then since ds(x)=ds(y)=l and the only such elements of D(Sy) are the two 
11' 11' 

elements of v, we deduce that (X,y}=VE V. II 

Proposition 2.3 : Every UE GNm such that cp(U)=(V,A), is deduced by the 

main construction. 

Proof. Given a UE GNm and the corresponding pair (V,A), it is enough to 

choose the appropriate family C and then the sets Sy for which U= U Sy. 
YEV 

So, for each XEL and for each v={x,Y)EXnV, let By={V}u{uEXnA:aUx} 

It is easy to check that C xE R(Xn V ,x}. 

We then define Ay(C)={aE A: aUx} for every v=(X,Y}EV and Sy={ {p,q}E U: 

p,qE Ay(C)u {x,Y} }. Using the fact that the degrees of the elements of V and 

A (and hence of Ay(C» in U are 1 and 2 respectively, it is easy to see that 

for every VE V, SyE T(v,AyCC)), finally giving that U= U Sy .• 
YEV 
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3. Generalized planar permutations 

Let 0 be a pennutation on [m], with 0(1)=1, E=El~ ... Em a finite sequence of 

(u,d}ffi and Vo(E)={ {o(i),o(i+l)}:Et=u}, La(E)={{o(i),o(i+l)}:~=d}. Here we assume 

that o(m+ 1)=1. We say that O,E are compatible if and only if Uo(E) and La(E) 

are g.n.s. 

A pennutation 0 is called a generalized planar permutation (g.p.p.) if there 

exists an EE (u,d}ffi such that O,E are compatible. 

The notion of g.p.p. has been introduced in [4], using an equivalent 

geometrical definition. 

Note that if m=2n and E=udud ... ud we get that Vo(E)={{0(2i-l),0(2i)}: ie[n]}, 

Lo(E)={ (0(2i),0(2i+ I)}: ie [n]} are nested, giving a p.p. (see [7]) On the other 

hand, it is possible for 0 to be a g.p.p. although it is not compatible with 

udud ... ud; e.g. 0=13425687 is a g.p.p. since it is compatible with the sequence 

uudduduu, whereas 0 is not compatible with udududud and hence not planar. 

The following two propOSitions extend some basic results on p.p. (see 3.4, 

3.S of [6]) to g.p.p. The first gives a necessary condition for a pair of 

sequences O,E to be compatible, while the second shows that two matching 

g.n.s. arise from a compatible pair O,E. 

Proposition 3.1 

g.n.s. 

If a,£ are compatible, then VoCE), La(E) are matching 

Proof. Since it is clear that the sum of the degrees of each ie [m] in VoCE) 

and Lo(E) is equal to 2, it is enough to prove that for 0 :;t:I~ [m] with 

I=N(I,Uo(E»uN (I,Lo(E)) we have that I=[m]. Indeed, if k=o(j)e I, then we 

obviously get {o(j), o(j+ 1)}e Uo(E)ULa(E), so that o(j+l)E N(I,Uo(E»uN(I,Lo(E»)=I. 

This, recursively shows that o(i)e I for each ie [m] and hence I=[m]. I 

Proposition 3.2: If V,L are matching g.n.s. of [m], with D(U)uD(L)=[m], 

then there exist compatible a,e such that Uc/e)=U and Lc/e)=L. 

34 



Proof. We construct a mapping 0 on [m+l] as follows : 0(1)=1. Let 0(2) be 

an element of (m] such that (0(1),0(2)}E UuL. Suppose that we have 

determined 0(1),0(2), ... ,0(i) for l<i$m. We define o(i+l) to be the unique 

element of [m] with 0(i+l):;t;0(i-1) and {0(i),0(i+1)}EUUL. 

The restriction of 0 on [m] is a required permutation. Indeed, suppose that 

a is not 1-1 and let k:;t;A. with 0(k)=0(A.), 1~<A.::; m and such that A.-k is 

minimum and k is minimum. If k> 1, then { o(k -1 ),o(k) }, { o(k),o(k + 1) } and 

(o(A.-l),o(k)} belong to UuL, since 0(k)=0(A.). Then, since the sum of the 

degrees of o(i), i=I,2, ... ,m equals to 2 and o(k-l):;t;o(k+l), we get that either 

a(k+ 1)=o(A.-l) contradicting the minimality of A-k, or oCk-l)=o(A-l) contradicting 

the minimality of k. If now k=l, let I={0(1),0(2), ... ,0(A.-l)}. Since III=A.-l<m= 

ID(U)uD(L)I, we have that I:;t:D(U)uD(L); it is enough then to prove that 

NCI,U)uN(I,L)=I, in order to get a contradiction to the matching property of 

U,L. It is clear that Ik:N(I,U)uN(I,L). Let now XE N(I,U)uN(I,L). Then, there 

exists QE [A-I] such that {x,O(Q)}EUUL. If Q=I, then given that {(0(1),0(2)} and 

(o(1),o(A.-l)} belong to UuL, we get that X=0(2)E I or x=o(A.-l)E I. Similarly, we 

prove that XE I in the other cases giving N(I,U)uN(I,L)=I. 

Now, we define E=€1€2"'€mE (u,d}m with 

f u

d 

' 

Er= L 
if (o(r),o(r+ 1) } E U 

if {o(r),o(r+ 1)}E L 

, r=1,2, ... ,m 

Obviously, Uo(E)=U, Lo(E)=L and o,€ are compatible since U,L are matching .• 

From the above proof we realize that, although the selection of 

0(2),0(3), ... , oem) is unique, we have two choices for 0(1), thus getting exactly 

two compatible pairs (o,€) and (0*,£*) satisfying the result of Proposition 3.2, 

such that 0* is the obverse of 0 (see [6]) and e;-=En-i+l' 

We can construct the set of all g.p.p. on [m] as follows 

Step 1 : We construct the set GNm of all g.n.s. on [m], (see [9]). 

Step 2 : We construct every pair U,L of matching g.n.s. of GNm. For this, 

let UE GNm. Consider the corresponding pair (v,A), with VE Nm and Ak[m], as 
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obtained by the transformation cp of section 2. Construct the nested sets of 

[m] that are matching with V (see [5]). For each such nested set W, find the 

set of all the members Le GNm such that cp(L)=(W,B), where B=[m]\D(U). 

Every such Le GNm is matching with W, according to Proposition 2.1. 

Obviously, we thus find all the elements of GNm that are matching with U. 

Step 3 : We create all compatible pairs O,E (and hence all g.p.p.). This can be 

done as follows : For each pair U,L of matching g.n.s. with D(U)uD(L)=[m], 

constructed by step 2, there exist, according to proposition 3.2 and Note 1, 

two compatible pairs O,E with Uo(E)=U and Lo(E)=L. 

Thus, we create all compatible pairs O,E. Indeed, if O,E are compatible, then 

according to Proposition 3.1, Uo(E) and Lo(E) are matching g.n.s. Then, by 

Proposition 3.2, there exist compatible O',E' with Uo{E')=Uo(E) and 

Lo.(E')=Lo(E). But then, it is easy to prove that O=(J' or 0=(0')*. 

REFERENCES 

[1] P.H. Edelman and R. Simion, Chains in the lattice of noncrossing partitions. 

Discrete Math. 126 (1994), pp. 107-117. 

[2] K. Hoffman, K. Melhorn, P. Rosenstiehl and R. Tarjan, Sorting Jordan 

sequences in linear time using level-linked search trees, Information and 

Control, Vol. 68, pp.170-184. 

[3] D.E. Knuth, The art of computer programming, VoL 1, Addison-Wesley 

Publ. Co. 

[4] A. Panayotopoulos, Permutations planaires generalisees. Math. In!. Sci. 

Hum., No 106 (1989), pp. 17-20. 

[5] A. Panayotopoulos, Generating planar permutations. 1. Infor. and Optim. 

Sciences, Vol. 18 (1997), No 2, pp. 281-287. 

[6] A. Panayotopoulos, A. Sapounakis and P. Tsikouras. The matching 

property of nested sets, Australas. 1. Com bin. , 15 (1997), pp.17-24. 

[7] P. Rosenstiehl, Planar permutations dermed by two interesting Jordan 

curves. Graph Theory and Combinatorics, Academic Press (1984), pp. 

259-271. 

[8] A. Sapounakis and P.G. Tsikouras. Nested sets of pairs, 1. Infor. and 

Optim. Sciences, Vol. 16 (1995), No 3, pp. 549-555. 

[9] P.G. Tsikouras. Generalized nested sets, 1. Infor. and Optim. Sciences, Vol. 

18 (1997), No 3, pp. 393-398. 

(Received 4/4/98) 

36 


